JP3695237B2 - 内燃機関のアイドル回転数制御装置の故障診断装置 - Google Patents

内燃機関のアイドル回転数制御装置の故障診断装置 Download PDF

Info

Publication number
JP3695237B2
JP3695237B2 JP21801099A JP21801099A JP3695237B2 JP 3695237 B2 JP3695237 B2 JP 3695237B2 JP 21801099 A JP21801099 A JP 21801099A JP 21801099 A JP21801099 A JP 21801099A JP 3695237 B2 JP3695237 B2 JP 3695237B2
Authority
JP
Japan
Prior art keywords
idle speed
cpu
idle
control device
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21801099A
Other languages
English (en)
Other versions
JP2001041087A (ja
Inventor
衛 ▲吉▼岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21801099A priority Critical patent/JP3695237B2/ja
Publication of JP2001041087A publication Critical patent/JP2001041087A/ja
Application granted granted Critical
Publication of JP3695237B2 publication Critical patent/JP3695237B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は車両に搭載される内燃機関のアイドル時におけるアイドル回転数を制御する内燃機関のアイドル回転数制御装置の故障診断装置に関するものである。
【0002】
【従来の技術】
自動車等の車両に搭載されるエンジン(内燃機関)においては空燃比制御が実施され、この空燃比制御下においてアイドル時の同エンジンの回転数を制御するために、スロットルバルブを迂回して吸気通路の上流側と下流側とを連通させるバイパス通路を設け、このバイパス通路に燃焼室内への吸入空気量を調節するためのアイドルスピードコントロールバルブ(以下、「ISCV」と記す)を設けたものが知られている。そして、スロットルバルブが全閉となるアイドル時に、エンジン冷却水温に応じた、あるいはエアコン等の負荷条件に応じた所定のアイドルエンジン回転数を得るために、ISCV開度のフィードバック制御が行われている。こうしたISCV開度のフィードバック制御を通じて上記バイパス通路を介した吸入空気量が最適化され、この吸入空気量に応じた燃料供給が行われてアイドル回転数が上記エンジン冷却水温や負荷条件に応じた目標アイドル回転数に制御されるようになる。
【0003】
エンジンにおいて空燃比制御を実行する際、吸入空気量とは吸入空気の質量であり、この吸入空気量に応じて理論空燃比になるような燃料が燃焼室内に供給される。図14(a)に示すように、吸入空気密度は外気温(吸入空気温)が低くなればなるほど大きくなる。例えば、吸入空気温が常温(20℃)から−30℃に低下すると、空気密度は約1.15倍になる。また、図14(b)に示すように、吸入空気密度は外気圧が常圧(一気圧)よりも低くなればなるほど小さくなる。
【0004】
このような空気密度の増加は吸入空気量の増加となり、吸入空気量の増加に応じて燃料供給量も増加する。従って、ISCV制御において、吸入空気温が常温(20℃)から−30℃に低下した場合、常温常圧を基準として設定された基準目標アイドル回転数NRT0も図14(c)に示すように増加してしまう。
【0005】
このように吸入空気温が低くなったり、外気圧が常圧から変化したりして吸入空気量の変化が所定の範囲内にある場合には、ISCVの開度の制御範囲内においてISCVの開度を制御することによって吸入空気量をほば安定した値にすることができ、アイドル回転数を目標アイドル回転数に一致させることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、吸入空気密度が大きくなってISCVの開度がその下限値であるときには、さらに吸入空気量を絞ることはできない。従って、アイドル回転数は基準目標アイドル回転数NRT0よりも高い値に維持され、しかもISCVは下限開度に張り付いたままとなる。このようにISCVが張り付いた状態はISCVの制御不能な状態であり、好ましい状態ではない。
【0007】
また、一般的にエンジンにおいてはブローバイガスをスロットルバルブを経由せずに燃焼室内に戻す処理や、燃料タンク内で発生した燃料蒸気を空気とともにスロットルバルブを経由せずに吸気通路にパージする処理が行われている。ブローバイガス中には空気が含まれており、これらの処理が行われる際、アイドル回転数は基準目標アイドル回転数NRT0よりも高い値となってしまい、ISCVは下限開度に張り付いたままの制御不能な状態になってしまう。
【0008】
また、上記のように構成されたエンジンにおいてアイドル回転数制御を行うために、ISCVが正常であるかどうかを診断する故障診断装置が備えられる。このような故障診断装置は、アイドル状態においてISCVの開度がその下限値であるときにエンジン回転数と基準目標アイドル回転数NRT0との偏差が所定値(固定値)以上であるときに、ISCVに異常があると診断するようになっている。
【0009】
しかしながら、ISCVの故障診断において異常判定のための所定値が固定値である。従って、ISCVの開度をその下限値に制御した場合でも吸入空気温の低下が大きいときには吸入空気量が多くなり、エンジン回転数と基準目標アイドル回転数NRT0との偏差が所定値(固定値)以上となり易く、ISCVが正常であったとしてもISCVに異常があると誤診断してしまうおそれがある。
【0010】
また、ブローバイガスをスロットルバルブを経由せずに燃焼室内に戻す処理や、燃料タンク内で発生した燃料蒸気をパージする処理が行われている場合には、ISCVの開度をその下限値に制御した場合でも供給される空気量が多くなり、エンジン回転数と基準目標アイドル回転数NRT0との偏差が所定値(固定値)以上となり易く、ISCVが正常であったとしてもISCVに異常があると誤診断してしまうおそれがある。
【0011】
本発明は、上記事情を鑑みてなされたものであり、その目的は、空気密度に関わらずアイドル空気量制御弁をその制御範囲にて制御し、誤診断のおそれを低減することができるアイドル回転数制御装置の故障診断装置を提供することにある。
【0019】
【課題を解決するための手段】
請求項に記載の発明は、内燃機関のアイドル状態において燃焼室内への吸入空気量を調節するアイドル空気量制御弁を備え、空燃比制御下において、吸入空気量に基づいて内燃機関のアイドル回転数を目標アイドル回転数に一致させるように制御するアイドル回転数制御装置と、アイドル回転数と目標アイドル回転数との偏差が所定値以上になったとき、アイドル回転数制御装置の異常を検出する診断手段とを備えるアイドル回転数制御装置の故障診断装置において、前記診断手段は吸入空気密度に基づいて前記偏差を設定するようにしたことを要旨とする。
【0020】
吸入空気密度が変化すると、アイドル空気量制御弁の開度が一定である場合、アイドル回転数が目標アイドル回転数から変化してしまう。請求項に記載の発明では、吸入空気密度に基づいてアイドル回転数と目標アイドル回転数との偏差を設定するようにしているので、アイドル回転数制御の誤診断のおそれを低減することができる。
【0021】
請求項に記載の発明は、請求項に記載のアイドル回転数制御装置の故障診断装置において、前記診断手段は吸入空気密度を吸入空気温度に基づいて算出することを要旨とする。
【0022】
請求項に記載の発明によれば、吸入空気温度に基づいて吸入空気密度が算出され、この吸入空気密度に基づいて偏差を設定することができる。
請求項に記載の発明は、請求項5に記載のアイドル回転数制御装置の故障診断装置において、前記診断手段は吸入空気密度を外気圧に基づいて算出することを要旨とする。
【0023】
請求項に記載の発明によれば、外気圧に基づいて吸入空気密度が算出され、この吸入空気密度に基づいて偏差を設定することができる。
請求項に記載の発明は、内燃機関のアイドル状態において燃焼室内への吸入空気量を調節するアイドル空気量制御弁と、燃料タンク内で発生した燃料蒸気を空気とともに吸気通路にパージするパージ機構とを備え、空燃比制御下において、燃料タンク内で発生した燃料蒸気を空気とともに吸気通路にパージするとともに、燃焼室内への吸入空気量を調整することにより内燃機関のアイドル回転数を目標アイドル回転数に一致させるように制御する内燃機関のアイドル回転数制御装置と、アイドル回転数と目標アイドル回転数との偏差が所定値以上になったとき、アイドル回転数制御装置の異常を検出する診断手段とを備えるアイドル回転数制御装置の故障診断装置において、前記診断手段はパージされる燃料蒸気量に基づいて前記偏差を設定するようにしたことを要旨とする。
【0024】
パージが実行される内燃機関においては、パージされる燃料蒸気量が変化すると、アイドル空気量制御弁の開度が一定である場合、アイドル回転数が目標アイドル回転数から変化してしまう。請求項に記載の発明では、パージされる燃料蒸気量に基づいて偏差を設定するようにしているので、アイドル回転数制御の誤診断のおそれを低減することができる。
【0025】
【発明の実施の形態】
(第1の実施の形態)
以下、本発明を内燃機関としてのガソリンエンジンに適用した第1の実施の形態を図1〜図4に基づいて詳細に説明する。
【0026】
図1は、本実施形態におけるエンジンシステムの概略構成を示している。車両(図示略)に搭載されたエンジン1は、シリンダボア3を有するシリンダブロック2と、シリンダヘッド4とを備えている。シリンダボア3内にはピストン5が往復動可能に設けられ、ピストン5とシリンダヘッド4とにより囲まれた空間によって燃焼室6が形成されている。
【0027】
シリンダヘッド4には、各燃焼室6に対応して点火プラグ7が設けられている。また、シリンダヘッド4には、各燃焼室6に通じる吸気ポート8及び排気ポート9がそれぞれ設けられ、これら各ポート8,9には吸気通路10及び排気通路11がそれぞれ接続されている。吸気ポート8及び排気ポート9の燃焼室6に通じる各開口端には、吸気バルブ12及び排気バルブ13がそれぞれ設けられている。各バルブ12,13は、クランクシャフトの回転に連動するカムシャフト(図示略)によって開閉される。
【0028】
吸気通路10の上流側にはエアクリーナ14が設けられており、同クリーナ14によって吸気通路10内に導入される吸入空気が清浄化される。吸気ポート8の近傍には各気筒に対応して燃料噴射用のインジェクタ15がそれぞれ設けられている。各インジェクタ15には図示しない燃料タンクから燃料ポンプによって所定圧力の燃料が供給されている。
【0029】
吸気通路10の途中には、図示しないアクセルペダルの操作に連動して開閉駆動されるスロットルバルブ16が設けられている。スロットルバルブ16の開度、即ちスロットル開度TAに応じて吸気通路10を介して燃焼室6へ導入される吸入空気量が調節される。吸気通路10にはスロットルバルブ16の下流側に、吸入空気流の脈動を平滑化させるサージタンク17が設けられている。
【0030】
スロットルバルブ16の近傍には、スロットル開度TAを検出するためのスロットルセンサ18が設けられている。スロットルセンサ18はスロットル開度TAに応じた検出信号を出力する。また、スロットルセンサ18はスロットルバルブ16が全閉位置にあるときのみON状態となるアイドルスイッチ(図示略)を内蔵しており、同スイッチのON・OFF状態を示すアイドル信号IDSを出力する。本実施形態におけるスロットルセンサ18は内燃機関(エンジン1)がアイドル状態にあるか否かを判断するアイドル判断手段に相当する。
【0031】
吸気通路10には、スロットルバルブ16を迂回して同バルブ16の上流側と下流側とを連通するバイパス通路19が設けられている。本実施形態においてバイパス通路19も吸気通路を構成する。バイパス通路19の途中には、同通路19を流れる空気量を調節するバイパス空気量調節弁としてのリニアソレノイド式のアイドルスピードコントロールバルブ(以下、「ISCV」という)20が設けられている。ISCV20は、ソレノイドコイル(図示略)に出力されるデューティ駆動信号のデューティ値の大きさに応じてバルブ(図示略)を変位させ、空気の流れる通路面積を調節する電磁弁である。ISCV20は、スロットルバルブ16が全閉となるエンジン1のアイドル時に、エンジン1の回転数(アイドル回転数)NEを安定させるために作動するものである。ISCV20が所定のデューティ駆動信号に基づいて制御されることにより、即ちISCV制御が行われることにより、バイパス通路19を流れる空気量(以下、「バイパス空気量」という)が調節され、燃焼室6へ取り込まれる吸入空気量が調節される。
【0032】
エアクリーナ14の下流側には、吸入空気量を検出するエアフローメータ21が設けられている。エアクリーナ14とエアフローメータ21との間には、吸気通路10に取り込まれる空気の温度、即ち吸気温THAを検出するための吸気温センサ22が設けられている。
【0033】
排気通路11の途中には、排気中の酸素濃度、即ち排気空燃比を検出するための酸素センサ23が設けられている。また、シリンダブロック2には、エンジン1の冷却水の温度、即ち冷却水温THWを検出するための水温センサ24が設けられている。
【0034】
エンジン1の各気筒毎に設けられた点火プラグ7には、ディストリビュータ25にて分配された点火信号が印加される。ディストリビュータ25はイグナイタ26から出力される高電圧をクランクシャフトの回転に同期して各点火プラグ7に分配するためのものである。そして、各点火プラグ7の点火タイミングは、イグナイタ26から高電圧が出力されるタイミングによって決定される。
【0035】
ディストリビュータ25にはクランクシャフトの回転に連動して回転する図示しないロータが内蔵されている。そして、ディストリビュータ25には、そのロータの回転からエンジン1の回転数(エンジン回転数)NEを検出するための回転数検出手段としての回転数センサ27が設けられている。同じく、ディストリビュータ25には、そのロータの回転に応じてエンジン1のクランク角基準信号を所定の割合で検出する気筒判別センサ28が設けられている。
【0036】
また、エンジン1に駆動連結された自動変速機29には、車速センサ30が設けられている。車速センサ30はそのときどきの車両の速度(車速)SPDを検出するとともに、その値を示す信号を出力するようになっている。また、自動変速機29の内部には、ニュートラルスイッチ31が設けられている。このニュートラルスイッチ31は、現在のシフト位置がニュートラルレンジ(Nレンジ)又はパーキングレンジ(Pレンジ)にあるときにオンとなる。即ち、現在のシフト位置がNレンジにあるのかドライブレンジ(Dレンジ)にあるのかを検出することができるようになっている。
【0037】
また、上記吸気通路10にはスロットルバルブ16の下流側においてパージ通路32を介してエバポパージシステム(図示略)が連結されている。このエバポパージシステムは、大きくは、燃料タンクから発生する燃料蒸気を捕集するキャニスタや、その捕集された燃料蒸気を上記吸気通路10にパージするパージ通路32、キャニスタと前記エアクリーナ14とを連通させてキャニスタ内に大気を導入する大気導入通路等を備えて構成される。上記パージ通路32の通路途中には電磁弁からなるパージ制御弁33が設けられており、パージ制御弁33の開弁動作に応じてそれらキャニスタとスロットルバルブ16下流とが連通されて燃料蒸気が吸気通路10にパージされる。
【0038】
車両には、上述した各インジェクタ15、ISCV20、パージ制御弁33及びイグナイタ26等を制御するための電子制御装置(以下単に「ECU」という)41が設けられている。ECU41は、インジェクタ15、ISCV20、パージ制御弁33等を駆動制御して空燃比制御を実行するとともに、空燃比制御下においてパージ制御を実行する。また、ECU41は空燃比制御下においてISCV制御を実行することによりアイドル時のエンジン回転数NEを目標アイドル回転数に一致させるように制御する。また、ECU41は所定の周期にてISCVシステムに関する故障診断処理を実行する。
【0039】
次にECU41の電気的構成について図2のブロック図に従って説明する。ECU41は、上記制御や診断にかかる各種処理を実行する中央処理装置(CPU)42、所定の制御プログラム等を予め記憶した読み出し専用メモリ(ROM)43、CPU42の演算結果等を一時記憶するランダムアクセスメモリ(RAM)44、記憶されたデータを保存するバックアップRAM45、及びタイマカウンタ46等と、これら各部42〜46と外部入力回路47及び外部出力回路48等とをバス49によって接続した論理演算回路として構成されている。
【0040】
外部入力回路47には、前述したスロットルセンサ18、エアフローメータ21、吸気温センサ22、酸素センサ23、水温センサ24、回転数センサ27、気筒判別センサ28、車速センサ30及びニュートラルスイッチ31がそれぞれ電気的に接続されている。外部出力回路48には、各インジェクタ15、ISCV20、イグナイタ26及びパージ制御弁33がそれぞれ電気的に接続されている。CPU42は各センサ等の出力信号を外部入力回路47を介して入力し、エンジン1の点火時期制御、燃料噴射量制御、空燃比制御、パージ制御及びISCV制御等を実行するとともに、ISCVシステムの故障診断を実行する。
【0041】
ROM43には、「ISCV制御ルーチン」、「ISCVの故障診断ルーチン」等の制御プログラムや各種関数データ、点火時期のマップ等が予め記憶されている。タイマカウンタ46は所定時間毎の割り込み信号を出力すると共に、同時に複数のカウント動作を行うようになっている。
【0042】
次に、CPU42が実行する「ISCV制御ルーチン」を図3に示すフローチャートに従って説明する。CPU42は、エンジン1の運転が開始されると所定の制御周期をもって図3に示す「ISCV制御ルーチン」を繰り返し実行する。
【0043】
先ずステップ102において、CPU42はエンジン1の完全暖機が終了しているかどうかを、水温センサ24によって検出された冷却水温THWに基づいて判断する。例えば、冷却水温THWが70℃以上である場合に完全暖機が終了していると判断する。ステップ102で完全暖機が終了していると判断すると、CPU42は処理をステップ104に移行し、完全暖機が終了していないと判断すると、このルーチンを一旦抜ける。
【0044】
ステップ102において、CPU42はエンジン1がアイドル状態であるかどうかを、スロットルセンサ18の検出信号に基づいてスロットルバルブ16が全閉であり、ニュートラルスイッチ31からアイドル信号IDSが入力されているかどうかに基づいて判断する。スロットルバルブ16が全閉であり、かつ、アイドル信号IDSが入力されていると、CPU42はアイドル状態であると判断して処理をステップ106に移行し、スロットルバルブ16が全閉でない、またはアイドル信号IDSが入力されていないと、アイドル状態でないと判断して本ルーチンを一旦抜ける。
【0045】
ステップ106では吸気温センサ22の検出信号に基づいて吸気温THAを取り込み、図4に示すアイドル回転数マップから吸気温THAに応じた目標アイドル回転数NRTを算出する。
【0046】
次のステップ108において、CPU42は回転数センサ27によって検出されたエンジン回転数NEが上記ステップ106で求めた目標アイドル回転数NRTより大きいかどうかを判定する。エンジン回転数NEが目標アイドル回転数NRTよりも大きいと判定するとCPU42は処理をステップ110に移行し、エンジン回転数NEが目標アイドル回転数NRT以下であると判定するとCPU42は処理をステップ116に移行する。
【0047】
ステップ110において、CPU42はISC学習値DGを所定量だけ小さくする。これにより、ISCV20の駆動信号のデューティ値が小さくなり、ISCV20の開度を小さくしてバイパス空気量を減少させることができる。
【0048】
続くステップ112において、CPU42はISC学習値DGがISC下限学習値DGL未満かどうかを判定する。肯定判定であると、CPU42は処理をステップ114に移行してISC学習値DGをISC下限学習値DGLに設定して本ルーチンを終了する。ステップ112においてISC学習値DGがISC下限学習値DGL以上であると判定すると、本ルーチンを一旦抜ける。
【0049】
ステップ116において、CPU42はISC学習値DGを所定量だけ大きくする。これにより、ISCV20の駆動信号のデューティ値が大きくなり、ISCV20の開度を大きくしてバイパス空気量を増加させることができる。
【0050】
続くステップ118において、CPU42はISC学習値DGがISC上限学習値DGHより大きいかどうかを判定する。肯定判定であると、CPU42は処理をステップ118に移行してISC学習値DGをISC上限学習値DGHに設定して本ルーチンを終了する。ステップ118においてISC学習値DGがISC上限学習値DGH以下であると判定すると、本ルーチンを一旦抜ける。
【0051】
以上説明したように、本実施の形態によれば次のような作用及び効果が得られるようになる。
・ 本実施形態においては、エンジン1のアイドル時の目標アイドル回転数NRTを外気温の低下に応じて大きく設定するようにしている。従って、アイドル時において外気温の低下に伴って吸入空気量が増加してアイドル回転数が大きくなるのであるが、目標アイドル回転数NRTも外気温の低下に伴って大きくなる。そのため、ISCV20の開度下限への張り付きを抑制してISCV20をその制御範囲内にて制御することが可能になり、よって吸入空気量を調節してアイドル回転数を目標アイドル回転数NRTに一致させるように制御することができるようになる。
【0052】
(第2実施形態)
次に、本発明の第2実施形態を図5に従って説明する。なお、重複説明を避けるため、図3において説明したものと同じ要素については、同じ参照番号が付されている。また、前述した第1実施形態との相違点を中心に説明する。
【0053】
本実施形態においてガソリンエンジンの構成は上記第1実施形態と同様である。本実施形態においては、吸入空気密度は外気圧によっても変化するため、CPU42は外気圧の変化に応じたISCV制御を実行するようになっている。
【0054】
CPU42は、エンジン1の運転が開始されると所定の制御周期をもって図5に示す「ISCV制御ルーチン」を繰り返し実行する。
先ず、CPU42は前記ステップ102〜106の処理を実行する。ステップ106では吸気温センサ22の検出信号に基づいて吸気温THAを取り込み、図4に示す回転数補正値マップから吸気温THAに応じた目標アイドル回転数NRTを算出する。
【0055】
次のステップ132において、CPU42は大気圧に応じた目標アイドル回転数の補正係数kPA(<1)を算出する。この補正係数kPAには図14(b)に示される空気密度比が設定される。ステップ134においてCPU42は前記ステップ106で算出した目標アイドル回転数NRTに補正係数kPAを乗ずることによって最終目標アイドル回転数NRTを算出する。
【0056】
続くステップ136において、CPU42は前記ステップ134で算出した最終目標アイドル回転数NRTが基準目標アイドル回転数NRT0(例えば800回転/分)未満かどうかを判定する。最終目標アイドル回転数NRTが基準目標アイドル回転数NRT0以上であると判定するとCPU42はステップ138に進んで最終目標アイドル回転数NRTとして基準目標アイドル回転数NRT0を設定する。最終目標アイドル回転数NRTが基準目標アイドル回転数NRT0未満であると判定するとCPU42は処理をステップ108に移行する。
【0057】
次のステップ108において、CPU42は回転数センサ27によって検出されたエンジン回転数NEが上記ステップ106で求めた目標アイドル回転数NRTより大きいかどうかを判定する。エンジン回転数NEが目標アイドル回転数NRTよりも大きいと判定するとCPU42は処理をステップ110に移行し、エンジン回転数NEが目標アイドル回転数NRT以下であると判定するとCPU42は処理をステップ116に移行する。
【0058】
ステップ110において、CPU42はISC学習値DGを所定量だけ小さくする。これにより、ISCV20の駆動信号のデューティ値が小さくなり、ISCV20の開度を小さくしてバイパス空気量を減少させることができる。
【0059】
続くステップ112において、CPU42はISC学習値DGがISC下限学習値DGL未満かどうかを判定する。肯定判定であると、CPU42は処理をステップ114に移行してISC学習値DGをISC下限学習値DGLに設定して本ルーチンを終了する。ステップ112においてISC学習値DGがISC下限学習値DGL以上であると判定すると、本ルーチンを一旦抜ける。
【0060】
ステップ116において、CPU42はISC学習値DGを所定量だけ大きくする。これにより、ISCV20の駆動信号のデューティ値が大きくなり、ISCV20の開度を大きくしてバイパス空気量を増加させることができる。
【0061】
続くステップ118において、CPU42はISC学習値DGがISC上限学習値DGHより大きいかどうかを判定する。肯定判定であると、CPU42は処理をステップ118に移行してISC学習値DGをISC上限学習値DGHに設定して本ルーチンを終了する。ステップ118においてISC学習値DGがISC上限学習値DGH以下であると判定すると、本ルーチンを一旦抜ける。
【0062】
従って、本実施形態によれば、前記第1実施形態における効果に加えて、大気圧に応じた補正係数kPAによって外気温に応じた目標アイドル回転数NRTを小さくするように補正して最終目標アイドル回転数NRTを設定するようにした。空気密度は外気圧が低い高地ほど低下するが、高地ほど目標アイドル回転数NRTを小さくするように補正することにより、大気条件に応じた最適なISCV20の制御を行うことができるようになる。
【0063】
(第3実施形態)
次に、本発明の第3実施形態を図6,図7に従って説明する。なお、重複説明を避けるため、図3において説明したものと同じ要素については、同じ参照番号が付されている。また、前述した第1実施形態との相違点を中心に説明する。
【0064】
本実施形態においてガソリンエンジンの構成は上記第1実施形態と同様である。本実施形態においては、燃料蒸気はスロットルバルブ16を経由しない空気とともにパージされるため、CPU42はパージ燃料蒸気に含まれる空気の外気温による密度変化に応じたISCV制御を実行するようになっている。
【0065】
CPU42は、エンジン1の運転が開始されると所定の制御周期をもって図6に示す「ISCV制御ルーチン」を繰り返し実行する。
先ず、CPU42は前記ステップ102〜106の処理を実行する。ステップ106では吸気温センサ22の検出信号に基づいて吸気温THAを取り込み、図7に示す回転数補正値マップから吸気温THAに応じた目標アイドル回転数NRTを算出する。
【0066】
ステップ152において、CPU42は図4に示す回転数補正値マップからパージデューティ値に応じた回転数補正値αを算出し、次のステップ154においてCPU42は前記ステップ106で算出した目標アイドル回転数NRTに回転数補正値αを加えることによって最終目標アイドル回転数NRTを算出する。
次のステップ136において、CPU42は前記ステップ134で算出した最終目標アイドル回転数NRTが基準目標アイドル回転数NRT0未満かどうかを判定する。最終目標アイドル回転数NRTが基準目標アイドル回転数NRT0以上であると判定するとCPU42はステップ138に進んで最終目標アイドル回転数NRTとして基準目標アイドル回転数NRT0を設定する。最終目標アイドル回転数NRTが基準目標アイドル回転数NRT0未満であると判定するとCPU42は処理をステップ108に移行する。
【0067】
次のステップ108において、CPU42は回転数センサ27によって検出されたエンジン回転数NEが上記ステップ106で求めた目標アイドル回転数NRTより大きいかどうかを判定する。エンジン回転数NEが目標アイドル回転数NRTよりも大きいと判定するとCPU42は処理をステップ110に移行し、エンジン回転数NEが目標アイドル回転数NRT以下であると判定するとCPU42は処理をステップ116に移行する。
【0068】
ステップ110において、CPU42はISC学習値DGを所定量だけ小さくする。これにより、ISCV20の駆動信号のデューティ値が小さくなり、ISCV20の開度を小さくしてバイパス空気量を減少させることができる。
【0069】
続くステップ112において、CPU42はISC学習値DGがISC下限学習値DGL未満かどうかを判定する。肯定判定であると、CPU42は処理をステップ114に移行してISC学習値DGをISC下限学習値DGLに設定して本ルーチンを終了する。ステップ112においてISC学習値DGがISC下限学習値DGL以上であると判定すると、本ルーチンを一旦抜ける。
【0070】
ステップ116において、CPU42はISC学習値DGを所定量だけ大きくする。これにより、ISCV20の駆動信号のデューティ値が大きくなり、ISCV20の開度を大きくしてバイパス空気量を増加させることができる。
【0071】
続くステップ118において、CPU42はISC学習値DGがISC上限学習値DGHより大きいかどうかを判定する。肯定判定であると、CPU42は処理をステップ118に移行してISC学習値DGをISC上限学習値DGHに設定して本ルーチンを終了する。ステップ118においてISC学習値DGがISC上限学習値DGH以下であると判定すると、本ルーチンを一旦抜ける。
【0072】
従って、本実施形態によれば、上記第1実施形態における効果に加えて、パージ制御弁33のパージデューティ値の増加に伴って回転数補正値αを大きくなるように設定し、外気温に応じた目標アイドル回転数NRTに加算して最終目標アイドル回転数NRTを設定するようにした。従って、燃料蒸気のパージ処理が行われるエンジンシステムにおいて、最適なISCV20の制御を行うことができるようになる。
【0073】
(第4実施形態)
次に、本発明の第4実施形態を図8〜図10に従って説明する。
本実施形態においてガソリンエンジンの構成は上記第1実施形態と同様である。本実施形態はCPU42が実行するISC装置の故障診断について説明する。CPU42は、エンジン1の運転が開始されると所定の制御周期をもって図8に示す「ISC異常検出ルーチン」を繰り返し実行する。
【0074】
先ずステップ162において、CPU42はエンジン1の完全暖機が終了しているかどうかを、水温センサ24によって検出された冷却水温THWに基づいて判断する。例えば、冷却水温THWが70℃以上である場合に完全暖機が終了していると判断する。ステップ162で完全暖機が終了していると判断すると、CPU42は処理をステップ164に移行し、完全暖機が終了していないと判断すると、このルーチンを一旦抜ける。
【0075】
ステップ164において、CPU42はエンジン1がアイドル状態であるかどうかを、スロットルバルブ16が全閉であり、ニュートラルスイッチ31からアイドル信号IDSが入力されているかどうかに基づいて判断する。スロットルバルブ16が全閉であり、かつ、アイドル信号IDSが入力されていると、CPU42はアイドル状態であると判断して処理をステップ166に移行し、スロットルバルブ16が全閉でない、またはアイドル信号IDSが入力されていないと、アイドル状態でないと判断して本ルーチンを一旦抜ける。
【0076】
ステップ166において、CPU42はISC学習値DGがISC制御学習値下限DGLかどうかを判定する。肯定判定であると、CPU42は処理をステップ168に移行し、ISC学習値DGがISC制御学習値下限DGLより大きいと判定すると、CPU42は処理をステップ176に移行する。
【0077】
ステップ168ではCPU42は吸気温センサ22の検出信号に基づいて吸気温THAを取り込み、図9に示す異常判定補正値マップから吸気温THAに応じた補正値Aを算出する。この補正値Aは図9に実線で示すように外気温の変化に対してステップ状に変化するように設定してもよいし、破線で示すようにリニアに変化するように設定してもよい。
【0078】
次のステップ170において、CPU42はエンジン回転数NEが高NE側の異常判定値NRT+Aよりも大きいかどうかを判定する。エンジン回転数NEがNRT+Aよりも大きいと判定すると、ステップ172に移行する。また、エンジン回転数NEがNRT+A以下であると判定すると、ステップ184に進んでISC正常判定を行うとともに、異常アイドル回数カウンタの計数値をクリアして本ルーチンを終了する。異常アイドル回数カウンタは、アイドル状態になった回数、すなわちドライブレンジからニュートラルレンジに移行した回数をカウントする。
【0079】
ステップ172において、CPU42は高NE異常アイドル回数がC回以上であるかどうかを判定し、高NE異常アイドル回数がC回以上であると判定するとステップ174に進んでISC高NE異常判定を行って本ルーチンを終了する。高NE異常アイドル回数がC回未満であると判定すると本ルーチンを一旦抜ける。
【0080】
前記ステップ166においてISC学習値DGがISC制御学習値下限DGLより大きいと判定されたときには、ステップ176において、CPU42はISC学習値DGがISC制御学習値上限DGHかどうかを判定する。肯定判定であると、CPU42は処理をステップ178に移行し、ISC学習値DGがISC制御学習値上限DGH以下であると判定すると、CPU42はステップ184に進んでISC正常判定を行うとともに、異常アイドル回数カウンタの計数値をクリアして本ルーチンを終了する。
【0081】
ステップ178において、CPU42はエンジン回転数NEが低NE側の異常判定値NRT−B未満かどうかを判定する。エンジン回転数NEがNRT−B未満であると判定すると、ステップ150に移行する。また、エンジン回転数NEがNRT−B以上であると判定すると、ステップ184に進んでISC正常判定を行うとともに、異常アイドル回数カウンタの計数値をクリアして本ルーチンを終了する。
【0082】
ステップ180において、CPU42は低NE異常アイドル回数がD回以上であるかどうかを判定し、低NE異常アイドル回数がD回以上であると判定するとステップ182に進んでISC低NE異常判定を行って本ルーチンを終了する。低NE異常アイドル回数がD回未満であると判定すると本ルーチンを一旦抜ける。
【0083】
以上説明したように、本実施の形態によれば次のような作用及び効果が得られるようになる。
・ 本実施形態においては、ISCV20の異常を診断するための異常判定補正値Aを外気温の低下に応じて大きく設定し、この異常判定補正値Aを外気温に応じた目標アイドル回転数NRTに加算して異常判定値としている。従って、ISCV20の故障診断時に外気温の低下に伴って吸入空気量が増加すると、図10に示すようにアイドル回転数NEが大きくなるのであるが、このアイドル回転数NEは異常判定値未満となり、ISCV20に異常があると誤診断してしまうおそれを低減することができるようになる。
【0084】
・ 本実施形態では、高NE異常アイドル回数がC回以上となったときISCV20の高NE異常判定を行い、低NE異常アイドル回数がD回以上となったときISCV20の低NE異常判定を行うようにしたので、ISCV20が一時的に高NE異常又は低NE異常となるような場合を省くことができ、故障診断の精度を向上することができる。
【0085】
(第5実施形態)
次に、本発明の第5実施形態を図11に従って説明する。なお、重複説明を避けるため、図8において説明したものと同じ要素については、同じ参照番号が付されている。また、前述した第4実施形態との相違点を中心に説明する。
【0086】
本実施形態においてガソリンエンジンの構成は上記第1実施形態と同様である。本実施形態においては、吸入空気密度は外気圧によっても変化するため、CPU42は外気圧の変化に応じたISCVの故障診断を実行するようになっている。
【0087】
CPU42は、エンジン1の運転が開始されると所定の制御周期をもって図11に示す「ISC異常検出ルーチン」を繰り返し実行する。
先ず、CPU42は前記ステップ162〜168の処理を実行する。ステップ168において図9に示す異常判定補正値マップから吸気温THAに応じた回転数補正値Aを算出する。
【0088】
次のステップ190においてCPU42は大気圧を取り込み、大気圧に応じた補正係数kPAを算出し、前記ステップ168で算出した回転数補正値Aに補正係数kPAを乗ずることによって最終補正値Aを算出する。
【0089】
次のステップ170において、CPU42はエンジン回転数NEが高NE側の異常判定値NRT+Aよりも大きいかどうかを判定する。エンジン回転数NEがNRT+Aよりも大きいと判定すると、ステップ172に移行する。また、エンジン回転数NEがNRT+A以下であると判定すると、ステップ184に進んでISC正常判定を行うとともに、異常アイドル回数カウンタの計数値をクリアして本ルーチンを終了する。異常アイドル回数カウンタは、アイドル状態になった回数、すなわちドライブレンジからニュートラルレンジに移行した回数をカウントする。
【0090】
ステップ172において、CPU42は高NE異常アイドル回数がC回以上であるかどうかを判定し、高NE異常アイドル回数がC回以上であると判定するとステップ174に進んでISC高NE異常判定を行って本ルーチンを終了する。高NE異常アイドル回数がC回未満であると判定すると本ルーチンを一旦抜ける。
【0091】
前記ステップ166においてISC学習値DGがISC制御学習値下限DGLより大きいと判定されたときには、ステップ176において、CPU42はISC学習値DGがISC制御学習値上限DGHかどうかを判定する。肯定判定であると、CPU42は処理をステップ178に移行し、ISC学習値DGがISC制御学習値上限DGH以下であると判定すると、CPU42はステップ184に進んでISC正常判定を行うとともに、異常アイドル回数カウンタの計数値をクリアして本ルーチンを終了する。
【0092】
ステップ178において、CPU42はエンジン回転数NEが低NE側の異常判定値NRT−B未満かどうかを判定する。エンジン回転数NEがNRT−B未満であると判定すると、ステップ150に移行する。また、エンジン回転数NEがNRT−B以上であると判定すると、ステップ184に進んでISC正常判定を行うとともに、異常アイドル回数カウンタの計数値をクリアして本ルーチンを終了する。
【0093】
ステップ180において、CPU42は低NE異常アイドル回数がD回以上であるかどうかを判定し、低NE異常アイドル回数がD回以上であると判定するとステップ182に進んでISC低NE異常判定を行って本ルーチンを終了する。低NE異常アイドル回数がD回未満であると判定すると本ルーチンを一旦抜ける。
【0094】
従って、本実施形態によれば、前記第4実施形態における効果に加えて、大気圧に応じた補正係数kPAによって外気温に応じた回転数補正値Aを小さくするように補正するようにした。空気密度は外気圧が低い高地ほど低下するが、高地ほど回転数補正値Aを小さくするように補正することにより、大気条件に応じた最適なISCV20の故障診断を行うことができるようになる。
【0095】
(第6実施形態)
次に、本発明の第6実施形態を図12,図13に従って説明する。なお、重複説明を避けるため、図8において説明したものと同じ要素については、同じ参照番号が付されている。また、前述した第4実施形態との相違点を中心に説明する。
【0096】
本実施形態においてガソリンエンジンの構成は上記第1実施形態と同様である。本実施形態においては、燃料蒸気はスロットルバルブ16を経由しない空気とともにパージされるため、CPU42はパージ燃料蒸気に含まれる空気の外気温による密度変化に応じたISCVの故障診断を実行するようになっている。
【0097】
CPU42は、エンジン1の運転が開始されると所定の制御周期をもって図12に示す「ISC異常検出ルーチン」を繰り返し実行する。
先ず、CPU42は前記ステップ162〜168の処理を実行する。ステップ168において図9に示す異常判定補正値マップから吸気温THAに応じた回転数補正値Aを算出する。
【0098】
次のステップ200においてCPU42はパージカットを実行する。
次のステップ170において、CPU42はエンジン回転数NEが高NE側の異常判定値NRT+Aよりも大きいかどうかを判定する。エンジン回転数NEがNRT+Aよりも大きいと判定すると、ステップ172に移行する。また、エンジン回転数NEがNRT+A以下であると判定すると、ステップ184に進んでISC正常判定を行うとともに、異常アイドル回数カウンタの計数値をクリアして本ルーチンを終了する。異常アイドル回数カウンタは、アイドル状態になった回数、すなわちドライブレンジからニュートラルレンジに移行した回数をカウントする。
【0099】
ステップ172において、CPU42は高NE異常アイドル回数がC回以上であるかどうかを判定し、高NE異常アイドル回数がC回以上であると判定するとステップ174に進んでISC高NE異常判定を行って本ルーチンを終了する。高NE異常アイドル回数がC回未満であると判定すると本ルーチンを一旦抜ける。
【0100】
前記ステップ166においてISC学習値DGがISC制御学習値下限DGLより大きいと判定されたときには、ステップ176において、CPU42はISC学習値DGがISC制御学習値上限DGHかどうかを判定する。肯定判定であると、CPU42は処理をステップ178に移行し、ISC学習値DGがISC制御学習値上限DGH以下であると判定すると、CPU42はステップ184に進んでISC正常判定を行うとともに、異常アイドル回数カウンタの計数値をクリアして本ルーチンを終了する。
【0101】
ステップ178において、CPU42はエンジン回転数NEが低NE側の異常判定値NRT−B未満かどうかを判定する。エンジン回転数NEがNRT−B未満であると判定すると、ステップ150に移行する。また、エンジン回転数NEがNRT−B以上であると判定すると、ステップ184に進んでISC正常判定を行うとともに、異常アイドル回数カウンタの計数値をクリアして本ルーチンを終了する。
【0102】
ステップ180において、CPU42は低NE異常アイドル回数がD回以上であるかどうかを判定し、低NE異常アイドル回数がD回以上であると判定するとステップ182に進んでISC低NE異常判定を行って本ルーチンを終了する。低NE異常アイドル回数がD回未満であると判定すると本ルーチンを一旦抜ける。
【0103】
従って、本実施形態によれば、上記第4実施形態における効果に加えて、ISCV20の故障診断時においてパージカットを実行するようにしている。ISCV20の故障診断時にパージ処理が行われている場合には、図13に鎖線で示すようにアイドル回転数NEが大きくなり階段状の異常判定値以上となるおそれがある。これに対し本実施形態ではパージカットを行うことによりアイドル回転数NEは図13に実線で示すように低下し、このアイドル回転数NEは異常判定値未満となり、ISCV20に異常があると誤診断してしまうおそれを低減することができるようになる。
【0104】
なお、実施の形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
・上記第6実施形態ではISCV20の故障診断時にパージカットを行うように構成したが、パージ量を絞るようにしてもよい。
【0105】
・上記第6実施形態ではISCV20の故障診断時にパージカットを行うように構成したが、パージデューティ値に応じて回転数補正値βを求め、目標アイドル回転数に回転数補正値α及びβを加算して異常判定値とするようにしてもよい。
【0106】
・第1〜第3実施形態においてエアコンや電気負荷のオン・オフを考慮して目標アイドル回転数を設定したり、第4〜第6実施形態において異常判定のための回転数補正値αを設定するようにしてもよい。
【0107】
・本実施形態ではISCV20としてリニアソレノイド式のものを使用したが、ロータリソレノイド式のものを使用してもよい。また、バイパス通路19に絞り弁を設け、同絞り弁をステップモータによって駆動制御する構成のISCVを採用してもよい。
【0108】
・上記各実施形態では、スロットルバルブ16をバイパスするISCV20の開度を変更するバイパスエア方式のアイドル回転数の制御を行ったが、スロットルバルブ16の開度を変更することによりアイドル回転数を制御する構成としてもよい。例えば、電子制御式のスロットルバルブを用いた場合には、バイパス通路19及びISCV20を省略し、代わりに当該スロットルバルブの開度を調節してアイドル回転数を制御するようにしてもよい。
【0109】
・第4〜第6実施形態では、異常判定回数をドライブレンジからニュートラルレンジに移行するごとにその回数をカウントするようにしたが、所定時間ごとにカウントするようにしてもよい。
【0110】
・上記各実施形態ではベーン式のエアフローメータ21を用いたが、空気流量としての質量流量が検出可能な熱線式エアフローメータを使用してもよい。
・上記各実施形態では、ISCV20の駆動信号としてデューティ値制御される電圧信号を使用したがこれに限定されるものではない。例えば、駆動信号としてリニア制御される電流信号等であってもよい。
【図面の簡単な説明】
【図1】第1実施形態のガソリンエンジンシステムを示す概略構成図。
【図2】同じくECU等の電気的構成を示すブロック図。
【図3】同じく「ISCV制御ルーチン」の処理手順を示すフローチャート。
【図4】外気温と目標アイドル回転数との関係を示すアイドル回転数マップの説明図。
【図5】第2実施形態の「ISCV制御ルーチン」の処理手順を示すフローチャート。
【図6】第3実施形態の「ISCV制御ルーチン」の処理手順を示すフローチャート。
【図7】パージデューティ値と回転数補正値との関係を示す回転数補正値マップの説明図。
【図8】第4実施形態の「ISC異常検出ルーチン」の処理手順を示すフローチャート。
【図9】同じく外気温と回転数補正値との関係を示す回転数補正値マップの説明図。
【図10】同じくアイドル回転数判定時の作用説明図。
【図11】第5実施形態の「ISC異常検出ルーチン」の処理手順を示すフローチャート。
【図12】第6実施形態の「ISC異常検出ルーチン」の処理手順を示すフローチャート。
【図13】同じくアイドル回転数判定時の作用説明図。
【図14】図14(a)は外気温と空気密度との関係を示す線図、図14(b)は外気圧と空気密度との関係を示す線図、図14(c)は外気温とアイドルアイドル回転数との関係を示す線図。
【符号の説明】
1…内燃機関としてのエンジン、6…燃焼室、20…アイドル空気量制御弁としてのアイドルスピードコントロールバルブ(ISCV)、33…パージ機構を構成するパージ制御弁、41…制御手段及び診断手段としてのECU。

Claims (4)

  1. 内燃機関のアイドル状態において燃焼室内への吸入空気量を調節するアイドル空気量制御弁を備え、空燃比制御下において、吸入空気量に基づいて内燃機関のアイドル回転数を目標アイドル回転数に一致させるように制御するアイドル回転数制御装置と、
    アイドル回転数と目標アイドル回転数との偏差が所定値以上になったとき、アイドル回転数制御装置の異常を検出する診断手段と
    を備えるアイドル回転数制御装置の故障診断装置において、
    前記診断手段は吸入空気密度に基づいて前記偏差を設定するようにしたアイドル回転数制御装置の故障診断装置。
  2. 請求項1に記載のアイドル回転数制御装置の故障診断装置において、
    前記診断手段は吸入空気密度を吸入空気温度に基づいて算出するアイドル回転数制御装置の故障診断装置。
  3. 請求項1に記載のアイドル回転数制御装置の故障診断装置において、
    前記診断手段は吸入空気密度を外気圧に基づいて算出するアイドル回転数制御装置の故障診断装置。
  4. 内燃機関のアイドル状態において燃焼室内への吸入空気量を調節するアイドル空気量制御弁と、燃料タンク内で発生した燃料蒸気を空気とともに吸気通路にパージするパージ機構とを備え、空燃比制御下において、燃料タンク内で発生した燃料蒸気を空気とともに吸気通路にパージするとともに、燃焼室内への吸入空気量を調整することにより内燃機関のアイドル回転数を目標アイドル回転数に一致させるように制御する内燃機関のアイドル回転数制御装置と、 アイドル回転数と目標アイドル回転数との偏差が所定値以上になったとき、アイドル回転数制御装置の異常を検出する診断手段と
    を備えるアイドル回転数制御装置の故障診断装置において、
    前記診断手段はパージされる燃料蒸気量に基づいて前記偏差を設定するようにしたアイドル回転数制御装置の故障診断装置。
JP21801099A 1999-07-30 1999-07-30 内燃機関のアイドル回転数制御装置の故障診断装置 Expired - Fee Related JP3695237B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21801099A JP3695237B2 (ja) 1999-07-30 1999-07-30 内燃機関のアイドル回転数制御装置の故障診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21801099A JP3695237B2 (ja) 1999-07-30 1999-07-30 内燃機関のアイドル回転数制御装置の故障診断装置

Publications (2)

Publication Number Publication Date
JP2001041087A JP2001041087A (ja) 2001-02-13
JP3695237B2 true JP3695237B2 (ja) 2005-09-14

Family

ID=16713222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21801099A Expired - Fee Related JP3695237B2 (ja) 1999-07-30 1999-07-30 内燃機関のアイドル回転数制御装置の故障診断装置

Country Status (1)

Country Link
JP (1) JP3695237B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722978B2 (ja) * 2013-10-22 2015-05-27 ヤンマー株式会社 エンジン

Also Published As

Publication number Publication date
JP2001041087A (ja) 2001-02-13

Similar Documents

Publication Publication Date Title
US7801666B2 (en) Air-fuel ratio detection apparatus of internal combustion engine
US7104259B2 (en) Diagnostic device for exhaust gas recirculation system
US7681565B2 (en) Air/fuel ratio control system for internal combustion engine
US7171960B1 (en) Control apparatus for an internal combustion engine
US8240298B2 (en) Abnormality diagnosis apparatus for secondary air supply assembly of internal combustion engine
US8286472B2 (en) Diagnostic system for variable valve timing control system
US5754971A (en) Fault diagnosis apparatus for a fuel evaporative emission suppressing apparatus
JP6656114B2 (ja) ブローバイガス還元装置の異常診断装置
JP3695237B2 (ja) 内燃機関のアイドル回転数制御装置の故障診断装置
GB2367383A (en) A method for controlling an engine parameter in an internal combustion engine having a fuel vapour recovery system
JP2914341B2 (ja) デポジットの検出装置
JPH1047130A (ja) 内燃機関の異常検出装置
JPH10306740A (ja) 熱式エアフローメータを有する内燃機関の制御装置
JPH0536622B2 (ja)
JP4160745B2 (ja) 内燃機関の制御方法
JP3630745B2 (ja) 空燃比制御系の故障診断方法
US6705288B2 (en) Starting control apparatus for internal combustion engine
JP4052710B2 (ja) エンジンの空燃比制御方法および空燃比制御装置
JP4186517B2 (ja) 内燃機関用エアクリーナの目詰まり検出装置
JP3669074B2 (ja) 内燃機関の排気還流制御装置
JP3287863B2 (ja) 内燃機関のアイドル回転速度制御装置
JPH06101561A (ja) 車速検出手段の異常検出装置
JPH04279752A (ja) 内燃機関の排気ガス還流装置
JPH0914007A (ja) 内燃機関の吸気制御装置
JP2021143633A (ja) エンジンシステム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees