JP3683528B2 - Road pavement - Google Patents

Road pavement Download PDF

Info

Publication number
JP3683528B2
JP3683528B2 JP2001387364A JP2001387364A JP3683528B2 JP 3683528 B2 JP3683528 B2 JP 3683528B2 JP 2001387364 A JP2001387364 A JP 2001387364A JP 2001387364 A JP2001387364 A JP 2001387364A JP 3683528 B2 JP3683528 B2 JP 3683528B2
Authority
JP
Japan
Prior art keywords
pavement
water
specimen
cement milk
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001387364A
Other languages
Japanese (ja)
Other versions
JP2003184014A (en
Inventor
信行 根本
保 吉中
Original Assignee
株式会社Nippoコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nippoコーポレーション filed Critical 株式会社Nippoコーポレーション
Priority to JP2001387364A priority Critical patent/JP3683528B2/en
Publication of JP2003184014A publication Critical patent/JP2003184014A/en
Application granted granted Critical
Publication of JP3683528B2 publication Critical patent/JP3683528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は道路舗装体に関し、特に路面温度の上昇を抑制するに適する道路舗装体に関する。
【0002】
【従来の技術とその課題】
アスファルト舗装を典型例とする道路舗装体は、一般的に黒色であるため太陽光の日射熱を吸収し易く、また、自然地盤のような潜熱による熱の放出が期待できないことから路面温度が高くなりやすい。特に、夏期においては路面温度が60℃程度に達することも珍しくなく、都市部のような舗装比率の高い箇所ではヒートアイランド現象を含めた都市環境対策として、また、歩行者に対する歩道空間の熱環境を改善する対策方法として、路面温度の上昇を抑制する機能を有する舗装体の開発が期待されている。
【0003】
舗装路面上においては、太陽光の日射などによる地表面へのエネルギー入射に対して、地表面からさまざまな形態で大気中へエネルギーを放出することによって、熱収支のバランスが保たれている。近年実用化が進められている保水性舗装は、一般的な舗装路面のように顕熱輸送や長波放射に依存したエネルギー放出の他に、舗装体の空隙中に保持させた水分の蒸発に伴う潜熱輸送も付与させることによって、路面温度の上昇を通常よりも抑制しようとするものである。保水性舗装の水分の供給を基本的に降雨によって賄うものとすれば、空隙中に充填する保水材料の性能としては、高い保水能力を有することが基本的に必要であり、そして、舗装路面に接触した雨水をすばやく取り込むための早い吸水性と、効果を長く持続させるための水分蒸発量の制御が可能なことが求められている。
本発明の目的はこのような要求に適合した道路舗装体を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、路盤上又は基層上に位置する道路舗装体の表層部において、15〜30%の空隙率を有する舗装体の空隙中に水、セメント、繊維及び界面活性剤からなるセメントミルクを充填することを特徴とする道路舗装体である。
本発明で使用する舗装体は空隙を有する透水性舗装体であることを要し、通常アスファルト混合物、セメントコンクリート、樹脂コンクリートなどからなる空隙率15〜30%のものが使用される。特に、開粒度アスファルト混合物を用いた透水性アスファルト舗装体が好ましい。
透水性舗装体の空隙にセメントミルクを充填・固化させることは従来から知られており、本発明はこのセメントミルクに繊維と界面活性剤とを混入して用いる点に第一の特徴を有する。
【0005】
繊維としては、綿糸、セルロース質繊維等の植物性繊維、ポリエステル、ポリアミド、ポリウレタン、ポリビニルアルコール、ポリアクリロニトリル等からなる合成繊維、レーヨン糸等の半合成繊維、さらには鉱物繊維等の無機繊維等その種類は特に限定されないが親水性のある繊維が好ましい。繊維の形状も短繊維状、長繊維状から粉末状に近いものまで特に限定されないが、セメントミルクへの混入等の取扱い易さから長さが10mm以下のものがより好ましい。
繊維の太さも特に限定されないが、舗装体の空隙を容易に通過できる太さであることが好ましく、通常1mm以下のものが用いられる。これら繊維はたとえば使用済の衣類や紙等を切断したりして安価且つ容易に入手しうる。これら繊維はセメントミルクに対する重量比で0.1〜3%添加することが好ましい。
【0006】
界面活性剤としては一般に市販されているアニオン界面活性剤、カチオン界面活性剤、ノニオン界面活性剤、両性界面活性剤のいずれも使用しうるが、特にポリアルキレングリコール誘導体系界面活性剤が好ましい。界面活性剤の添加量はセメントミルクに対する重量比で0.1〜5%程度で十分である。
【0007】
本発明ではセメントミルクに吸水性ポリマーを共存させると一層大きな効果が得られる。これらの吸水性ポリマーとしては、特に粉末状のアクリル酸系ポリマーによって代表される高吸収性ポリマーが好ましい。これらはセメントミルクに容易に分散し、本発明の舗装体に適用することにより水分蒸発量を抑制する効果を示す。これら吸水性ポリマーの添加量はセメントミルクに対する重量比で0.1〜3%程度で十分である。
これら成分を混入したセメントミルクを舗装体表面からその空隙に充填してセメントミルクを硬化させる。
かくして高い保水能力をもつと共に水分蒸発量を適度に制御することが可能となる。
【0008】
【実施例】
〔試験1〕
表−1に記載した配合のセメントミルクからなる供試体(4cm×4cm×16cm、以下「供試体」という)を作成し、本発明の舗装体の吸水特性及び蒸発特性を確認するための試験を実施した。
供試体の作成手順は以下のとおりである。表−1に記載した配合のセメントミルクを作成し、該セメントミルクを曲げ試験用の3連型枠(4cm×4cm×16cm×3)に充填する。該セメントミルクが十分に硬化した後、これらを3連型枠から脱型し供試体として使用する。配合A〜Dのセメントミルクについては、高吸水性ポリマーとして粉末状のアクリル酸系ポリマーを、界面活性剤としてポリアルキレングリコール誘導体系界面活性剤を、繊維として植物性繊維(商品名:アーボセルZZ8/1、三木産業(株)製)を各々所定量添加した。
【0009】
【表1】

Figure 0003683528
【0010】
(1)吸水特性の評価
吸水特性は、絶乾状態の供試体を湿潤させたスポンジマット上に静置して(図1)、吸水に伴う供試体の吸水容積率の変化により評価するものとした。まず、供試体を室内で静置乾燥させて重量変化がないことを確認した後、該供試体の乾燥重量を求めた。次に、室温20℃に設定した恒温室内において図1に示す吸水試験装置に供試体を静置して吸水させ、吸水開始後の経過時間毎の供試体重量を測定した。水の比重を1g/cm3 とし、次式により吸水容積率を算出した。また、測定終了後には24時間水浸させて最大吸水容積率を求めた。
吸水容積率=吸水容積/供試体容積
試験結果を図2、表−2に示す。
【0011】
【表2】
Figure 0003683528
【0012】
図2より、配合A〜Cの供試体は吸水容積率の増加が基本配合の供試体よりも速く、配合Dの供試体は基本配合の供試体よりもやや遅いことが分かる。この結果より、本発明で使用する界面活性剤及び繊維は吸水速度を高める効果があるが、高吸水性ポリマーは吸水速度を高める効果がないということがいえる。
【0013】
表−2より、配合Aの供試体は吸水時間30分及び60分における吸水容積率が基本配合の供試体に対して約1.8倍に向上しており、短時間でより多くの水分を取り込むのに優れていることが分かる。また、最大吸水容積率が基本配合の供試体に対して約6%拡大しており、保水能力も向上している。一方、基本配合の供試体と配合Dの供試体との最大吸水容積率の比較より、高吸水性ポリマーの添加は必ずしも最大吸水容積率を低下させるものではないということがいえる。
【0014】
(2)蒸発特性の評価
蒸発特性は、最大吸水状態の供試体を20℃の恒温室内に静置して、自然蒸発に伴う供試体の残留水分容積率の変化により評価するものとした。静置開始後の経過時間毎の蒸発水分容積を求め、次式により残留水分容積率を算出した。
残留水分容積率=(最大吸水容積−蒸発水分容積)/供試体容積
【0015】
試験結果を図3に示す。図3より、配合A〜Dの供試体は残留水分容積率の減少が基本配合の供試体よりも遅くなっている。静置開始3日後で比較すると、基本配合の供試体の残留水分容積率が約8%となっているのに対して、配合Dの供試体は約21%となっている。この結果より、高吸水性ポリマーを添加することによって、水分の蒸発速度を抑制する効果が得られることが分かる。
【0016】
〔試験2〕
本発明の舗装体の性状を確認するために、動的安定度とラベリング損失量を測定するための試験を行った。各試験で使用する供試体は、開粒度アスファルト混合物に表−1の配合Aのセメントミルクを充填したものである。開粒度アスファルト混合物にはアスファルト舗装要綱に示される半たわみ性舗装用アスファルト混合物II型を使用し、アスファルトには改質II型を用いる。
試験結果を表−3に示す。
【0017】
【表3】
Figure 0003683528
【0018】
この結果より、本発明の舗装体は道路舗装体として必要な強度と耐久性を有するということがいえる。
【0019】
〔試験3〕
本発明の舗装体の路面温度特性を確認するために、以下の試験を行った。
試験2で使用したものと同じ配合のホイールトラッキング試験用供試体(t=5cm、以下「本供試体」という)を作製し、屋外(東京都品川区)に設置してその表面温度を測定した。比較例として、密粒度アスファルト混合物(13mmTOP)を使用したホイールトラッキング試験用供試体(t=5cm、以下「標準供試体」という)を作製し、同様にしてその表面温度を測定した。
試験結果を図4、図5に示す。測定期間中の本供試体の表面温度は、日中及び夜間共、標準供試体よりも低くなる傾向を示した。特に、測定2日目の最高表面温度は標準供試体が約55℃であるのに対して本供試体が37℃であり、約18℃の温度低減効果が得られた。本供試体の表面色が半たわみ性舗装に近似した明色であることを考慮すれば、この結果は本供試体の保水能力と舗装表面の明色化による相乗効果によるものと判断できる。
【0020】
〔試験4〕
本発明の舗装体の効果を確認するために、構内ヤード(埼玉県さいたま市)において試験施工を実施した。
既設の砕石路盤上にレベリング層(t=4cm)として密粒度アスファルト混合物(13mmTOP)を舗設した後、該レベリング層上に開粒度アスファルト混合物を舗設した。開粒度アスファルト混合物は試験2で使用したものと同じ配合とし、舗設方法は一般的な半たわみ性舗装と同様とした。舗装体は厚さt=5cm、t=10cmの当該舗装体及びt=5cmの標準舗装体の計3種類とした。
転圧終了後、開粒度アスファルト混合物の温度が低下してから、当該舗装体の空隙に表−1の配合Aのセメントミルクを充填した。セメントミルクの充填作業においては施工性の上で特に問題となる点は見られず、所定の厚さに十分浸透させるとができた。舗設1ケ月後に測定してすべり抵抗値は表−4に示すとおりであり、当該舗装体については一般的な半たわみ性舗装と同程度の結果であった。これは、道路交通に供するのに十分な数値である。
【0021】
【表4】
Figure 0003683528
【0022】
(1)路面温度の測定結果
前記3種類の舗装体の表面温度を測定するために、当該舗装体についてはセメントミルクを充填する前に開粒度アスファルト混合物の空隙中の骨材面(路面からの深さ約5mmの位置)に熱電対を接着剤で固定し、標準舗装体については舗設直後の舗装体表面に深さ約5mm程度の穴を空けて熱電対を設置した。
試験結果を図−7、図−8に示す。測定期間の2日目から3日目にかけての深夜にまとまった降雨(累計57mm)があり、当該舗装体は吸水した状態となった。図−7より、3日目の最高路面温度は標準舗装体が40℃であるのに対して当該舗装体5cmが32℃であり、4日目の最高路面温度は標準舗装体が50℃であるのに対して当該舗装体5cmが34℃である。3日目と4日目の最高路面温度を比較すると、標準舗装体が10℃上昇しているのに対して、当該舗装体5cmの温度上昇は2℃に留まっている。当該舗装体の表面色は半たわみ性舗装に近似した明色でアルベドが約0.41であり、舗装表面色と保水能力との相乗効果により路面温度の上昇が抑制されたと考えられる。
【0023】
当該舗装体5cmと当該舗装体10cmとを比較すると、当該舗装体5cmでも最高路面温度が約35℃以下に留まっており、日中における両者の明確な差はみられないが、夜間においては当該舗装体10cmの方が当該舗装体5cmよりも低くなる傾向がみられた(図8参照)。
以上より、試験施工において構築した当該舗装体は、試験3と同様に路面温度の上昇を抑制する効果を有するということがいえる。
【0024】
(2)長波放射量と顕熱輸送量の特性
(1)で測定した路面温度、気温及び風速のデータを基に算出した長波放射量と顕熱輸送量をそれぞれ図9、図10に示す。また、7日間の集計値を表−5に示す。
【0025】
【表5】
Figure 0003683528
【0026】
図9より、当該舗装体の長波放射量は24時間を通じて標準舗装体よりも少ない傾向を示した。表−5の平均値でみれば、標準舗装体が約465W/m2 であるのに対して当該舗装体5cmが約440W/m2 、当該舗装体10cmが約438W/m2 と7日間の測定期間において平均して5〜6%程度低減した。一方、測定期間の最大値でみれば、当該舗装体は長波放射量が最大となる日中のピーク放射量を約107W/m2 抑制している。さらに最小値についても当該舗装体の方が約11W/m2 減少しており、夜間における長波放射量の抑制にも効果がみられた。
【0027】
図10より、顕熱輸送量は当該舗装体の方が標準舗装体よりも少ない傾向を示し、6日目のピーク値では標準舗装体が約205W/m2 であるのに対して、当該舗装体5cmが約79W/m2 、当該舗装体10cmが約69W/m2 であった。
表−5より、標準舗装体に対する7日間の低減率は、当該舗装体5cmが約64%、当該舗装体10cmが約70%であった。この結果より、舗装路面から大気への顕熱輸送量は当該舗装体の厚さによって変化し、厚い舗装体ほど低減量が大きいということがいえる。特に、風速が速い6日目と7日目において舗装厚による差が顕著に現れており、風速が速まるにつれて保水能力が大きい当該舗装体10cmの方が水の蒸発に伴う潜熱輸送量が多くなるものと推定される。
以上より、試験施工において構築した当該舗装体は長波放射量と顕熱輸送量を低減する効果を有し、特に、当該舗装体が厚いほどその効果が大きいということがいえる。
【0028】
【発明の効果】
第1に、本発明の舗装体によれば、該舗装体の空隙に保持された水分が蒸発するときの蒸発潜熱による効果と、該舗装体の表面色が半たわみ性舗装に近似した明色であることによる効果とにより、路面温度の上昇を抑制することができる。
第2に、セメントミルクに繊維と界面活性剤とを添加することにより、最大吸水容積率と吸水速度とを大きくすることができ、より速くより多くの水分を舗装体の空隙に取り込むことができる。
第3に、セメントミルクに高吸水性ポリマーを添加することにより、該舗装体の空隙に保持された水分の蒸発速度を抑制することができ、より長期間水分を舗装体の空隙に保持しておくことができる。
【図面の簡単な説明】
【図1】吸水試験装置を示す概略図。
【図2】吸水容積率の経時変化を示すグラフ。
【図3】残留水分容積率の経時変化を示すグラフ。
【図4】供試体表面温度の測定結果を示すグラフ。
【図5】当該舗装体の標準に対する温度差を示すグラフ。
【図6】試験施工の舗装断面を示す概略図。
【図7】路面温度の測定結果を示すグラフ。
【図8】舗装体の標準に対する路面温度差を示すグラフ。
【図9】舗装体の長波放射量を示すグラフ。
【図10】舗装体の顕熱輸送量を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a road pavement, and more particularly to a road pavement suitable for suppressing an increase in road surface temperature.
[0002]
[Prior art and its problems]
Asphalt pavement is a typical example of road pavement, which is generally black, so it is easy to absorb the solar heat of the sun, and it is not expected to release heat due to latent heat like natural ground, so the road surface temperature is high. Prone. Especially in the summer, it is not uncommon for the road surface temperature to reach around 60 ° C. In places with high pavement ratios such as urban areas, the urban environment measures including the heat island phenomenon and the thermal environment of the sidewalk space for pedestrians As a countermeasure method for improvement, development of a pavement having a function of suppressing an increase in road surface temperature is expected.
[0003]
On the paved road surface, the balance of heat balance is maintained by releasing energy from the ground surface into the atmosphere in various forms against energy incident on the ground surface due to solar radiation. In recent years, water-retaining pavement, which has been put into practical use, is accompanied by the evaporation of moisture retained in the pavement, as well as energy release depending on sensible heat transport and long-wave radiation, as is the case with general pavement surfaces. By imparting latent heat transport, an attempt is made to suppress an increase in road surface temperature more than usual. If the water supply of the water-retaining pavement is basically covered by rainfall, the performance of the water-retaining material to be filled in the gap is basically required to have a high water-retaining capacity, and the pavement surface There is a demand for quick water absorption to quickly take in rainwater that has come into contact and to control the amount of water evaporation to maintain the effect for a long time.
An object of the present invention is to provide a road pavement that meets such requirements.
[0004]
[Means for Solving the Problems]
In the present invention, cement milk composed of water, cement, fibers and a surfactant is filled in a void of a pavement having a porosity of 15 to 30% in a surface layer portion of a road pavement located on a roadbed or a base layer. It is a road pavement characterized by doing.
The pavement used in the present invention is required to be a water-permeable pavement having voids, and usually those having a porosity of 15 to 30% made of asphalt mixture, cement concrete, resin concrete and the like are used. In particular, a water-permeable asphalt pavement using an open particle size asphalt mixture is preferable.
Filling and solidifying cement milk in the voids of a water-permeable pavement has been conventionally known, and the present invention has a first feature in that fibers and a surfactant are mixed and used in this cement milk.
[0005]
Examples of fibers include vegetable fibers such as cotton yarn and cellulosic fibers, synthetic fibers made of polyester, polyamide, polyurethane, polyvinyl alcohol, polyacrylonitrile, semi-synthetic fibers such as rayon yarn, and inorganic fibers such as mineral fibers. The type is not particularly limited, but hydrophilic fibers are preferred. The shape of the fiber is not particularly limited from a short fiber shape or a long fiber shape to a powdery shape, but a fiber having a length of 10 mm or less is more preferable because of easy handling such as mixing into cement milk.
Although the thickness of the fiber is not particularly limited, it is preferably a thickness that can easily pass through the voids of the pavement, and usually 1 mm or less. These fibers can be obtained inexpensively and easily, for example, by cutting used clothing or paper. These fibers are preferably added in an amount of 0.1 to 3% by weight with respect to cement milk.
[0006]
As the surfactant, any of commercially available anionic surfactants, cationic surfactants, nonionic surfactants and amphoteric surfactants can be used, and polyalkylene glycol derivative surfactants are particularly preferable. The amount of the surfactant added is about 0.1 to 5% by weight with respect to the cement milk.
[0007]
In the present invention, when a water-absorbing polymer is allowed to coexist in cement milk, a greater effect can be obtained. As these water-absorbing polymers, superabsorbent polymers represented by powdery acrylic acid polymers are particularly preferable. These are easily dispersed in cement milk and exhibit the effect of suppressing the amount of water evaporation by applying to the paving body of the present invention. The amount of these water-absorbing polymers added is about 0.1 to 3% by weight with respect to cement milk.
Cement milk mixed with these components is filled into the voids from the surface of the pavement to harden the cement milk.
Thus, it is possible to have a high water retention capacity and appropriately control the amount of water evaporation.
[0008]
【Example】
[Test 1]
A test specimen (4 cm × 4 cm × 16 cm, hereinafter referred to as “test specimen”) made of cement milk having the composition described in Table 1 was prepared, and tests for confirming water absorption characteristics and evaporation characteristics of the pavement of the present invention were conducted. Carried out.
The procedure for creating the specimen is as follows. Cement milk having the composition shown in Table 1 is prepared, and the cement milk is filled into a triple mold (4 cm × 4 cm × 16 cm × 3) for bending test. After the cement milk is sufficiently cured, they are removed from the triple mold and used as test specimens. Regarding the cement milk of the blends A to D, a powdery acrylic acid polymer as a superabsorbent polymer, a polyalkylene glycol derivative surfactant as a surfactant, and vegetable fiber (trade name: Arbocel ZZ8 / 1, predetermined amounts of Miki Sangyo Co., Ltd. were added.
[0009]
[Table 1]
Figure 0003683528
[0010]
(1) Evaluation of water absorption characteristics The water absorption characteristics are evaluated by changing the water absorption volume ratio of the test specimen in accordance with water absorption by leaving the specimen in an absolutely dry state on a wet sponge mat (Fig. 1). did. First, the specimen was allowed to stand and dried indoors, and after confirming that there was no weight change, the dry weight of the specimen was determined. Next, the specimen was placed in the water absorption test apparatus shown in FIG. 1 to absorb water in a thermostatic chamber set at room temperature of 20 ° C., and the weight of the specimen for each elapsed time after the start of water absorption was measured. The specific gravity of water was 1 g / cm 3, and the water absorption volume ratio was calculated by the following formula. Further, after the measurement was completed, the maximum water absorption volume ratio was obtained by water immersion for 24 hours.
The water absorption volume ratio = the water absorption volume / the specimen volume test result is shown in FIG.
[0011]
[Table 2]
Figure 0003683528
[0012]
From FIG. 2, it can be seen that the specimens of Formulations A to C increase in the water absorption volume rate faster than the specimens of the basic blend, and the specimens of Formulation D are slightly slower than the specimens of the basic blend. From this result, it can be said that the surfactant and fiber used in the present invention have the effect of increasing the water absorption rate, but the superabsorbent polymer has no effect of increasing the water absorption rate.
[0013]
From Table 2, the specimen of Formulation A has a water absorption volume ratio of 30 minutes and 60 minutes that is about 1.8 times higher than that of the specimen of the basic formula, and more water can be consumed in a short time. It turns out that it is excellent to capture. Moreover, the maximum water absorption volume ratio is expanded by about 6% with respect to the specimen of the basic composition, and the water retention capacity is also improved. On the other hand, it can be said from the comparison of the maximum water absorption volume ratio between the specimen with the basic composition and the specimen with the composition D that the addition of the superabsorbent polymer does not necessarily reduce the maximum water absorption volume ratio.
[0014]
(2) Evaluation of evaporation characteristics Evaporation characteristics were evaluated by changing the residual moisture volume ratio of the test specimens due to natural evaporation after placing the specimens in the maximum water absorption state in a constant temperature room at 20 ° C. The evaporated water volume for each elapsed time after the start of standing was determined, and the residual water volume ratio was calculated by the following equation.
Residual water volume ratio = (maximum water absorption volume−evaporation water volume) / sample volume
The test results are shown in FIG. From FIG. 3, the specimens with the blends A to D had a slower decrease in the residual water volume ratio than the specimens with the basic blend. Compared to 3 days after the start of standing, the residual water volume fraction of the basic blend specimen is about 8%, while the specimen of blend D is about 21%. From this result, it can be seen that the effect of suppressing the evaporation rate of water can be obtained by adding the superabsorbent polymer.
[0016]
[Test 2]
In order to confirm the properties of the pavement of the present invention, tests were conducted to measure the dynamic stability and the amount of labeling loss. The specimen used in each test is one in which an open-graded asphalt mixture is filled with cement milk of Formulation A in Table-1. The semi-flexible paving asphalt mixture type II shown in the asphalt pavement outline is used for the open-graded asphalt mixture, and the modified type II is used for the asphalt.
The test results are shown in Table-3.
[0017]
[Table 3]
Figure 0003683528
[0018]
From this result, it can be said that the pavement of the present invention has the strength and durability required as a road pavement.
[0019]
[Test 3]
In order to confirm the road surface temperature characteristics of the pavement of the present invention, the following tests were conducted.
A specimen for a wheel tracking test (t = 5 cm, hereinafter referred to as “this specimen”) having the same composition as that used in Test 2 was prepared and installed outdoors (Shinagawa-ku, Tokyo) and its surface temperature was measured. . As a comparative example, a specimen for a wheel tracking test (t = 5 cm, hereinafter referred to as “standard specimen”) using a dense particle size asphalt mixture (13 mm TOP) was prepared, and the surface temperature was measured in the same manner.
The test results are shown in FIGS. The surface temperature of the specimen during the measurement period tended to be lower than that of the standard specimen during both day and night. In particular, the maximum surface temperature on the second day of measurement was about 55 ° C. for the standard specimen, and 37 ° C. for this specimen, and a temperature reduction effect of about 18 ° C. was obtained. Considering that the surface color of the specimen is a light color similar to that of semi-flexible pavement, it can be judged that this result is due to the synergistic effect of the water retention capacity of the specimen and the lightening of the pavement surface.
[0020]
[Test 4]
In order to confirm the effect of the paving body of the present invention, test construction was performed in the yard yard (Saitama City, Saitama Prefecture).
A dense-graded asphalt mixture (13 mm TOP) was paved as a leveling layer (t = 4 cm) on an existing crushed stone roadbed, and then an open-graded asphalt mixture was paved on the leveling layer. The open-graded asphalt mixture had the same composition as that used in Test 2, and the paving method was the same as that of a general semi-flexible pavement. There were three types of paving bodies: a thickness of t = 5 cm, a paving body of t = 10 cm, and a standard paving body of t = 5 cm.
After the completion of the rolling, the temperature of the open-graded asphalt mixture was lowered, and then the pavement void was filled with the cement milk of Formulation A in Table-1. In the filling operation of the cement milk, there was no particular problem in terms of workability, and it was possible to sufficiently penetrate the predetermined thickness. The sliding resistance measured as one month after the pavement is as shown in Table 4, and the pavement had the same result as a general semi-flexible pavement. This is a numerical value sufficient for road traffic.
[0021]
[Table 4]
Figure 0003683528
[0022]
(1) Measurement result of road surface temperature In order to measure the surface temperature of the above three kinds of pavement, the surface of the aggregate in the void of the open-graded asphalt mixture before filling with cement milk (from the road surface) A thermocouple was fixed at a depth of about 5 mm with an adhesive, and a standard pavement was provided with a hole having a depth of about 5 mm on the surface of the pavement immediately after pavement.
The test results are shown in Figure-7 and Figure-8. There was rainfall (cumulative total of 57 mm) gathered at midnight from the 2nd day to the 3rd day of the measurement period, and the pavement was in a state of absorbing water. From Fig.7, the maximum pavement temperature on the third day is 40 ° C for the standard pavement, whereas the 5cm pavement is 32 ° C, and the maximum pavement temperature for the fourth day is 50 ° C for the standard pavement. In contrast, the pavement 5 cm is 34 ° C. Comparing the maximum road surface temperature on the third and fourth days, the standard pavement has risen by 10 ° C., whereas the temperature rise of the pavement 5 cm remains at 2 ° C. The surface color of the pavement is a light color approximating that of semi-flexible pavement and the albedo is about 0.41, and it is considered that the increase in road surface temperature was suppressed by the synergistic effect of the pavement surface color and water retention capacity.
[0023]
When the pavement 5 cm and the pavement 10 cm are compared, the maximum road surface temperature remains at about 35 ° C. or less even in the pavement 5 cm, and there is no clear difference between the two during the daytime. There was a tendency for the pavement 10 cm to be lower than the pavement 5 cm (see FIG. 8).
From the above, it can be said that the pavement constructed in the test construction has an effect of suppressing an increase in road surface temperature as in Test 3.
[0024]
(2) Long wave radiation amount and sensible heat transport amount characteristics The long wave radiation amount and sensible heat transport amount calculated based on the road surface temperature, air temperature and wind speed data measured in (1) are shown in FIGS. 9 and 10, respectively. Table 5 shows the aggregated values for 7 days.
[0025]
[Table 5]
Figure 0003683528
[0026]
From FIG. 9, the long wave radiation amount of the pavement showed a tendency to be smaller than that of the standard pavement throughout 24 hours. Looking at the average value of Table 5, the pavement 5cm about 440W / m 2 whereas the standard pavement is about 465W / m 2, the pavement 10cm of about 438W / m 2 and 7 days The average was reduced by about 5 to 6% during the measurement period. On the other hand, when viewed from the maximum value of the measurement period, the pavement suppresses the daytime peak radiation amount at which the long-wave radiation amount is maximized by about 107 W / m 2 . Furthermore, the minimum value of the pavement was reduced by about 11 W / m 2 , and the effect of suppressing long-wave radiation at night was also observed.
[0027]
From FIG. 10, the sensible heat transport amount tends to be smaller in the pavement than the standard pavement, and the standard pavement is about 205 W / m 2 at the peak value on the sixth day, whereas the pavement The body 5 cm was about 79 W / m 2 , and the pavement 10 cm was about 69 W / m 2 .
From Table-5, the reduction rate for 7 days with respect to the standard pavement was about 64% for the pavement 5 cm and about 70% for the pavement 10 cm. From this result, it can be said that the amount of sensible heat transported from the pavement surface to the atmosphere varies depending on the thickness of the pavement, and the amount of reduction is greater for thicker pavements. In particular, the difference due to the pavement thickness appears remarkably on the 6th and 7th days when the wind speed is high, and as the wind speed increases, the pavement 10 cm having a larger water retention capacity increases the amount of latent heat transport accompanying water evaporation. Estimated.
From the above, it can be said that the pavement constructed in the test construction has an effect of reducing the long wave radiation amount and the sensible heat transport amount, and in particular, the thicker the pavement is, the greater the effect is.
[0028]
【The invention's effect】
1stly, according to the pavement of this invention, the effect by the latent heat of evaporation when the water | moisture content hold | maintained in the space | gap of this pavement evaporates, and the bright color in which the surface color of this pavement approximated semi-flexible pavement. By the effect by being, it can suppress the raise of road surface temperature.
Second, by adding fiber and surfactant to cement milk, the maximum water absorption volume ratio and the water absorption speed can be increased, and more water can be taken into the gap of the pavement faster. .
Thirdly, by adding a superabsorbent polymer to cement milk, the evaporation rate of the moisture retained in the gap of the pavement can be suppressed, and the moisture can be retained in the gap of the pavement for a longer period of time. I can leave.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a water absorption test apparatus.
FIG. 2 is a graph showing changes with time in the water absorption volume ratio.
FIG. 3 is a graph showing the change over time in the residual water volume ratio.
FIG. 4 is a graph showing a measurement result of a specimen surface temperature.
FIG. 5 is a graph showing a temperature difference with respect to the standard of the pavement.
FIG. 6 is a schematic diagram showing a pavement cross section of test construction.
FIG. 7 is a graph showing a measurement result of road surface temperature.
FIG. 8 is a graph showing a road surface temperature difference with respect to a standard of a paved body.
FIG. 9 is a graph showing a long wave radiation amount of a pavement.
FIG. 10 is a graph showing the sensible heat transport amount of the pavement.

Claims (6)

路盤上又は基層上に位置する道路舗装体の表層部において、15〜30%の空隙率を有する舗装体の空隙中に水、セメント、繊維及び界面活性剤からなるセメントミルクを充填することを特徴とする道路舗装体。In the surface layer portion of the road pavement located on the roadbed or the base layer, the void of the pavement having a porosity of 15 to 30% is filled with cement milk composed of water, cement, fiber and surfactant. Road pavement. 前記繊維が親水性を有することを特徴とする請求項1に記載の道路舗装体。The road pavement according to claim 1, wherein the fiber has hydrophilicity. 前記繊維の径が1mm以下であることを特徴とする請求項1又は2に記載の道路舗装体。The road pavement according to claim 1 or 2, wherein the fiber has a diameter of 1 mm or less. 前記繊維の配合量が前記セメントミルクに対する重量比で0.1〜3%であることを特徴とする請求項1〜3のいずれか1項に記載の道路舗装体。The road pavement according to any one of claims 1 to 3, wherein a blending amount of the fiber is 0.1 to 3% by weight with respect to the cement milk. 前記界面活性剤の配合量が前記セメントミルクに対する重量比で0.1〜5%であることを特徴とする請求項1〜4のいずれか1項に記載の道路舗装体。The road pavement according to any one of claims 1 to 4, wherein a blending amount of the surfactant is 0.1 to 5% by weight with respect to the cement milk. 前記セメントミルクが高吸水性ポリマーを含むことを特徴とする請求項1〜5のいずれか1項に記載の道路舗装体。The road pavement according to any one of claims 1 to 5, wherein the cement milk contains a superabsorbent polymer.
JP2001387364A 2001-12-20 2001-12-20 Road pavement Expired - Lifetime JP3683528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001387364A JP3683528B2 (en) 2001-12-20 2001-12-20 Road pavement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001387364A JP3683528B2 (en) 2001-12-20 2001-12-20 Road pavement

Publications (2)

Publication Number Publication Date
JP2003184014A JP2003184014A (en) 2003-07-03
JP3683528B2 true JP3683528B2 (en) 2005-08-17

Family

ID=27596223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001387364A Expired - Lifetime JP3683528B2 (en) 2001-12-20 2001-12-20 Road pavement

Country Status (1)

Country Link
JP (1) JP3683528B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906159B2 (en) * 2003-01-27 2007-04-18 住友大阪セメント株式会社 Water retentive filler and method for producing the same, water retentive pavement and method for producing the same
JP4147154B2 (en) * 2003-06-30 2008-09-10 ニチレキ株式会社 Water-retaining pavement and its construction method
JP4517357B2 (en) * 2005-02-03 2010-08-04 東京電力株式会社 Water supply type water retaining pavement structure and its construction method

Also Published As

Publication number Publication date
JP2003184014A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
Ajamu et al. Evaluation of structural performance of pervious concrete in construction
US7931952B2 (en) Water-retainable molding and method for manufacturing the same
Bonicelli et al. Improving pervious concrete pavements for achieving more sustainable urban roads
CN110041005B (en) Reinforcing agent for pervious concrete and preparation method and construction process thereof
Hendel Cool pavements
KR100971111B1 (en) Superabsorbent concrete composite and concrete paving method using the same
Wardeh et al. Review of the optimization techniques for cool pavements solutions to mitigate Urban Heat Islands
KR101146190B1 (en) Concrete compostion for facing layer of block decreasing heat island effect, and a concrete block for roadway and sidewalk using thereof
JP2008002225A (en) Water absorbing/retaining carbide-coated aggregate and water absorbing/retaining paving material using the same
CN103482924B (en) Water-retaining and cooling pavement material and application thereof
JP3683528B2 (en) Road pavement
Seifeddine et al. Experimental investigation of physical characteristics to improve the cooling effect of permeable pavements
JP4138398B2 (en) Concrete pavement and concrete block with water retention function
KR101037576B1 (en) Conservatism mortar composition, pavement composition and pavement
JP3983029B2 (en) Construction method of water retentive elastic pavement
KR101471837B1 (en) Multifunctional coating material for road pavig and paving method thereof
JP3208815U (en) Capillary water absorption test equipment for water retention block
KR101136118B1 (en) Water-soluabe polymer, Cement mortar composite with water holding characterics, boundary block using the same and manufacturing method thereof
JP5898350B1 (en) Paving material
KR100924765B1 (en) Road pavement composition of enhanced retentiveness and drainage, and constructing method using the composition
JP2008001868A (en) Modifier of soil material for pavement, clay pavement material, its preparation process and paving process
CN104403392B (en) Road surface coating material and its application for reducing bituminous paving temperature
CN109824301B (en) Water-based polymer stabilized macadam material for roads, preparation and construction method
JP2004224638A (en) Coating material and method of manufacturing the same
JP3852290B2 (en) Road pavement structure and road pavement method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050525

R150 Certificate of patent or registration of utility model

Ref document number: 3683528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term