JP3686663B1 - プラズマ処理装置の電極構造 - Google Patents

プラズマ処理装置の電極構造 Download PDF

Info

Publication number
JP3686663B1
JP3686663B1 JP2004214182A JP2004214182A JP3686663B1 JP 3686663 B1 JP3686663 B1 JP 3686663B1 JP 2004214182 A JP2004214182 A JP 2004214182A JP 2004214182 A JP2004214182 A JP 2004214182A JP 3686663 B1 JP3686663 B1 JP 3686663B1
Authority
JP
Japan
Prior art keywords
electrode
row
inter
gap
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004214182A
Other languages
English (en)
Other versions
JP2005302685A (ja
Inventor
剛 上原
毅之 大野
巧 伊藤
裕人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to KR1020067001305A priority Critical patent/KR20060063900A/ko
Priority to US10/565,004 priority patent/US20060185594A1/en
Priority to PCT/JP2004/010415 priority patent/WO2005009090A1/ja
Priority to JP2004214182A priority patent/JP3686663B1/ja
Priority to TW093122208A priority patent/TWI257643B/zh
Application granted granted Critical
Publication of JP3686663B1 publication Critical patent/JP3686663B1/ja
Publication of JP2005302685A publication Critical patent/JP2005302685A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

【課題】 大面積の被処理物用のプラズマ処理装置において、電極のクーロン力による撓み量を低減し、表面処理の均一性を確保する。
【解決手段】 プラズマ処理装置の電極構造30Xは、左右にそれぞれ延びるとともに前後に互いに対峙する一対の電極列31X,32Xからなる。各電極列は、左右に並べられた複数の電極部材31A〜32Cにて構成され、左右方向の実質的に同じ位置に配置された一方の電極列と他方の電極列の電極部材どうしが、互いに逆の極性を有して互いの対向面の間に列間部分隙間33pを形成している。さらに、各電極列の隣り合う電極部材どうしの極性が互いに逆になっている。
【選択図】 図2

Description

この発明は、処理ガスを電極間でプラズマ化し、被処理物の表面処理を行なう所謂リモート式のプラズマ処理装置に関し、特に大面積の被処理物の処理に適したプラズマ処理装置の電極構造に関する。
例えば、特許文献1には、処理ガスを電極間の放電空間でプラズマ化して吹出し、搬送手段で送られて来た被処理物に当てる所謂リモート式のプラズマ処理装置が記載されている。該装置の電極は、2つの平らな電極板を平行に対向配置した構造になっている。通常、これら電極板は、被処理物の幅(搬送方向と直交する方向)以上の長さのものが用いられる。したがって、これら電極板の間の放電空間およびそれに連なるプラズマ吹出し口も、被処理物の幅寸法以上の長さになっている。これによって、電極間でプラズマ化した処理ガスを吹出し口の全長域から一様に吹出し、被処理物の全幅を一度にプラズマ処理できる。この結果、処理効率を向上させることができる。
特開2002−143795号公報(第1頁、図4)
近年、液晶用ガラス基板などの被処理物は、大型化が進んでおり、例えば1辺が1.5m〜数mのものも登場して来ている。このような幅広・大面積の被処理物に対応するには、プラズマ処理装置の電極板を長尺化する必要がある。
しかし、電極板が長くなればなるほど、寸法精度を確保するのが難しくなるだけでなく、両電極板間に作用するクーロン力や、電極を構成する金属本体とその表面の固体誘電体との熱膨張率の違いや電極内部の温度差による熱応力等によって撓みやすくなる。そのため、放電空間の厚さが不均一になりやすく、ひいては表面処理の均一性が損なわれやすい。クーロン力に対抗するには、電極板を厚肉にし剛性を高めることが考えられるが、そうすると電極重量が増大し、これを支える電極支持構造に負担が掛かるだけでなく、材料費や加工費も上昇してしまう。
また、電極が大型化すると電源からの単位面積あたりの供給電力が小さくなり、処理能力が低下してしまう。電源を大容量のものに替えればよいが、製造コスト等の面で容易でない。小容量電源でもこれを複数用意して1つの電極板に接続すれば全体の供給電力を増大させることができるが、その場合、これら複数の電源を互いに同期させる必要がある。
本発明は、処理ガスを放電空間でプラズマ化して吹出し、被処理物に当てることによりプラズマ処理を行なう装置に係り、特に、前記放電空間を形成する電極構造に係る。この電極構造は、一方向に並べられた複数の電極部材からなる第1電極列と、この第1電極列と平行に並べられた他の複数の電極部材からなる第2電極列と、を含んでいる。
前記並び方向の実質的に同じ位置に配置された第1、第2電極列の電極部材どうしが、互いに逆の極性を有して互いの間に前記放電空間の一部分となる列間部分隙間を構成している。
第1、第2電極列どうしの間に前記列間部分隙間を部分とする列間隙間が形成されている。すなわち、第1、第2電極列どうしの間には、複数の列間部分隙間を一列に連ねてなる列間隙間が形成されている。
第1、第2電極列の電極部材の長さは、被処理物の寸法より短いことが望ましい。
第1、第2電極列の各々の長さは、全体として被処理物の寸法に対応する大きさであることが望ましい。
列間隙間は、列間部分隙間を複数一列に並べることにより構成され、前記放電空間の略全部または大部分を構成する。
これによって、被処理物の略全幅を一度に処理でき、良好な処理効率を確保できるとともに、個々の電極部材の長さを被処理物の幅の数分の1程度に短くすることができる。或いは、被処理物の幅寸法に依らず、個々の電極部材をある短い長さにし、その並び数を調節することによって、被処理物の幅に対応させることができる。これによって、寸法精度の確保が容易になるだけでなく、クーロン力等による電極部材の撓み量を小さくでき、ひいては、表面処理の均一性を確保することができる。電極部材を厚肉にする必要もなく、重量増大を回避して支持構造への負担を軽減でき、材料費等の上昇を抑えることができる。
被処理物は、前記第1、第2電極列の延び方向(これら電極列の電極部材の並び方向)と交差するように相対移動されるのが好ましい。すなわち、プラズマ処理装置は、前記電極構造を含む放電処理部と、被処理物を前記放電処理部に対し前記電極構造の列間隙間と交差する方向に相対移動させる移動手段とを備えていることが望ましい。
前記極性としては、電界印加極と接地極がある。そのうち電界印加極を構成する電極部材どうしが、互いに異なる電源に接続されていることが望ましい(図2参照)。これによって、大容量電源を用いなくても各電極部材の単位面積あたりの供給電力を十分に大きくでき、処理ガスを十分にプラズマ化でき、処理能力を高くすることができる。また、電源ごとに別の電極部材に電力供給するので、電源どうしを同期させる必要がない。
電界印加極を構成する電極部材どうしが、共通(単一)の電源に接続されていてもよい(図34参照)。
隣り合う列間部分隙間どうしは、直接または連通空間を介して連通されていてもよく(図2、図37参照)、隔壁で隔てられていてもよい。
前記第1電極列と第2電極列の実質的に同位置において互いに対向する電極部材どうしのうち少なくとも一方の電極列の電極部材の対向面には、固体誘電体を設ける。固体誘電体は、アルミナ等の溶射膜にて構成されていてもよく、セラミック等の板にて構成され、この板を電極部材の表面に付設することにしてもよい。セラミック等の容器に電極部材を納め、このセラミック等の容器を固体誘電体層として機能させることにしてもよい。
第1電極列の電極部材と第2電極列の電極部材どうしが、前記並び方向にずれていてもよい(図33参照)。この場合、互いに長さの過半が対向している電極部材どうしが、「並び方向の実質的に同じ位置」に対向配置されたものに該当する。
各電極列における隣接電極部材どうし間の間隔は、処理条件等に応じて適宜設定される。
前記並び方向に隣り合う電極部材どうしの極性が互いに逆(互い違い)になっていることが望ましく、前記第1電極列および/または第2電極列において前記並び方向に隣り合う電極部材どうしの間に列内隙間を形成することがより望ましい(図2参照)。これによって、この列内隙間をも前記放電空間の他の一部分とすることができ、被処理物において、該隣接電極部材どうし間の境に対応する箇所をも確実に表面処理することができ、処理の均一性を一層高めることができる。なお、前記並び方向に隣り合う電極部材どうし間に放電空間の他の一部分としての列内間隙が形成されている場合には、これら隣り合う電極部材のうち少なくとも一方の端面にも、固体誘電体を設ける。さらに、電界印加極と接地極のうち電界印加極を構成する電極部材どうしを互いに異なる電源に接続することにすれば、単位面積あたりの供給電力を十分に大きくでき処理能力を高くできるのは勿論のこと、電源どうしが同期していなくても、電界印加極どうしが直接隣接していないのでアークが発生するおそれがない。
前記列内隙間の下流端は、処理ガスを前記列間隙間を介さずに吹出し可能に開口されていることが望ましい(図27参照)。これによって、列内隙間でプラズマ化した処理ガスを列内隙間から直接的に吹出し、被処理物に当てることができる。
上記の互い違いの極性配置構造(図2等)に代えて、前記並び方向に隣り合う電極部材どうしが、同一極性になっていてもよい(図35参照)。
この場合、電界印加極と接地極のうち電界印加極を構成する電極部材どうしを、互いに異なる電源に接続することにしてもよい(図35参照)。これによって、単位面積あたりの供給電力を十分に大きくでき、処理能力を高くすることができる。
また、前記並び方向に隣り合う電界印加極の電極部材どうしの間には、絶縁性の隔壁を介在させるのが望ましい(図35参照)。これによって、電源どうしが同期していなくても、隣接電極部材どうし間にアークが発生するのを防止できる。前記並び方向に隣り合う接地極の電極部材どうしの間にも、絶縁性の隔壁を介在させることにしてもよい。
前記放電空間の上流端には、処理ガス導入口を形成する導入口形成部が配され、前記放電空間の下流端には、吹出し口を形成する吹出し口形成部が配されているのが望ましい。そうすると、前記第1電極列及び第2電極列の延び方向すなわちこれら電極列の電極部材の並び方向は、前記処理ガス導入口から吹出し口への方向とは交差する方向になる。前記第1電極列の電極部材と第2電極列の電極部材どうしのうち前記並び方向の第1位置に配置されたものどうしは、互いに逆の極性を有して互いの間に前記放電空間の一部分となる第1列間部分隙間を形成している。また、第1電極列の電極部材と第2電極列の電極部材どうしのうち、前記第1位置の隣の第2位置に配置されたものどうしが、互いに逆の極性を有して互いの間に前記放電空間の他の一部分となる第2列間部分隙間を形成している。
更に、前記第1列間部分隙間における第2位置寄りの部位(隣寄りの部位)を通る処理ガス流を第2位置との境または第2位置の方向(隣方向)へ誘導するガス誘導手段を備えるのが望ましい(図5〜図30参照)。第1列間部分隙間だけでなく、各列間部分隙間における隣の列間部分隙間寄りの側部を通る処理ガス流を、隣側へ誘導するガス誘導手段を付設するのが、より望ましい。
これによって、被処理物において、隣り合う列間部分隙間どうしの境に対応する箇所にもプラズマを十分に吹き付けることができ、処理ムラを防止することができる。ひいては、前記撓み抑制効果などと相俟って、表面処理の均一性を十分に確保することができる。
この場合、電界印加極の電極部材ごとに互いに異なる電源を接続することにすれば、各電源の容量を大きくすることなく、単位面積あたりの供給電力を十分に確保でき、しかも、これら電源を互いに同期させなくても済む。
前記第1列間部分隙間の第2位置寄りの部位の内部には、前記ガス誘導手段として、吹出し口へ向かうにしたがって第2位置方向へ傾くガス誘導面を有するガス誘導部材が設けられていてもよい(図5参照)。これによって、隣寄りのガス流を、ガス誘導面に沿って隣方向へ確実に誘導することができる。この場合、前記ガス誘導部材の前記ガス誘導面より吹出し口側には、ガス誘導面とは逆方向に傾くガス戻し面が形成されていることが望ましい(図6参照)。これによって、隣方向へ向かう処理ガスの一部をガス誘導部材より吹出し口側へ回り込ませることができ、被処理物におけるガス誘導部材に対応する箇所にもプラズマを吹き付けることができ、処理ムラを確実に防止できる。
前記ガス誘導手段は、前記導入口形成部(前記電極構造より処理ガス導入側)に設けられていてもよい。
例えば、前記導入口が、前記第1列間部分隙間の第2位置寄りの部位への分岐口を有し、この分岐口が、第2位置方向へ傾けられることにより、前記ガス誘導手段を構成していてもよい(図9参照)。これによって、処理ガスを列間部分隙間どうしの境へ確実に誘導することができる。
前記導入口における前記第1列間部分隙間の第2位置寄りの部位と対応する位置に、前記ガス誘導手段として、第2位置方向へ傾けられた整流板が収容されていてもよい(図13参照)。これによって、処理ガスを列間部分隙間どうしの境へ確実に誘導することができる。
前記ガス誘導手段が、前記第1列間部分隙間と第2列間部分隙間の境の前記導入口側の端部を塞ぐとともにそれより吹出し口側を開放する閉塞部を含んでいてもよい(図15参照)。これによって、処理ガスが列間部分隙間でのプラズマ化を経たうえで列間部分隙間どうしの境に流れて行くようにすることができる。
前記導入口が、前記並び方向に延びるスリット状をなして第1列間部分隙間から第2列間部分隙間に跨っており、この導入口の前記第1列間部分隙間と第2列間部分隙間との境に対応する位置に前記閉塞部が収容されていてもよい(図15参照)。
前記電極構造には、第1電極列における第1位置の電極部材と第2位置の電極部材どうし間、及び第2電極列における第1位置の電極部材と第2位置の電極部材どうし間にそれぞれ挟まる一対の介在部と、これら介在部を繋ぐ連結部を有するスペーサが設けられ、前記連結部が、前記境の前記導入口側の端部に片寄って配置されることにより前記閉塞部として提供されていてもよい(図18参照)。処理ガスは、列間部分隙間を経て、前記境の前記連結部より吹出し口側の部分に流れて行く。
前記ガス誘導手段が、前記吹出し口形成部(前記電極構造より吹出し側)に設けられ、第1列間部分隙間の第2位置寄りの部位から出た処理ガスを第2位置方向へ誘導するようになっていてもよい(図21参照)。
この場合、前記ガス誘導手段が、第2方向へ傾くガス誘導面を有して、前記吹出し口内における前記第1列間部分隙間の第2位置寄りの部位に対応する位置に配されていてもよい(図21参照)。これによって、プラズマ化された処理ガスを、被処理物における列間部分隙間どうしの境に対応する部分に確実に当てることができる。
前記ガス誘導手段が、前記吹出し口内における前記第1列間部分隙間と第2列間部分隙間との境に対応する位置に前記電極構造の側に片寄って配置され、前記境の吹出し口側の端部を塞ぐ閉塞部を含んでいてもよい(図26参照)。これによって、列間部分隙間どうしの境を流れて来た処理ガスが列間部分隙間へ流れてプラズマ化されるようにすることができ、列間部分隙間でのプラズマ化を経た処理ガスが閉塞部より下流側の吹出し口内に回り込むようにすることができる。
前記吹出し口が、スリット状をなして前記第1列間部分隙間と第2列間部分隙間に跨るようにして連なり、第1列間部分隙間から出た処理ガスが、隣方向(第2位置の方向)へ拡散するのを許容することにより前記ガス誘導手段を構成していてもよい(図27参照)。
前記吹出し口形成部が、多孔板を有し、この多孔板によって、第1列間部分隙間からの処理ガスが分散され、ひいては第2位置方向へも拡散されて吹出され、これによって、前記多孔板が、前記ガス誘導手段として提供されるようになっていてもよい(図23参照)。これによって、処理ガスを確実に均一化して吹出すことができ、処理ムラを確実に防止することができる。
前記吹出し口形成部の吹出し口における前記第1列間部分隙間と第2列間部分隙間どうしの境に対応する部位が、第1列間部分隙間に対応する部位よりも開口幅が大きくなっており、この開口幅の大きい部位が、前記ガス誘導手段として提供されるようになっていてもよい(図27参照)。これによって、これによって、吹出し口における第1、第2列間部分隙間どうしの境に対応する部位の流通抵抗を、第1列間部分隙間に対応する部位の流通抵抗より小さくでき、第1列間部分隙間でプラズマ化された処理ガスが、前記境に対応する部位に流れて行くようにすることができる。
第1電極列における第1位置の電極部材と第2位置の電極部材どうしの極性が互いに逆になるとともにこれら電極部材どうしの間に列内隙間が形成されており、
第1電極列における第1位置の電極部材と第2位置の電極部材どうしの極性が互いに逆になるとともにこれら電極部材どうしの間に列内隙間が形成されており、
前記導入口形成部の導入口が、前記第1列間部分隙間と第2列間部分隙間に跨る列間導入口と、前記列内隙間に直接的に連なる列内導入口とを含んでいていてもよい(図32参照)。
本発明のプラズマ処理は、好ましくは、大気圧近傍の圧力下(略常圧)で実行される。大気圧近傍とは、1.013×104〜50.663×104Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×104〜10.664×104Pa(100〜800Torr)が好ましく、9.331×104〜10.397×104Pa(700〜780Torr)がより好ましい。
本発明は、好ましくは、大気圧グロー放電すなわち大気圧近傍の圧力下でグロー放電を起こすことによりプラズマを発生させ、処理を実行する。
本発明によれば、個々の電極部材の長さを被処理物の幅の数分の1程度に短くすることができる。或いは、被処理物の幅寸法に依らず、個々の電極部材をある短い長さにし、その並び数を調節することによって、被処理物の幅に対応させることができる。これによって、寸法精度の確保が容易になるだけでなく、クーロン力等による電極部材の撓み量を小さくでき、ひいては、表面処理の均一性を確保することができる。電極部材を厚肉にする必要もなく、重量増大を回避して支持構造への負担を軽減でき、材料費等の上昇を抑えることができる。
以下、本発明の実施形態を、図面を参照して説明する。
図1〜図3は、第1実施形態に係るリモート式常圧プラズマ処理装置を示したものである。この装置の被処理物Wは、例えば大型の液晶用ガラス基板であり、その幅方向(図2、図3において左右方向、図1において紙面と直交する方向)の寸法は、1.5m程度である。被処理物Wは、加熱されていてもよく、冷却されていてもよく、常温に保たれていてもよい。
図1に示すように、プラズマ処理装置は、ノズルヘッド1と、処理ガス源2と、3つ(複数)の電源3A,3B,3Cと、搬送手段4とを備えている。
ノズルヘッド1は、図示しない支持手段によって、吹出し方向を下方に向けるようにして支持されている。
処理ガス源2には、処理目的に応じた処理ガスが蓄えられている。
電源3A,3B,3Cは、互いに同一のパルス状電圧を出力するようになっている。このパルスの立上がり時間及び/又は立下り時間は、10μs以下、後記列間部分隙間33pでの電界強度は10〜1000kV/cm、周波数は0.5kHz以上であることが望ましい。
なお、パルス波に代えて、高周波などの連続波電源を用いることにしてもよい。
搬送手段4は、例えばローラコンベアからなり、被処理物のガラス基板Wを前後方向(図1において左右方向)に搬送してノズルヘッド1の下側に通すようになっている。このガラス基板Wに、ノズルヘッド1でプラズマ化された処理ガスが吹き付けられ、プラズマ表面処理が略常圧下で行なわれるようになっている。勿論、ガラス基板Wが固定され、ノズルヘッド1が移動するようになっていてもよい。搬送手段4として、ベルトコンベアや、上下のローラでワークを挟んで搬送するもの等の他の搬送手段で構成してもよい。
リモート式常圧プラズマ処理装置のノズルヘッド1について詳述する。
図1および図2に示すように、ノズルヘッド1は、上側の処理ガス導入部20と、下側の放電処理部30とを備え、前記ガラス基板Wの搬送方向(図2、図3において上下方向)と直交する左右方向に長く延びている。
処理ガス導入部20は、左右(図1において紙面と直交する方向)に延びる2本のパイプ21,22からなるパイプユニット25と、その上下に設けられた左右細長のチャンバー23,24とを有している。パイプユニット25には、各パイプ21,22から上側のチャンバー23に貫通するスポット状の孔25aが長手方向に沿って短間隔置きに多数形成されている。一方のパイプ21の左端(図1において紙面手前)と他方のパイプ22の右端(図1において紙面奥)に、ガス供給路2aを介して処理ガス源2が連なっている。処理ガス源2からの処理ガスは、パイプ21,22内を互いに逆方向に流れながら、各スポット孔25aを通って上側のチャンバー23に入る。その後、パイプユニット25の前後両脇のスリット状の隙間20aを経て、下側のチャンバー24に入る。これによって、処理ガスが、処理ガス導入部20の左右長手方向の全ての位置で均一化され、放電処理部30に導入されるようになっている。
放電処理部30は、フレーム40と、このフレーム40に収容された電極ホルダ48と、このホルダ48の内部に設けられた電極ユニット(電極構造)30Xと、下板49を備えている。フレーム40は、それぞれ剛性金属からなる上板41と側板42を含んでいる。ホルダ48は、セラミックや樹脂などの絶縁材料からなる一対の逆L字断面の部材を含んでいる。
フレーム40の上板41には、チャンバー24に連なるとともに左右(図1において紙面と直交する方向)に延びるスリット状の貫通孔41aが形成されている。ホルダ48の一対の逆L字断面部材の上辺部どうし間には、上記貫通孔41aに連なるとともに左右に延びるスリット状の間隙48aが形成されている。これら貫通孔41aと間隙48aとにより左右に延びるスリット状の処理ガス導入口43aが構成されている。フレーム40の上板41とホルダ48の一対の逆L字断面部材の上辺部とにより、導入口形成部43が構成されている。
絶縁材料からなる下板49は、左右に延びるスリット状の吹出し口49aを有し、吹出し口形成部を構成している。
処理ガス導入口43aを有する導入口形成部43と吹出し口49aを有する下板49は、電極ユニット30Xを上下から挟むように配置されている。
次に、電極ユニット30Xについて詳述する。
図1及び図2に示すように、電極ユニット30Xは、前後に対向する一対の電極列31X,32Xを含んでいる。各電極列31X,32Xは、それぞれ左右に延びている。前側の第1電極列31Xは、左右に並べられた3つ(n個)の電極部材31A,31B,31Cにて構成されている。後側の第2電極列32Xは、第1電極列31Xと平行をなすように左右に並べられた3つ(n個)の電極部材32A,32B,32Cにて構成されている。これら電極列31X,32Xどうしの間に左右に一直線をなすスリット状の列間隙間33sが形成されている。
各電極部材31A〜32Cは、銅、アルミニウム等の金属単体、ステンレス、黄銅等の合金、金属間化合物等の導電材料によって構成されている。各電極部材31A〜32Cは、左右細長の厚い平板状をなしている。その左右方向の長さは、被処理物Wの左右方向の幅寸法の3分の1(n分の1)程度である。3つの電極部材からなる電極列全体の長さひいては列間隙間33sの長さは、被処理物Wの幅寸法より少し大きくなっている。
電極部材31A〜32Cの長さは、それぞれ例えば五十数cmであり、3つの電極部材を長手方向に並べることで電極ユニット30X全体で約1.5mの有効処理幅が形成されている。
なお、電極部材どうしの長さは、互いに同一になっていなくてもよいが、互いに対向する電極部材どうしは、同長であることが望ましい。
図1および図2に図示するように、各電極部材31A〜32Cには、アーク放電の防止のために、アルミナなどの溶射膜からなる固体誘電体層34が被膜されている。(なお、図3以降の図面では、固体誘電体層34の図示を適宜省略し、必要に応じて図示する。)
固体誘電体層34は、電極部材における他方の電極列との対向面の全体と、左右隣の電極部材との対向端面の全体と、上下両面の全体を覆うとともに、対向端面や上下端面から背面にも及んでいる。固体誘電体層34の厚さは0.01〜4mm程度が好ましい。固体誘電体として、アルミナの他に、セラミックスや樹脂等の板状物、シート状物、フィルム状のものを用いて電極部材の外周面を被覆してもよい。背面における固体誘電体層34の幅は、1mm以上が好ましく、3mm以上がより好ましい。なお、図1、図2において、固体誘電体層34の厚さは誇張して示してある。
各電極部材31A〜32Cの角は、アーク防止のためにR取りされている。このRの曲率半径は、1〜10mmが好ましく、2〜6mmがより好ましい。
図2に示すように、2つの電極列31X,32Xにおいて左右同位置に配された電極部材31Aと32A,31Bと32B,31Cと32Cは、それぞれ前後に正対している。
すなわち、電極ユニット30Xの左側の位置に配された電極部材31Aと電極部材32Aは、前後に正対している。これら電極部材31A,32Aどうしの間に上記列間隙間33sの左側の部分となる列間部分隙間33pが形成されている。中央の位置に配された電極部材31Bと電極部材32Bは、前後に正対し、これら電極部材31B,32Bどうしの間に列間隙間33sの中央の部分となる列間部分隙間33pが形成されている。右側の位置に配された電極部材31Cと電極部材32Cは、前後に正対し、これら電極部材31C,32Cどうしの間に列間隙間33sの右側の部分となる列間部分隙間33pが形成されている。各列間部分隙間33pの厚さ(前後の対向電極部材間の距離)は、1mm〜3mm程度が好ましく、1mm〜2mm程度がより好ましい。
左側の列間部分隙間33pと中央の列間部分隙間33pの境には、4つの電極部材31A,31B,32A,32Bの角によって連通空間33rが形成されている。この連通空間33rを介して左側の列間部分隙間33pと中央の列間部分隙間33pが一直線に連通されている。同様に、中央の列間部分隙間33pと右側の列間部分隙間33pの境には、これら列間部分隙間33p,33pを連ねる連通空間33rが4つの電極部材31B,31C,32B,32Cによって形成されている。
左側、中央部、及び右側の3つの列間部分隙間33pと、これらを連なる2つの連通空間33rによって、上記列間隙間33sが構成されている。
図1に示すように、この列間隙間33sの上端開口の全長が、ガス導入口43aに連なり、下端開口の全長が、吹出し口49aに連なっている。
なお、下板すなわち吹出し口形成部材49を省略し、列間隙間33sの下端開口自体が吹出し口を構成し、この列間隙間33sの下端開口から処理ガスが直接的に吹き出されるようにしていてもよい。
図2に示すように、第1電極列31Xにおいて左側と中央部の隣り合う電極部材31A,31Bどうしの間には、列内隙間33qが形成されている。この列内隙間33qは、左側の連通空間33rに連なっている。中央部と右側の電極部材31B,31Cどうしの間にも、列内隙間33qが形成され、この列内隙間33qは、右側の連通空間33rに連なっている。
同様に、第2電極列32Xにおいて隣り合う電極部材32A,32B,32Cどうしの間にも、列内隙間33qがそれぞれ形成され、この列内隙間33qが、対応する連通空間33rに連なっている。
各電極部材31A〜32Cの列内隙間33q形成面は、列間部分隙間33p形成面に対し直角をなしている。列内隙間33qは、列間隙間33sに対し直交している。列内隙間33qの厚さは、1〜3mm程度が好ましい。
各列内隙間33qには、隣り合う電極部材どうし間の間隔を維持する小スペーサ36が設けられている。スペーサ36は、セラミックなどの絶縁性かつ耐プラズマ性の材料で構成されている。スペーサ36は、電極部材の背面寄り(他方の電極列とは逆側寄り)に片寄って配置され、これにより、空間としての列内隙間33qが確保されている。空間としての(スペーサ36の幅を差し引いた)列内隙間33qの奥行きは、例えば5mm程度である。列内隙間33qの厚さ(左右の隣接電極部材間の距離)は、上記列内隙間33qないしは列間部分隙間33pと同程度にしてもよく、それより例えば1mm〜3mm程度大きくしてもよい。
図2に示すように、電極ユニット30Xは、互い違いの極性配置構造をなしている。すなわち、前後に対向する電極部材どうしの一方は、電界印加極となり、他方は、接地極となり、互いに逆の極性を有している。しかも、左右に隣接する電極部材どうしは、互いに逆極性になっている。
詳述すると、電極ユニット30Xの左側部において、前側の電極部材31Aは、給電線3aを介してパルス電源3Aに接続され、後側の電極部材32Aは、接地線3eを介して接地されている。これによって、電極ユニット30Xの左側の列間部分隙間33pでは、電源3Aから電極部材31Aへのパルス電圧によりパルス電界が形成され、グロー放電が起きるようになっている。
電極ユニット30Xの中央部において、電極部材31Bは、接地線3eを介して接地され、電極部材32Bは、給電線3bを介してパルス電源3Bに接続されている。電源3Bからのパルス電圧により、中央の列間部分隙間33pでパルス電界が形成されグロー放電が起きるようになっている。
電極ユニット30Xの右側部において、電極部材31Cは、給電線3cを介してパルス電源3Cに接続され、電極部材32Cは、接地線3eを介して接地されている。電源3Cからのパルス電圧により、右側の列間部分隙間33pでパルス電界が形成されグロー放電が起きるようになっている。
これにより、電極ユニット30Xの3つの列間部分隙間33pが、それぞれ放電空間の一部分となり、ひいては、列間隙間33sの略全体が、放電空間となるようになっている。
さらに、電源3A,3B,3Cからの電圧により、電極ユニット30Xの4つの列内隙間33qでも、同様にパルス電界が形成されグロー放電が起きるようになっている。これにより、列内隙間33qも電極ユニット30Xの放電空間の一部分となっている。これら列間部分隙間33qは、左側の中央の列間部分隙間33pの切れ目及び中央と右側の列間部分隙間33pの切れ目を繋ぎ、これにより、放電空間が、電極ユニット30Xの左右方向の略全長にわたって連続化されている。
電界印加極を構成する3つの電極部材31A,32B,31Cは、互いに異なる電源3A,3B,3Cに接続されている。
電極ユニット30Xの左側部を「第1位置」とし、左側の列間部分隙間33pを「第1列間部分隙間」とすると、中央部が「第1位置の隣の第2位置」となり、中央の列間部分隙間33pが「第2列間部分隙間」となる。
電極ユニット30Xの中央部を「第1位置」とし、中央の列間部分隙間33pを「第1列間部分隙間」とすると、左側部又は右側部が「第1位置の隣の第2位置」となり、左側又は右側の列間部分隙間33pが「第2列間部分隙間」となる。
電極ユニット30Xの右側部を「第1位置」とし、右側の列間部分隙間33pを「第1列間部分隙間」とすると、中央部が「第1位置の隣の第2位置」となり、中央の列間部分隙間33pが「第2列間部分隙間」となる。
なお、図1に図示(図2以降において省略)するように、ノズルヘッド1の放電処理部30には、フレーム40の側板42に樹脂製のボルトカラー603を介して引っ掛けられるとともに各電極部材31A〜32Cにねじ込まれて該電極部材を前後外側へ引く引きボルト(引きネジ部材)601と、ホルダ48を介して電極部材を前後内側へ押す押しボルト(押しネジ部材)602とが、左右に間隔を置いて設けられている。これらボルト601,602によって、各電極部材31A〜32Cの前後位置ひいては列間隙間33sの厚さを調節することができるようになっている。これら押し引きボルト601,602は、電極部材31A〜32Cのクーロン力による撓みに対する阻止手段としても機能する。各電極部材31A〜32Cには、押し引きボルト601,602を二組以上設けるのが好ましい。
上記のように構成されたリモート式常圧プラズマ処理装置の作用を説明する。
処理ガス導入部20にて左右に均一化された処理ガスは、導入口43aを経て、電極ユニット30Xの列間隙間33sの長手方向に均一に導入される。これと併行して、各電源3A,3B,3Cから電極部材31A,32B,31Cにそれぞれパルス電圧が供給される。これによって、各列間部分隙間33p内にパルス電界が形成され、グロー放電が起き、処理ガスがプラズマ化(励起・活性化)される。このプラズマ化された処理ガスが、吹出し口49aにおける各列間部分隙間33pに対応する領域から均一に吹出される。これによって、図3に示すように、ガラス基板Wの上面における各列間部分隙間33pに対応する領域R1にプラズマを当て、表面処理することができる。
また、導入口43aからの処理ガスの一部は、連通空間33rに導入され、そこから列内隙間33qに入り込む。この列内隙間33qにおいても、前記電源からのパルス電圧供給によりパルス電界が形成され、グロー放電が起き、処理ガスがプラズマ化される。この列内隙間33q内でプラズマ化された処理ガスが、吹出し口49aにおける連通空間33rに対応する部分から吹出される。これによって、図3に示すように、ガラス基板Wにおける連通空間33rに対応する領域R2にも、プラズマを吹付けることができる。これによって、大面積のガラス基板Wの左右全幅を一度に、しかもムラ無く略均一にプラズマ表面処理することができる。
同時に、搬送手段4にてガラス基板Wを前後に移動させることにより、ガラス基板Wの全面を処理することができる。
電極ユニット30X全体としては、ガラス基板Wの幅寸法に対応する長さであっても、各電極部材31A〜32Cは、その3分の1(数分の1)程度の長さしかないため、寸法精度を容易に確保できる。それだけでなく、印加電界によってクーロン力が強く働いたり、電極部材31A〜32Cを構成する金属本体と表面の固体誘電体34との熱膨張率の違いや電極部材内部の温度差等で熱応力が発生したりしても、撓み量が大きくならないようにすることができる。これによって、列間部分隙間33pの幅を一定に維持することができる。したがって、列間部分隙間33p内での処理ガスの流れを均一に維持でき、ひいては、表面処理の均一性を確実に得ることができる。また、電極部材を剛性アップのために厚肉にする必要がなく、重量増大を回避して支持構造への負担を軽減でき、材料費等の上昇を抑えることができる。
短小の電極部材31A.32B,31Cごとに電源3A,3B,3Cを設けているので、各電源3A,3B,3Cの容量が小さくても、単位面積あたりの投入電力を十分に大きくすることができる。ひいては、処理ガスを十分にプラズマ化することができ、高い処理能力を確保することができる。また、これら電源3A,3B,3Cは、互いに別の電極部材に接続されているので、同期させる必要がない。さらに、極性が互い違いになっており、電界印加極どうしが左右に隣接していないので、電源3A,3B,3Cどうしが同期していなくても、隣接電極部材どうし間に異常電界が形成されアークが発生するおそれがない。
次に、本発明の他の実施形態を説明する。以下の実施形態において、既述の実施形態と重複する構成に関しては、図面に適宜同一符号を付して説明を簡略化する。
図4および図5に示す実施形態では、各列間部分隙間33pに、「ガス誘導手段」を構成するガス誘導部材51が収容されている。このガス誘導部材51は、各第1列間部分隙間33pにおける隣(第2位置)の列間部分隙間寄りの部位に配置されている。すなわち、左側の列間部分隙間33pにおいては、その右側部にガス誘導部材51が配置されている。中央の列間部分隙間33pにおいては、その左右両側部にガス誘導部材51がそれぞれ配置されている。右側の列間部分隙間33pにおいては、その左側部にガス誘導部材51が配置されている。
ガス誘導部材51は、セラミックなどの絶縁性かつ耐プラズマ性の材料にて構成され、上向きのくさび状(細い縦長の三角形状)をなしている。すなわち、ガス誘導部材51は、垂直面と、この垂直面と鋭い鋭角をなすようにして下方へ向かって隣側(第2位置の方向)へ傾くガス誘導面51aと、これら2面の下端を結ぶ底面とを有している。ガス誘導部材51の底面の左右幅は、5mm以下が好ましい。
図5の矢印に示すように、導入口43aから列間隙間33sへ流れ込む処理ガスのうち各第1位置の列間部分隙間33pにおける隣寄りの部位(第2位置寄りの部位)以外の部分を通るガス流f0は、そのまま真っ直ぐ下方へ向かう。一方、各第1位置の列間部分隙間33pにおける隣寄りの部位を通るガス流f1は、ガス誘導部材51のガス誘導面51aに沿って隣方向へ誘導される。この過程でプラズマ化されていく。このプラズマ化されたガス流f1が、連通空間33rを経て、吹出し口49aから吹出される。これによって、ガラス基板Wにおける連通空間33rに対応する領域R2にプラズマを一層確実に吹付けることができる。この結果、処理ムラを一層確実に防止でき、表面処理の均一性を一層高めることができる。
また、各第1位置の列間部分隙間33p内のガス流f0のうち、ガス誘導部材51の垂直面に沿って真下に流れるガス流の一部f2が、ガス誘導部材51の下側に回り込む。これによって、ガス誘導部材51の下側に対応する箇所でもプラズマ処理を確実に行なうことができ、処理の均一性をより一層高めることができる。
発明者らの実験によれば、処理前に行う電極加熱等のための空放電工程において、処理ガスをガス誘導手段で連通空間33rや列内隙間33qに誘導することにより、該空放電の所要時間を短縮することができた。
図6は、ガス誘導部材の変形例を示したものである。このガス誘導部材52には、頂角から下方へ向かって隣側(第2位置の方向)へ傾くガス誘導面52aと、このガス誘導面52aの下端から下方へ向かって隣側とは逆側に傾くガス戻し面52bとが設けられている。
このガス誘導部材52によれば、ガス誘導面52aに沿って隣方向へ誘導されるガス流f1の一部f3を、ガス戻し面52bに沿って逆側に確実に戻すことができ、ガス誘導部材52の下側に確実に回り込ませることができる。これによって、ガス誘導部材の直下でもプラズマ処理を確実に行なうことができ、処理の均一性をより一層高めることができる。
ガス誘導部材は、図5、図6に示す形状に限定されるものではなく、第1列間部分隙間33pの第2位置寄りのガス流を隣りの第2位置へ誘導できるものであれば種々の形状を採用できる。例えば、図7に示すガス誘導部材53のように、正三角形に近い断面形状でもよく、図8に示すガス誘導部材54ように、下方へ向かって隣方向へ傾斜した平板形状でもよい。これら部材53,54において、下方へ向かって隣方向(第2位置の方向)へ傾斜する斜面は、ガス誘導面53a,54aを構成している。
図9に示す実施形態では、ガス流を隣方向へ誘導するガス誘導手段が、電極ユニット30Xより上側(処理ガス導入側)のガス導入口形成部43に設けられている。詳述すると、処理ガス導入口形成部43の導入口が、第1実施形態の左右細長スリット48aに代えて、左右に短間隔置きに配置形成された多数の細い分岐口43b,43cにて構成されている。これら分岐口43b,43cのうち、列間部分隙間33pの中程に対応する分岐口43cは、まっすぐ下に向かって開口されている。これに対し、各第1列間部分隙間33pの隣寄り側部(第2位置寄りの部位)に対応する分岐口43bは、隣方向(第2位置の方向)へ傾けられている。この傾斜分岐口43bが、「ガス誘導手段」を構成している。
処理ガスのうち、垂直分岐口43cを通ったガス流f0は、列間部分隙間33p内を真っ直ぐ下へ流れながら、プラズマ化された後、ガラス基板Wに吹付けられる。
一方、傾斜分岐口43bを通ったガス流f1は、列間部分隙間33p内でプラズマ化されながら隣方向(第2位置の方向)へ向けて斜め下に流れる。そして、連通空間33rの下方へ吹出される。これによって、ガラス基板Wの連通空間に対応する領域R2でのプラズマ表面処理を確実に確保でき、処理の均一性を高めることができる。
図10に示す実施形態では、電極ユニット30X(33Bのみ図示)の上方に、処理ガス導入口形成部としてガス導入管43Pが設けられている。ガス導入管43Pは、第1列間部分隙間33pに沿って延びるとともに、第1列間部分隙間33pの左右長手方向の両側に対応する部分が上に反るように湾曲されている。このガス導入管43Pの下側部には、第1列間部分隙間33pへの処理ガス導入口として多数の小孔状の分岐口43d,43eが該管43Pの長手方向に沿って短間隔置きに形成されている。第1列間部分隙間33pの中程に対応する分岐口43eは、略真下に向かって開口されている。一方、両端に近い分岐口43eほど、隣方向(第2位置の方向)への傾きが大きくなっている。そして、両端すなわち第1列間部分隙間33pの隣寄り側部(第2位置寄りの部位)に対応する分岐口43dは、隣方向への傾きが最も大きくなっている。この分岐口43dが、「ガス誘導手段」を構成している。
導入管43Pの一端部に処理ガスが導入される。この処理ガスは、導入管43P内を流れるとともに、漸次、分岐口43d,43eから下方の第1列間部分隙間33pへ漏れ出る。そのうち、分岐口43dから出たガス流f1’は、第1列間部分隙間33p内を隣方向(第2位置の方向)へ向けて斜め下に流れる。これによって、ガラス基板Wの連通空間対応領域R2でのプラズマ表面処理を確保でき、処理の均一性を高めることができる。
図11に示す実施形態では、各電極部材31A〜32C(31A,31Bのみ図示)の左右隣の電極部材との対向端面が、斜めにカットされ、該対向端面の上側部は、隣の電極部材から大きく離れ、下へ向かうにしたがって隣の電極部材へ接近している。したがって、連通空間33rおよび列内隙間33qは、下方へ向かうにしたがって幅狭になっている。
同図の矢印に示すように、処理ガスは、前記端面の傾斜と略同じ角度をなして列間部分隙間33pへ導入されるようになっている。これによって、処理ガスの列間部分隙間内の通過距離を長くでき、十分にプラズマ化することができる。
図12及び図13に示す実施形態では、処理ガス導入口形成部43の導入口43aに、ガス誘導手段として3つ(複数)の絶縁樹脂製の整流部材60が設けられている。ここで、導入口43aは、列間隙間33sの全長すなわち3つの列間部分隙間33pにわたるスリット状をなしている。図14に示すように、各整流部材60は、ベース板61と、このベース板61の片面に設けられた複数の整流板62,63を一体に有している。ベース板61は、各列間部分隙間33pと対応する長さの細長い薄板状をなしている。図12及び図13に示すように、このベース板61が、フレーム上板41のスリット状貫通孔41aの片方の内側面に宛がわれるようにして、3つの整流部材60が、スリット状貫通孔41a内に左右に一列に並べて収容されている。整流部材60は、列間部分隙間33pと一対一に対応している。隣接する整流部材60どうしの境は、連通空間33rと対応している。
図13及び図14に示すように、整流板62,63は、ベース板61の長手方向に間隔を置いて配置されている。これら整流板62,63によってスリット状貫通孔41aが仕切られている。また、図12に示すように、整流板62,63は、スリット状貫通孔41aにおけるベース板61とは反対側の内側面に突き当てられ、これにより、整流部材60が、貫通孔41a内にしっかりと固定されている。図13に示すように、連通空間33rの近くに配置された整流板62は、下方へ向かって隣の整流部材60に近づくように斜めをなしている。それ以外の整流板63は、ほぼ垂直になっている。
図13の符号f0で示すように、導入口43aに導かれた処理ガスの大半は、まっすぐ下に向かって流れる。流れが整流板63によって乱されることは殆どない。一方、符号f1で示すように、整流板62の配置場所の近くでは、処理ガスの流れが整流板62によって斜めになる。この斜めの流れf1が、第1列間部分隙間33pの隣寄り部分(第2位置寄りの部位)を通り、プラズマ化されながら連通空間33rひいては隣の第2列間部分隙間33pに寄って行く。これによって、連通空間33rの下側へもプラズマを吹出すことができ、ガラス基板Wの連通空間と対応する領域R2でのプラズマ表面処理を確実に確保でき、処理の均一性を高めることができる。
なお、整流部材60は、連通空間33r付近の上方のみに設けることにしてもよい。整流板62,63のうち整流板63を省き整流板62だけにしてもよい。
図12及び図13の態様では、整流部材60は、フレーム40の上板41の貫通孔41aに設けられているが、ホルダ48の間隙48aに設けることにしてもよい。
図15及び図16に示す実施形態では、処理ガス導入口形成部43の導入口43aに、絶縁樹脂からなる閉塞部材(閉塞部)70が嵌め込まれている。閉塞部材70は、隣り合う2つの列間部分隙間33pに跨るようにして、導入口43aにおける連通空間33rに対応する部分(第1列間部分隙間と第2列間部分隙間の境)に配置されている。この閉塞部材70によって連通空間33rの導入口43a側の端部が塞がれている。閉塞部材70より吹出し口側の連通空間33rは、開放され、両隣の列間部分隙間33pを介して導入口43aと連通している。
図15の符号f1に示すように、第1列間部分隙間33pの連通空間33r寄り(ひいては第2列間部分隙間33p寄り)の部位を通る処理ガスは、そこでプラズマ化された後、閉塞部材70の下側に回り込むようにして、連通空間33rに入って来る。これによって、連通空間33rの下側へもプラズマを吹出すことができ、ガラス基板Wの連通空間と対応する領域R2でのプラズマ表面処理を確実に確保でき、処理の均一性を高めることができる。
図17〜図19に示す実施形態では、図2のスペーサ36を、「ガス誘導手段」として提供されるように変形した態様に係るものである。図17及び図19に示すように、電極構造30Xの左右に隣り合う電極部材どうしの境には絶縁樹脂製の門型スペーサ80が介装されている。すなわち、左側の電極部材31A,32Aと中央部の電極部材31B,32Bの間、及び中央部の電極部材31B,32Bと右側の電極部材31C,32Cの間に、それぞれ門型スペーサ80が挟まれている。
図18に示すように、スペーサ80は、一対の脚部81と、これら脚部81の上端部間を繋ぐ連結部82を有し、門型の平板状をなしている。門型スペーサ80の外輪郭は、電極ユニット30X全体の側面断面の輪郭と一致している。図19に示すように、一対の脚部81の片方は、第1電極列31Xの隣り合う第1電極部材どうし間に挟まれ、他方の脚部81は、第2電極列32Xの隣り合う第2電極部材どうし間に挟まれている。これら脚部81は、「隣り合う電極部材どうし間への介在部」となっている。
スペーサ80の脚部81は、電極部材の背面寄り(他方の電極列とは逆側寄り)に片寄って配置され、これにより、空間としての列内隙間33qが確保されている。なお、脚部81を電極部材31A〜32Cと等幅にして、列内隙間33qを完全に埋めることにしてもよい。
図17及び図18に示すように、連結部82は、列内隙間33q及び連通空間33rの上側すなわち導入口43aの側に片寄って配されている。この連結部82によって連通空間33rの導入口43a側の端部が塞がれている。連結部82より吹出し口側の連通空間33rは、開放され、両隣の列間部分隙間33pを介して導入口43aと連通している。連結部82は、「第1列間部分隙間と第2列間部分隙間の境の導入口側の端部を塞ぐとともにそれより吹出し口側を開放する閉塞部」として提供されている。
図17の符号f1に示すように、処理ガスは、連結部82の両側の列間部分隙間33pを経て、プラズマ化されたうえで、連結部82より下側の連通空間33rに入って来る。これによって、ガラス基板Wの連通空間と対応する領域R2でのプラズマ表面処理を確実に確保でき、処理の均一性を高めることができる。また、各電極列31X,32Xにおいて隣り合う電極部材どうしの極性を互いに異ならせることにより、列内隙間33pをも放電空間の一部とすることができ、そこでも処理ガスのプラズマ化を起こすことができる。これによって、ガラス基板Wの連通空間対応領域R2でのプラズマ表面処理を一層確実に確保でき、処理の均一性を一層高めることができる。
図20および図21に示す実施形態では、「ガス誘導手段」が、電極ユニット30Xより下側(吹出し側)に設けられている。すなわち、下板49の左右細長スリット状の吹出し口49aには、各第1列間部分隙間33pの隣寄り側部(第2位置寄りの部位)に対応する位置に、ガス誘導手段としてガス誘導部49Bが設けられている。ガス誘導部49Bは、下板49と一体をなしている。ガス誘導部49Bは、下方へ向かって隣側(第2位置の方向)へ傾くガス誘導面49cを有する断面三角形状をなし、吹出し口49aの前後の縁面間に架け渡されている。
図21に示すように、第1列間部分隙間33pにおいてプラズマ化された処理ガスのうち、隣寄り側部(第2位置寄りの部位)から出たガス流f1”は、ガス誘導部49Bのガス誘導面49cによって隣方向(第2位置の方向)へ誘導される。これによって、ガラス基板Wの連通空間対応領域R2でのプラズマ表面処理を確保でき、処理の均一性を高めることができる。
図22および図23に示す実施形態では、下板49のスリット状吹出し口49aの内部に、ガス誘導手段として、多数の小孔90aを有する多孔板90が嵌め込まれている。多孔板90は、電極ユニット30Xより下方に若干離れ、吹出し口49aの下側部に片寄って配置されている。
列間隙間33sからの処理ガスは、吹出し口49aの多孔板90より上側の空間49g内で拡散され、均一化される。したがって、図23の符号f1に示すように、各列間部分隙間33pでプラズマ化された処理ガスの一部が、連通空間33rの下側へも拡散される。そして、多数の小孔90aから一様に吹出される。これによって、処理の均一性を高めることができる
図24、図25、図26に示す実施形態では、放電処理部30の吹出し口形成部としての下板49が、上下2枚の板部49U,49Lによって構成されている。上段の板部49Uには、各列間部分隙間33pに対応する3つのスリット状の上段吹出し口49dが一列をなすようにして形成されている。左側の上段吹き出し口49dと中央の上段吹出し口49dどうしは、橋部49Eにて分断されている。同様に、中央の上段吹き出し口49dと右側の上段吹出し口49dどうしは、他の橋部49Eにて分断されている。
各上段吹出し口49dは、その上側の列間部分隙間33pに直接に連なっている。上段吹出し口49dの幅は、列間部分隙間33pの幅より大きい。
下段の板部49Lには、列間隙間33sの全長と略同じ長さの下段吹出し口49fが形成されている。下段吹出し口49fの幅は、上段吹出し口49dの幅より小さく、列間部分隙間33pの幅と略等しい。
橋部49Eは、連通空間33rの真下に配置されている。この橋部49Eによって連通空間33rの下端が塞がれている。これにより、橋部49Eは、「吹出し口の隣り合う列間部分隙間どうしの境の吹出し口側の端部を塞ぐ閉塞部」を構成している。橋部49Eの下方に下段吹出し口49fが配置されている。すなわち、橋部49Eは、上下の段の吹出し口49d,49fを合わせた吹出し口全体における上側に片寄って配置されている。連通空間33rは、両隣の列間部分隙間33pを介してのみ吹出し口49d,49fと連通している。
なお、板部49U,49Lどうしは、互いに一体になっていてもよく、2枚に代えて3枚以上の板部を積層することによって吹出し口形成部材を構成してもよい。
図26の符号f1に示すように、連通空間33r内を下降して来た処理ガスは、橋部49Eによって連通空間33rから直接吹出口へ行くのを阻止され、必ず両隣の列間部分隙間33pを経てプラズマ化されたうえで吹出し口49dに流れ込む。そして、橋部49Eの下側の下段吹出し口49f内に回り込み、その下方へ吹出される。これによって、連通空間と対応する領域R2でのプラズマ表面処理を確保でき、処理の均一性を高めることができる。
図27及び図28は、プラズマ処理装置の下板49に形成された吹出し口49aの変形態様を示したものである。下板49には、左右に長く延びる列間吹出し口49hと、この列間吹出し口49hの中間の2箇所と交差するようにして前後に延びる2つの短い列内吹出し口49iが形成されている。列間吹出し口49hは、列間隙間33sの下端部の全長に連なっている。2つの列内吹出し口49iのうちの片方は、左側の電極部材31A,32Aと中央の電極部材31B,32Bのちょうど境に配置され、これら電極部材どうし間の列内隙間33q及び連通空間33rの下端部に連なっている。もう片方の列内吹出し口49iは、中央の電極部材31B,32Bと右側の電極部材31C,32Cのちょうど境に配置され、これら電極部材どうし間の列内隙間33q及び連通空間33rの下端部に連なっている。これによって、下板49の吹出し口は、隣り合う列間部分隙間33pどうしの境に対応する部位が、各列間部分隙間33pに対応する部位よりも開口幅が大きくなり、流通抵抗が小さくなっている。
列内隙間33qでプラズマ化された処理ガスは、該列内隙間33qの真下に連なる列内吹出し口49iから吹出される。また、各第1列間部分隙間33pの隣寄り側部(第2位置寄りの部位)から出た処理ガスは、流通抵抗の小さな列内吹出し口49iに向かって流れながら吹出される。これによって、処理の均一性を高めることができる。吹出し口49aの列内吹出し口49i(第1、第2列間部分隙間33pの境に対応する大開口の吹出し口部分)は、「ガス誘導手段」を構成している。
列内隙間33qの全体を絶縁スペーサで埋め、処理ガスが列間隙間33sしか通らないようにした構成においても、或いは、後記実施形態(図35、図36等)のように、列内隙間33qを挟んで隣り合う電極部材どうしの極性が同じで列内隙間33qで放電が起きないようにした構成においても、列内吹出し口49iは有効である。すなわち、各列間部分隙間33pでプラズマ化された処理ガスが、大開口・低流通抵抗の列内吹出し口49iに流れ込もうとし、これにより、処理ガスの均一性を確保できる。
なお、列内吹出し口49iの長さは、適宜延長、短縮してよく、列内隙間33qに合わせる必要はない。
また、図29に示すように、列内吹出し口49iを列間吹出し口49hの片側(例えば第2電極列32Xの側)にだけ設けることにしてもよい。
列内吹出し口49iを、図20のガス誘導部49B等と組み合わせてもよい。
下板すなわち吹出し口形成部材49を省略し、列内隙間33q及び列間隙間33sの下端開口自体が吹出し口を構成し、そこから処理ガスが直接的に吹き出されるようにしていてもよい。
第1、第2列間部分隙間33pどうしの境に対応する大開口の吹出し口部分の形状は、列内吹出し口49iのようなスリット状に限られない。例えば、図30(a)に示す開口49jのように、菱形にしてもよく、同図(b)に示す開口49kのように、列間吹出し口49hの片側に突出する三角形にしてもよく、その他、円形等の種々の形状にしてもよい。
図31および図32は、ガス導入手段すなわち導入口形成部43の変形態様を示したものである。導入口形成部43には、図示しない処理ガス導入部20の下端のチャンバー24に連なる処理ガス導入口43aが形成されている。処理ガス導入口43aは、左右に長く延びる列間導入口(主導入口)43hと、この列間導入口43hの中間の2箇所の両側面に形成された切込み状の列内導入口(副導入口)43iを含んでいる。
列間導入口43hの下端部は、列間隙間33sの全長に直接的に連なっている。
列内導入口43iは、第1電極列31Xの隣り合う電極部材31A,31Bどうし及び31B,31Cどうしの境、並びに第2電極列32Xの隣り合う電極部材32A,32Bどうし及び32B,32Cどうしの境にそれぞれ配置され、これら電極部材どうし間の列内隙間33qの上端部に直接的に連なっている。
処理ガス導入部20で均一化された処理ガスは、列間導入口43hから各列間部分隙間33pに導入されるとともに、列内導入口43iから列内隙間33qに直接的に導入される。これによって、各第1列間部分隙間33p内のプラズマ化された処理ガスを第2列間部分隙間33pとの境に向けて偏流させなくても、列内隙間33q内に直接導入された処理ガスをプラズマ化でき、第1、第2列間部分隙間33pどうし間の境の部分のプラズマ量を確実に確保することができる。この結果、処理の均一性を高めることができる。
なお、列内導入口43iの長さは、適宜延長、短縮してよく、列内隙間33qに合わせる必要はない。また、列内導入口43iを、列間導入口43hの前後両側のうちの片側にだけ設けることにしてもよい。
本発明において、2つの電極列31X,32Xの電極部材31Aと32Aどうし、31Bと32Bどうし、31Cと32Cどうしは、前後に正対している必要はなく、実質的に同位置において対向していればよい。例えば、図33に示す実施形態では、第1電極列31Xの電極部材31A〜31Cと第2電極列32Xの電極部材32A〜32Cどうしが、左右に多少ずれて配置されている。
図33のずらし配置構成は、上記図2等の互い違い極性配置の電極構造に適用してもよく、後記図35、図36等の列ごと同極性の電極構造に適用してもよい。発明者らが実験したところによれば、列ごと同極性構造の場合は勿論、互い違い極性構造の場合においても、2つの列間に多少ずれがあってもワークWの幅方向の全域を処理することができた。
図34に示す実施形態では、電界印加極を構成する電極部材31A,32B,31Cどうしが、既述実施形態の互いに別々の電源3A,3B,3Cに代えて、共通(単一)の電源3に接続されている。したがって、各列間部分隙間33pに形成されるプラズマ電界どうしを、互いに確実に同期させることができる。勿論、この単一電源構造においても、ガス誘導手段を適用可能である。
図35に示す実施形態では、電極ユニット30Xの極性配置が、既述実施形態の互い違いに代えて、電極列31X,32Xごとに同極に揃えられている。
すなわち、第1電極列31Xの電極部材31A,31B,31Cは、それぞれ電源3A,3B,3Cに接続されることにより、すべて電界印加極となっている。一方、第2電極列32Xの電極部材32A,32B,32Cは、すべて接地極となっている。この極性配置においても、列間部分隙間33pでグロー放電が起き、処理ガスをプラズマ化することができる。
各列内隙間33qは、セラミックなどの絶縁性かつ耐プラズマ性の材料からなる隔壁35によって完全に埋められ、左右に隣り合う電極部材どうしが互いに絶縁されている。これによって、電源3A,3B,3Cの同期が取れていなくても、左右に隣り合う電極部材間でアークが発生するのを防止することができる。
なお、隔壁35は、少なくとも電界印加極の電極部材31A〜31Cどうし間に設けられていればよく、接地極の電極部材31A〜31Cどうし間には無くてもよい。接地極の電極部材32A〜32Cどうしは、くっついていてもよい。
各第1列間部分隙間33pの第2位置寄りの部位には、「ガス誘導手段」として図4及び図5の態様と同様のガス誘導部材51が設けられているが、これに代えて、その他の図面に示した態様の「ガス誘導手段」を適用してもよい。
図36に示す実施形態では、図35の態様の列ごと同極性の電極ユニット30Xにおいて、電界印加極の電極部材31A〜31Cに共通(単一)の電源3を接続したものである。
当該図36の実施形態の列内隙間33qは、図35の態様と同様に絶縁性の隔壁35で完全に埋められているが、電極部材31A〜31Cへの印加電圧が確実に同期しているので、隔壁35を省き、列内隙間33qを開放してもよい。或いは、接地極の電極部材32A〜32Cどうしは勿論、電界印加極の電極部材31A〜31Cどうしをも互いにくっ付け、列内隙間33qを無くしてもよい。
図37に示すように、第1実施形態(図2)と同様の互い違い極性配置の電極ユニット30Xにおいて、各電極列31X,32Xの左右に隣り合う電極部材どうしを互いに突き当て、列内隙間33qを無くしてもよい。より詳細には、各電極部材の側端面には固体誘電体層34eが被膜されておち、隣り合う電極部材の側端面の固体誘電体層34e,34eどうしが、互いに当接・密着されている。これら側端面の固体誘電体層34e,34eが、隣り合う電極部材間の絶縁層としての役目を担っている。隣り合う列間部分隙間33pどうし間の連通空間33rの幅は、ちょうど2つの固体誘電体層34e,34eの厚さを合わせた大きさになっている。
なお、互いに突き当てられた2つの電極部材のうちの一方の側端面にのみ固体誘電体層34eを設け、他方の電極部材については、その金属本体の側端面がむき出しになっていてもよい。勿論、この場合、上記1つの電極部材の側端面の固体誘電体層34eが、それ単独で、2つの電極部材を絶縁できるようになっていることを要する。
図37の態様においても、ガス誘導部材51等のガス誘導手段を設けることにしてもよい。そうすると、上記連通空間33rすなわち固体誘電体層34e,34eの直下にもプラズマを吹出すことができ、処理の均一性を向上させることができる。
図37の態様において、隣り合う電極部材間に図35と同様の隔壁35を介装することにしてもよい。
図37の態様では、第1実施形態と同様に電極部材31A,32B,31Cごとに電源3A,3B,3Cが別々に設けられているが、これら別々の電源31A,32B,31Cに代えて、図34の態様と同様に単一の電源3を用いることにしてもよい。
図38に示すように、図35の態様と同様の、列ごと同極性配置の電極ユニット30Xにおいて、各電極列31X,32Xの隣り合う電極部材どうしを互いに突き当てることにしてもよい。この実施形態の各電極部材の側端面には、固体誘電体層34eが被膜されておらず、金属本体がむき出しになっている。これによって、左右に隣り合う電極部材の金属本体の側端面どうしが、直接突き当てられている。連通空間33rは、殆ど大きさを有さず、隣り合う列間部分隙間33pどうしが、ほぼ直接的に連なっている。3つの電源3A,3B,3Cは、互いに同期していることが望ましい。同期していない場合には、少なくとも電界印加側の電極列31Xの電極部材31A〜31Cの側端面に、上記図37の態様と同様に、絶縁層として固体誘電体層34eを設けるのが望ましい。別々の電源31A,32B,31Cに代えて、図36の態様と同様の単一電源3を用いることにしてもよい。この図38の態様においても、ガス誘導部材51等のガス誘導手段を適用してもよい。
本発明は、上記形態に限定されるものではなく、本発明の精神を逸脱しない限りにおいて種々の改変をなすことができる。
例えば、電極構造において、隣り合う列間部分隙間33pどうし間の連通空間33rに絶縁樹脂などの隔壁を埋め込むなどして、隣り合う列間部分隙間33pどうしを隔ててもよい。
電極ユニット30Xを、前後に複数段配置することにしてもよい。
各電極列31X,32Xにおいて隣り合う電極部材どうし間の間隙に挟むスペーサ36(図2)の前後方向の寸法や配置位置を調節することにより、列内隙間33qの処理ガス通路としての大きさを適宜調節することにしてもよい。
列内隙間33qの幅や列間部分隙間33pの幅は、適宜設定する。列内隙間33qの幅が、列間部分隙間33pより大きくてもよく、小さくてもよく、等しくてもよい。
図9〜図16、図31〜図32等のガス導入口形成部43におけるガス誘導手段ないしガス導入手段と、図4〜図8等の放電空間33s内におけるガス誘導手段と、図20〜図30等の吹出し口形成部49におけるガス誘導手段とを相互に組み合わせる等、各実施形態の要部を相互に組み合わせてもよい。
処理ガス導入部20を省略し、処理ガスを処理ガス源から放電処理部30に直接導入するように構成してもよい。途中に処理ガスの圧力変化を防止する圧力調整弁を備えるように構成してもよい。
本発明は、洗浄、成膜、エッチング、表面改質(親水性処理や撥水性処理等)、アッシング等の種々のプラズマ表面処理に遍く適用でき、グロー放電に限らず、コロナ放電、沿面放電、アーク放電などによるプラズマ表面処理にも適用でき、略常圧に限らず減圧下でのプラズマ表面処理にも適用できる。
第1実施形態に係るリモート式常圧プラズマ処理装置を示す側面断面図である。 図1のII−II線に沿う前記リモート式常圧プラズマ処理装置の電極構造の平面断面図である。 前記リモート式常圧プラズマ処理装置の被処理物であるガラス基板に電極構造を投影させた平面図である。 電極構造の電極列間の隙間にガス誘導部材を設けた実施形態を示す概略平面図である。 図4のV−V線に沿う電極構造の正面断面図である。 ガス誘導部材の変形例を示す正面断面図である。 ガス誘導部材の変形例を示す正面断面図である。 ガス誘導部材の変形例を示す正面断面図である。 処理ガス導入口形成部にガス誘導手段を設けた実施形態を示す正面図である。 処理ガス導入口形成部に設けたガス誘導手段の他の実施形態を示す正面図である。 処理ガスの斜流に合わせて電極部材の端面を斜めにした実施形態を示す平面図である。 処理ガス導入口形成部に設けたガス誘導手段の他の実施形態を示し、図13のXII−XII線に沿う側面断面図である。 図12のXIII−XIII線に沿う正面断面図である。 図12のガス誘導手段としての整流部材の斜視図である。 処理ガス導入口形成部にガス誘導手段として列間部分隙間どうしの境の閉塞部材を設けた実施形態を示す正面断面図である。 図15の実施形態の平面断面図である。 電極間にガス誘導手段となる門型スペーサを設けた実施形態を示す正面断面図である。 前記門型スペーサを正視した図である。 図17の実施形態の平面断面図である。 吹出し口形成部にガス誘導手段を設けた実施形態を示す分解斜視図である。 図20の実施形態の正面断面図である。 吹出し口にガス誘導手段として多孔板を設けた実施形態を示す分解斜視図である。 図22の実施形態の正面断面図である。 吹出し口形成部にガス誘導手段として列間部分隙間どうしの境の閉塞部を設けた実施形態を示す分解斜視図である。 図24のXXV−XXV線に沿う側面図である。 図24のXXVI−XXVI線に沿う正面図である。 列内隙間の下流端を列内吹出し口を介して開口させた実施形態を示す分解斜視図である。 図27の実施形態の吹出し口形成部材(下板)の平面図である。 上記列内吹出し口の変形例を示す平面図である。 上記列内吹出し口の他の変形例を示す平面図である。 上記列内吹出し口の他の変形例を示す平面図である。 処理ガス導入部に列内導入口を設けた実施形態を示す分解斜視図である。 図31の処理ガス導入部の平面図である。 第1、第2電極列の互いに対向する電極部材どうしを少しずらした実施形態を示す平面図である。 共通(単一)の電源を用いた実施形態を示す平面図である。 電極列ごとに極性を同じに揃えた実施形態を示す平面図である。 電極列ごとに同極性とし、共通(単一)の電源を用いた実施形態を示す平面図である。 各電極列の隣り合う電極部材の端面どうしを突き当て、列内隙間を無くした実施形態の平面断面図である。 図37において更に電極列ごとに同極性とした実施形態の平面断面図である。
符号の説明
W 被処理物
2 処理ガス源
3A,3B,3C 電源
3 共通(単一)の電源
30 放電処理部
30X 電極ユニット(電極構造)
31X 第1電極列
31A,31B,31C 電極部材
32X 第2電極列
32A,32B,32C 電極部材
33s 列間隙間
33p 列間部分隙間
33r 連通空間
33q 列内隙間
43 導入口形成部
43a 処理ガス導入口
43b 第1列間部分隙間の第2位置寄りの部位に対応する分岐口(ガス誘導手段)
43d 第1列間部分隙間の第2位置寄りの部位に対応する分岐口(ガス誘導手段)
43h 列間導入口(主導入口)
43i 列内導入口(副導入口)
49 下板(吹出し口形成部)
49a スリット状吹出し口
49B ガス誘導部(ガス誘導手段)
49c ガス誘導面
49d 上段吹出し口
49E 橋部(吹出し口の隣り合う列間部分隙間どうしの境の吹出し口側の端部を塞ぐ閉塞部)
49f 下段吹出し口
49g 吹出し口の多孔板より上側の空間
49h 列間吹出し口
49i 列内吹出し口(大開口幅の吹出し口、ガス誘導手段)
49j 菱形開口(大開口幅の吹出し口、ガス誘導手段)
49k 三角形開口(大開口幅の吹出し口、ガス誘導手段)
49m 列間吹出し口
49n 傾斜列内吹出し口
49U 下板の上段の板部
49L 下板の下段の板部
51 ガス誘導部材(ガス誘導手段)
51a ガス誘導面
52 ガス誘導部材(ガス誘導手段)
52a ガス誘導面
52b ガス戻し面
53 ガス誘導部材(ガス誘導手段)
54 ガス誘導部材(ガス誘導手段)
53a,54a ガス誘導面
60 ガス誘導手段としての整流部材
62 連通空間の近くに配置された整流板
70 閉塞部材(閉塞部)
80 門型スペーサ
81 脚部(隣り合う電極部材どうし間への介在部)
82 連結部(閉塞部)
90 ガス誘導手段としての多孔板
90a 多数の小孔

Claims (6)

  1. 処理ガスを略大気圧の放電空間でプラズマ化して吹出し、被処理物に当てることによりプラズマ処理を行なう装置における前記放電空間を形成する電極構造であって、
    前記放電空間の上流端から下流端へ向かう方向とは交差する一方向に並べられた複数の電極部材からなる第1電極列と、
    この第1電極列と平行に並べられた他の複数の電極部材からなる第2電極列と、を含み、
    これら第1電極列の電極部材及び第2電極列の電極部材が、それぞれ長手方向を前記並び方向に向けており、
    前記並び方向の実質的に同じ位置に配置された第1、第2電極列の電極部材どうしが、互いに逆の極性を有して互いの間に前記放電空間の一部分となる列間部分隙間を構成し、
    第1、第2電極列どうしの間に、前記列間部分隙間をその延び方向に沿って一列に複数連ねてなる列間隙間が形成され、
    しかも、前記並び方向に隣り合う電極部材どうしの極性が互いに逆になっていることを特徴とするプラズマ処理装置の電極構造。
  2. 前記第1電極列および/または第2電極列において前記並び方向に隣り合う電極部材どうしの間に列内隙間が形成され、この列内隙間も前記放電空間の他の一部分を構成していることを特徴とする請求項に記載のプラズマ処理装置の電極構造。
  3. 前記列内隙間の下流端が、処理ガスを前記列間隙間を介さずに吹出し可能に開口されていることを特徴とする請求項に記載のプラズマ処理装置の電極構造。
  4. 前記極性として電界印加極と接地極があり、前記電極部材のうち電界印加極を構成するものどうしが、互いに異なる電源に接続されていることを特徴とする請求項1〜の何れかに記載のプラズマ処理装置の電極構造。
  5. 前記極性として電界印加極と接地極があり、前記電極部材のうち電界印加極を構成するものどうしが、共通の電源に接続されていることを特徴とする請求項1〜の何れかに記載のプラズマ処理装置の電極構造。
  6. 各列間部分隙間における隣の列間部分隙間寄りの側部を通る処理ガス流を、隣側へ誘導するガス誘導手段を付設したことを特徴とする請求項1〜の何れかに記載のプラズマ処理装置の電極構造。
JP2004214182A 2003-07-23 2004-07-22 プラズマ処理装置の電極構造 Expired - Fee Related JP3686663B1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020067001305A KR20060063900A (ko) 2003-07-23 2004-07-22 플라즈마 처리 장치 및 그 전극 구조
US10/565,004 US20060185594A1 (en) 2003-07-23 2004-07-22 Plasma treating apparatus and its electrode structure
PCT/JP2004/010415 WO2005009090A1 (ja) 2003-07-23 2004-07-22 プラズマ処理装置及びその電極構造
JP2004214182A JP3686663B1 (ja) 2003-07-23 2004-07-22 プラズマ処理装置の電極構造
TW093122208A TWI257643B (en) 2003-07-23 2004-07-23 Plasma processing apparatus and its electrode structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003278536 2003-07-23
JP2004080166 2004-03-19
JP2004214182A JP3686663B1 (ja) 2003-07-23 2004-07-22 プラズマ処理装置の電極構造

Publications (2)

Publication Number Publication Date
JP3686663B1 true JP3686663B1 (ja) 2005-08-24
JP2005302685A JP2005302685A (ja) 2005-10-27

Family

ID=35004092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004214182A Expired - Fee Related JP3686663B1 (ja) 2003-07-23 2004-07-22 プラズマ処理装置の電極構造

Country Status (1)

Country Link
JP (1) JP3686663B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9452481B2 (en) 2010-06-30 2016-09-27 Fuji Machine Mfg. Co., Ltd. Reactive-species supply device and surface treatment apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695353B (zh) * 2012-05-31 2015-08-12 浙江工商大学 利用高电压产生气体等离子放电基本单元及反应器
WO2015181945A1 (ja) * 2014-05-30 2015-12-03 富士機械製造株式会社 プラズマ照射方法、およびプラズマ照射装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9452481B2 (en) 2010-06-30 2016-09-27 Fuji Machine Mfg. Co., Ltd. Reactive-species supply device and surface treatment apparatus

Also Published As

Publication number Publication date
JP2005302685A (ja) 2005-10-27

Similar Documents

Publication Publication Date Title
KR100552378B1 (ko) 플라즈마 표면 처리 장치의 전극 구조
JP5594820B2 (ja) 均一な常圧プラズマ発生装置
JP4331117B2 (ja) プラズマ処理装置の電極構造
US20150228461A1 (en) Plasma treatment apparatus and method
JPWO2008123142A1 (ja) プラズマ処理装置
WO2020021831A1 (ja) プラズマ発生装置
KR101215691B1 (ko) 플라즈마 처리 장치
JP5725993B2 (ja) 表面処理装置
WO2005001917A1 (ja) プラズマ処理等の表面処理装置及び方法
JP3686663B1 (ja) プラズマ処理装置の電極構造
JP3686664B1 (ja) プラズマ処理装置の電極構造
JP3975957B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP4283520B2 (ja) プラズマ成膜装置
JP2006202661A (ja) プラズマ処理装置
KR20060063900A (ko) 플라즈마 처리 장치 및 그 전극 구조
JP2005129493A (ja) プラズマ処理装置及びその電極構造
JP4861387B2 (ja) プラズマ処理装置
JP2017502836A (ja) 表面を処理するためのデバイス
JP2008277774A (ja) プラズマ処理装置
JP2008269907A (ja) プラズマ処理装置
JP4429681B2 (ja) プラズマ処理装置
JP3709411B2 (ja) プラズマ処理装置
JP4871028B2 (ja) プラズマ処理装置
TWI437120B (zh) 具有減小的工具足跡之用於均勻薄膜沉積的平行板反應器
JP4052965B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees