JP2004224638A - Coating material and method of manufacturing the same - Google Patents

Coating material and method of manufacturing the same Download PDF

Info

Publication number
JP2004224638A
JP2004224638A JP2003014323A JP2003014323A JP2004224638A JP 2004224638 A JP2004224638 A JP 2004224638A JP 2003014323 A JP2003014323 A JP 2003014323A JP 2003014323 A JP2003014323 A JP 2003014323A JP 2004224638 A JP2004224638 A JP 2004224638A
Authority
JP
Japan
Prior art keywords
weight
parts
coating material
pts
diatomaceous earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003014323A
Other languages
Japanese (ja)
Inventor
Yoshiki Matsui
良樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NACHURU KK
Original Assignee
NACHURU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NACHURU KK filed Critical NACHURU KK
Priority to JP2003014323A priority Critical patent/JP2004224638A/en
Publication of JP2004224638A publication Critical patent/JP2004224638A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating material capable of being applied to be thin by spray coating or roller coating, having excellent prevention effect to radiant heat, hardly causing crack or stripping even in being thin, having high strength and capable of being applied easily. <P>SOLUTION: The method of manufacturing the coating material is performed by mixing 100-150 pts.wt. green or fired diatom earth, 40-100 pts.wt. Ryukyu lime stone powder, 100-120 pts.wt white cement, 20-40 pts.wt. acrylic resin having 0.06-2 μm particle diameter and 2-8 pts.wt. in total of a polyester fiber and a carbon fiber which have 1.0-12.0 mm length and are in the almost same quantity as each other. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、屋内外の鉄板,コンクリート,木部,プラスチック,ガラス,アスファルトなどの各種材料に1〜2mmの厚さで塗布して輻射熱を抑制することが可能な塗布材及びその製造方法に関するものである。
【0002】
近年、ヒートアイランド現象で都市部での温暖化が進み、色々な熱源の削減について取り組まれている。屋上緑化も太陽の輻射熱を抑える一環として立案されているが、雨水が滞留することを防ぐために粗骨材を使用した透水性のものもある。
【0003】
都市部でのヒートアイランド現象が生じる原因は、都市部がコンクリート構造物やアスファルトの舗装など太陽の輻射熱を吸収蓄熱するところが多く、また屋根に使用されている鉄板もこれに含まれる。
【0004】
ヒートアイランド現象は、冷房による暖気放出や慢性的な交通渋滞による車両からの熱放出や都市のコンクリート化による蓄熱により局所的に温度が上昇し、またアスファルトによる道路全面舗装による温度上昇や湿度低下による気化熱を取る水の減少など問題も多い。
【0005】
【従来の技術】
そして、珪藻土の調湿性や断熱性に着目した建築用の塗布材としては、例えば特開平8−49308号公報や特開平11−12066号公報や特開2002−80752号公報に示されるものがある。
【0006】
特開平8−43908号公報に示されるものは、珪藻土とパーライトやシラスなどの多孔性無機材料とセメントと樹脂と細骨材としての砂及び石膏プラスターや石灰プラスターなどのプラスターを構成材料とし、これらを所定の混合比により混合したものである。
【0007】
また特開平11−12066号公報に示されるものは、珪藻土とベンナイトやゼオライトなどの粉末状粘土質原料と白セメントとアクリル樹脂及び消石灰を構成材料とし、これらを所定の混合比により混合したものである。
【0008】
また特開2002−80752号公報に示されるものは、珪藻土とパーライトなどのセメント割れ止め材とセメントと繋ぎ材とセルロースファイバー及び珪砂を主成分とする山砂を構成材料とし、これらを所定の混合比により混合したものである。
【0009】
【発明が解決しようとする課題】
上記各公報記載のものは、主に吸湿性能や調湿性能を主眼に開発されており、吸湿性については塗布材としてそれなりの効果があるが、構成材料の面から輻射熱を防止する効果の面においては未だ十分な性能を有するとはいい難いのが現状であった。
【0010】
更に、上記各公報記載のものは細骨材としての各種砂やプラスターなどどちらかというと輻射熱の防止効果という面からいうと、入っていない方が性能が高まると思われるものまで入れてある。また、多孔質材料としても調湿性能に主眼をおいているために従来から一般に使用されているパーライトやベントナイトやゼオライトなどが使用されている。
【0011】
すなわち、上記各公報記載のものは断熱性能も兼ね備えているとはいっているが、本来の目的は吸湿性能であるため、輻射熱の防止効果は不十分であり、特に吹き付けのように厚さ1.0mm〜2.0mm程度に薄く塗布して使用した場合にはその効果は僅かなものであった。
【0012】
【課題を解決するための手段】
そこで、この発明にかかる塗布材の製造方法は前記の課題を解決するために、下記A〜Eの材料をそれぞれ所定の割合で混合したものである。
A:生又は焼成珪藻土粉末を100〜150重量部
B:琉球石灰岩粉末を40〜100重量部
C:白色セメントを100〜120重量部
D:粒径0.06ミクロン〜2ミクロンのアクリル樹脂を20〜40重量部
E:長さ1.0mm〜12.0mmのポリエステルファイバー及びカーボンファイバーを2〜8重量部
【0013】
また、この発明に係る塗布材は、下記A〜Eの材料が下記の割合(重量比)で配合してあるものである。
A:生又は焼成珪藻土が30%〜40%
B:サンゴ砂が10%〜20%
C:セメントが35%〜40%
D:アクリル樹脂が5%〜15%
E:ポリエステルファイバー及びカーボンファイバーが0.5%〜2.0%
【0014】
【作用】
珪藻土の作用により蓄熱が抑えられ、場合によっては太陽の輻射熱を10数度下げることができる。さらに珪藻土の水の吸放出性を利用して水蒸気の蒸散作用によっても温度を下げることができる。
【0015】
また、付着強度や摩耗に対する抵抗性を強化するとともに珪藻土と同様に太陽の輻射熱を下げる目的で多孔質のサンゴ砂、例えば琉球石灰岩粉末を加える。さらに、珪藻土の水の吸放出性能をコントロールするために適当な粒度のアクリル樹脂を加える。そして、一定の強度を確保するためにセメント及びポリエステルファイバーとカーボンファイバーを加える。
【0016】
【発明の実施の形態】
次に、この発明に係る塗布材の製造方法の一実施例を説明する。本発明の主材となる珪藻土は生でも焼成でもどちらでもよく、混合割合は全体重量の100〜150重量部とする。セメントは各種セメントが使用可能であり、混合割合は全体重量の100〜120重量部とする。
【0017】
強度補強のために多孔質材料としてサンゴ砂を全体重量の50〜100重量部混合する。サンゴ砂とは各種の珊瑚やあるいは珊瑚の化石や死骸を粉末化したものであり、例えば琉球石灰岩の粉末を使用する。なお、多孔質材料としては前記したように従来からパーライトやゼオライトなどが一般に知られているが、これらは後述する試験結果からも明らかなように、輻射熱の防止効果においてサンゴ砂のものよりも明らかに劣っているので、本発明では多孔質材料としてはサンゴ砂を使用するのである。
【0018】
また、ひび割れ防止と強度補強のために長さ1mm〜12mm程度のポリエステルファイバー及びカーボンファイバーを合計で全体重量の2〜8重量部入れる。長さをこの程度のものを使用するのはひび割れ防止や適切な強度を持たせると共に吹き付け塗装を可能とするためである。
【0019】
塗布材表面の水の吸放出性能を使用箇所に応じて調整するために、粒径0.06ミクロン〜2ミクロンのアクリル樹脂を全体重量の20〜40重量部混合する。なお、クリル系樹脂の他、エチレン酢酸ビニル系,スチレンブタジエン系なども使用可能である。なお、ファイバーと樹脂について各種の種類の組み合わせを試験した結果、ファイバーとしてはポリエステルファイバー及びカーボンファイバーを、樹脂としてはアクリル樹脂を使用したものが、全体として作業性及び仕上がり性において優れ、さらに強度的にも優れていた。なお、ポリエステルファイバーとカーボンファイバーの混合比率は同量を基本とするが、一方が他方の倍以上でも用途によっては適する場合もある。
【0020】
基本的には外壁などの降雨などにさらされる箇所では樹脂の粒径を小さくし、内壁では樹脂の粒径を大きくする。樹脂の粒径を小さくすると水の吸放出性能は小さくなり、この場合は珪藻土の性質のうち太陽の輻射熱を止める性能が主に残される。一方、樹脂の粒径を大きくした場合は水の吸放出性能も発揮され、太陽の輻射熱を止める性能と共に水の気化熱による温度低下も発揮される。
【0021】
そして、上記した各種材料を所定の割合の範囲で混合することにより本発明の塗布材が製造されることになる。
【0022】
【実施例】
次に、本発明の塗布材の一実施例を示す。それぞれの材料の配合割合(重量比)は次の通りである。
A:焼成珪藻土が280重量部(約35%)
B:200メッシュ通過程度の琉球石灰岩粉末が120重量部(約15%)
C:白色セメントが300重量部(約39%)
D:粒径1ミクロン程度のアクリル樹脂が80重量部(約10%)
E:長さ1mm〜12mm程度のポリエステルファイバー及びカーボンファイバーが同量ずつで合計8重量部(約1%)
【0023】
[比較例]
次に、上記した本発明の塗布材の効果確認試験結果について説明する。本発明の塗布材の試験試料としては上記実施例のものを使用した(以下、この塗布材を「本願発明」と称する。)。また、比較試料として前記従来技術の項で述べた各特許公報を参考にして、以下の材料を以下の割合で配合して比較試料1〜比較試料4を製造して使用した。なお、比較試料4は本願発明の琉球石灰岩粉末に代えゼオライトを使用したものであり、配合比は本願発明と同じである。
【0024】
比較試料1(比較例1)
A:焼成珪藻土が200重量部
B:200メッシュ通過程度のシラスが100重量部
C:白色セメントが100重量部
D:粒径1ミクロン程度のアクリル樹脂が100重量部
E:粒径1mm〜2mmの砂が160重量部
F:石膏プラスターが300重量部
【0025】
比較試料2(比較例2)
A:焼成珪藻土が100重量部
B:200メッシュ通過程度のベントナイトが70重量部
C:白色セメントが160重量部
D:粒径1ミクロン程度のアクリル樹脂が15重量部
E:消石灰が200重量部
【0026】
比較試料3(比較例3)
A:焼成珪藻土が100重量部
B:200メッシュ通過程度のパーライトが50重量部
C:白色セメントが120重量部
D:粒径1ミクロン程度のアクリル樹脂が30重量部
E:珪砂を主成分とする山砂が100重量部
F:長さ2mm程度のセルロースファイバーが10重量部
【0027】
比較試料4(比較例4)
A:焼成珪藻土が280重量部
B:200メッシュ通過程度のゼオライトが120重量部
C:白色セメントが300重量部
D:粒径1ミクロン程度のアクリル樹脂が80重量部
E:長さ1mm〜2mm程度のポリエステルファイバーが8重量部
【0028】
そして、各試料を白色のカラートタン板に1.5mmの厚さに吹き付け塗装し、乾燥後にこれらを太陽光の下にさらして一時間ごとのトタン板裏側の温度を計測した。なお、比較試料1については吹き付け塗装が困難であったのでコテを使用して塗布した。また、無塗布のものについても温度計測を行った。10回行った計測結果の平均値(小数点以下四捨五入)を表1に示す。
【0029】
【表1】

Figure 2004224638
【0030】
上記計測結果から明らかなように、本願発明の塗布材は比較試料1〜比較試料3のものと比べて5℃〜6℃温度が低いことがわかる。比較試料4のものは比較試料1〜比較試料3のものと比べて約3℃位は防止効果が高いが、本願発明と比較すると約3℃位防止効果が劣ることがわかる。また、本願発明のものは時間経過に伴う温度上昇率も他のものと比べて低いことがわかる。
【0031】
【発明の効果】
前記のようにに、この発明にかかる塗布材の製造方法によれば、生又は焼成珪藻土粉末を100〜150重量部、琉球石灰岩粉末を40〜100重量部、白色セメントを100〜120重量部、粒径0.06ミクロン〜2ミクロンのアクリル樹脂を20〜40重量部、長さ1.0mm〜12.0mmのポリエステルファイバー及びカーボンファイバーを2〜8重量部、の割合で混合することにより太陽の輻射熱防止効果に優れた塗布材を製造できる。
【0032】
また、この発明に係る塗布材によれば、生又は焼成珪藻土が30%〜40%、サンゴ砂が10%〜20%、セメントが35%〜40%、アクリル樹脂が5%〜15%、ポリエステルファイバー及びカーボンファイバーが0.5%〜2.0%、の割合(重量比)で配合してあるので吹き付け塗装やローラーなどにより薄く塗装することができ、しかも輻射熱の防止効果に優れた塗装を簡単に施工できる。[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating material capable of suppressing radiant heat by being applied to various materials such as indoor and outdoor iron plates, concrete, wood, plastic, glass, asphalt and the like in a thickness of 1 to 2 mm, and a method for producing the same. It is.
[0002]
In recent years, the heat island phenomenon has caused warming in urban areas, and efforts have been made to reduce various heat sources. Rooftop greening has also been designed to reduce the radiant heat of the sun, but there are also water-permeable types that use coarse aggregates to prevent rainwater from accumulating.
[0003]
The cause of the heat island phenomenon in urban areas is that urban areas often absorb and store solar radiant heat, such as concrete structures and asphalt pavements, and include iron plates used for roofs.
[0004]
The heat island phenomenon is a phenomenon in which the temperature rises locally due to the release of warm air from cooling, the release of heat from vehicles due to chronic traffic congestion, and the heat storage caused by the conversion of concrete to the city. There are also many problems, such as a decrease in the amount of water that takes heat.
[0005]
[Prior art]
And, as a coating material for architecture focusing on the humidity control properties and heat insulation properties of diatomaceous earth, there are, for example, those shown in JP-A-8-49308, JP-A-11-12066 and JP-A-2002-80752. .
[0006]
JP-A-8-43908 discloses a diatomaceous earth, a porous inorganic material such as perlite or shirasu, cement, a resin, sand as fine aggregate, and a plaster such as gypsum plaster or lime plaster. Are mixed at a predetermined mixing ratio.
[0007]
Japanese Unexamined Patent Publication No. 11-12066 discloses a diatomaceous earth, a powdery clay material such as benite or zeolite, a white cement, an acrylic resin and slaked lime, which are mixed at a predetermined mixing ratio. is there.
[0008]
Japanese Patent Application Laid-Open No. 2002-80752 discloses a method in which diatomaceous earth, a cement breakage material such as perlite, cement, a linking material, a mountain sand mainly composed of cellulose fiber and silica sand are used as constituent materials, and these are mixed in a predetermined manner. They are mixed by ratio.
[0009]
[Problems to be solved by the invention]
The publications described in the above publications have been developed mainly with an emphasis on moisture absorption performance and humidity control performance, and have a moderate effect as a coating material with respect to moisture absorption, but an effect of preventing radiant heat from the aspect of constituent materials. At present, it is still difficult to say that they have sufficient performance.
[0010]
Further, those described in each of the above publications include various types of fine aggregate such as sand and plaster, from the point of view of the effect of preventing radiant heat, those which do not seem to have higher performance are included. Also, as a porous material, pearlite, bentonite, zeolite, and the like, which have been generally used, have been used since the focus is on humidity control performance.
[0011]
In other words, the publications described in the above publications also have heat insulation performance, but because the original purpose is moisture absorption performance, the effect of preventing radiant heat is insufficient. The effect was slight when used after being applied as thin as about 0 mm to 2.0 mm.
[0012]
[Means for Solving the Problems]
Therefore, in order to solve the above-mentioned problems, the method for manufacturing a coating material according to the present invention is obtained by mixing the following materials A to E at predetermined ratios.
A: 100 to 150 parts by weight of raw or calcined diatomaceous earth powder B: 40 to 100 parts by weight of Ryukyu limestone powder C: 100 to 120 parts by weight of white cement D: 20 of acrylic resin having a particle size of 0.06 to 2 microns 4040 parts by weight E: 2 to 8 parts by weight of polyester fiber and carbon fiber having a length of 1.0 mm to 12.0 mm
Further, the coating material according to the present invention is a material in which the following materials A to E are blended in the following ratio (weight ratio).
A: Raw or calcined diatomaceous earth is 30% to 40%
B: Coral sand is 10% to 20%
C: 35% to 40% of cement
D: 5% to 15% of acrylic resin
E: 0.5% to 2.0% of polyester fiber and carbon fiber
[0014]
[Action]
Heat storage is suppressed by the action of diatomaceous earth, and in some cases, the radiant heat of the sun can be reduced by more than 10 degrees. Furthermore, the temperature can also be lowered by the transpiration of water vapor utilizing the water absorbing and releasing properties of diatomaceous earth.
[0015]
In addition, porous coral sand, for example, Ryukyu limestone powder is added for the purpose of strengthening the adhesive strength and resistance to abrasion and reducing the radiant heat of the sun similarly to diatomaceous earth. Further, an acrylic resin having an appropriate particle size is added to control the water absorption / release performance of diatomaceous earth. Then, cement, polyester fiber and carbon fiber are added to secure a certain strength.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a method for manufacturing a coating material according to the present invention will be described. The diatomaceous earth as the main material of the present invention may be either raw or calcined, and the mixing ratio is 100 to 150 parts by weight of the total weight. Various cements can be used as the cement, and the mixing ratio is 100 to 120 parts by weight of the total weight.
[0017]
Coral sand as a porous material is mixed in an amount of 50 to 100 parts by weight of the total weight for reinforcing the strength. The coral sand is obtained by powdering various corals or fossils or dead bodies of corals, for example, powder of Ryukyu limestone is used. As described above, as the porous material, pearlite, zeolite, and the like are generally known as described above, but as is clear from the test results described below, these are more evident in the effect of preventing radiant heat than those of coral sand. Therefore, in the present invention, coral sand is used as the porous material.
[0018]
In addition, a polyester fiber and a carbon fiber having a length of about 1 mm to 12 mm are put in a total of 2 to 8 parts by weight of the total weight for preventing cracks and reinforcing the strength. The reason for using such a length is to prevent cracking, to have appropriate strength, and to enable spray coating.
[0019]
In order to adjust the water absorption / release performance of the coating material surface according to the place of use, an acrylic resin having a particle size of 0.06 μm to 2 μm is mixed in an amount of 20 to 40 parts by weight of the total weight. In addition to ethylene resin, ethylene vinyl acetate, styrene butadiene, and the like can be used. As a result of testing various types of combinations of fibers and resins, polyester fibers and carbon fibers were used as the fibers, and acrylic resin was used as the resin. Was also excellent. Although the mixing ratio of the polyester fiber and the carbon fiber is basically the same, one may be more than double the other depending on the application.
[0020]
Basically, the particle size of the resin is reduced at locations exposed to rain, such as the outer wall, and the resin particle size is increased at the inner wall. When the particle size of the resin is reduced, the water absorption / release performance is reduced. In this case, the performance of stopping the radiant heat of the sun among the properties of diatomaceous earth is mainly left. On the other hand, when the particle size of the resin is increased, the water absorption / release performance is also exhibited, and the temperature reduction due to the heat of vaporization of water is exhibited together with the performance of stopping the radiation heat of the sun.
[0021]
Then, the coating material of the present invention is manufactured by mixing the above various materials in a predetermined ratio range.
[0022]
【Example】
Next, an example of the coating material of the present invention will be described. The mixing ratio (weight ratio) of each material is as follows.
A: 280 parts by weight of calcined diatomaceous earth (about 35%)
B: Ryukyu limestone powder passing through about 200 mesh is 120 parts by weight (about 15%)
C: 300 parts by weight of white cement (about 39%)
D: 80 parts by weight (about 10%) of acrylic resin having a particle size of about 1 micron
E: A total of 8 parts by weight (about 1%) of the same amount of polyester fiber and carbon fiber having a length of about 1 mm to 12 mm.
[0023]
[Comparative example]
Next, the results of the effect confirmation test of the coating material of the present invention will be described. As the test sample of the coating material of the present invention, the test sample of the above-described example was used (hereinafter, this coating material is referred to as “the present invention”). As comparative samples, the following materials were blended in the following proportions with reference to the patent publications described in the section of the related art, and comparative samples 1 to 4 were produced and used. The comparative sample 4 used zeolite instead of the Ryukyu limestone powder of the present invention, and the compounding ratio was the same as that of the present invention.
[0024]
Comparative sample 1 (Comparative example 1)
A: 200 parts by weight of calcined diatomaceous earth B: 100 parts by weight of shirasu passing through about 200 mesh C: 100 parts by weight of white cement D: 100 parts by weight of acrylic resin having a particle size of about 1 micron E: particle size of 1 mm to 2 mm 160 parts by weight of sand F: 300 parts by weight of plaster plaster
Comparative sample 2 (Comparative example 2)
A: 100 parts by weight of calcined diatomaceous earth B: 70 parts by weight of bentonite passing through about 200 mesh C: 160 parts by weight of white cement D: 15 parts by weight of acrylic resin having a particle size of about 1 micron E: 200 parts by weight of slaked lime 0026
Comparative sample 3 (Comparative example 3)
A: 100 parts by weight of calcined diatomaceous earth B: 50 parts by weight of pearlite passing through about 200 mesh C: 120 parts by weight of white cement D: 30 parts by weight of an acrylic resin having a particle size of about 1 micron E: silica sand as a main component 100 parts by weight of mountain sand F: 10 parts by weight of cellulose fiber about 2 mm in length
Comparative sample 4 (Comparative example 4)
A: 280 parts by weight of calcined diatomaceous earth B: 120 parts by weight of zeolite passing through about 200 mesh C: 300 parts by weight of white cement D: 80 parts by weight of an acrylic resin having a particle size of about 1 micron E: about 1 mm to 2 mm in length 8 parts by weight of polyester fiber
Then, each sample was sprayed onto a white color tin plate to a thickness of 1.5 mm, and after drying, these were exposed to sunlight and the temperature on the back side of the tin plate was measured every hour. In addition, about the comparative sample 1, since spray coating was difficult, it applied using the iron. In addition, the temperature was measured for the uncoated material. Table 1 shows the average value (rounded off to the decimal point) of the measurement results performed 10 times.
[0029]
[Table 1]
Figure 2004224638
[0030]
As is clear from the above measurement results, the coating material of the present invention has a lower temperature of 5 ° C. to 6 ° C. than those of Comparative Samples 1 to 3. It can be seen that the prevention effect of Comparative Sample 4 is about 3 ° C. higher than that of Comparative Samples 1 to 3, but about 3 ° C. lower than that of the present invention. Further, it can be seen that the temperature rise rate of the invention of the present application with time is lower than that of the others.
[0031]
【The invention's effect】
As described above, according to the method for producing a coating material according to the present invention, 100 to 150 parts by weight of raw or calcined diatomaceous earth powder, 40 to 100 parts by weight of Ryukyu limestone powder, 100 to 120 parts by weight of white cement, By mixing 20 to 40 parts by weight of an acrylic resin having a particle size of 0.06 μm to 2 μm and 2 to 8 parts by weight of a polyester fiber and a carbon fiber having a length of 1.0 mm to 12.0 mm, A coating material excellent in radiant heat prevention effect can be manufactured.
[0032]
Further, according to the coating material according to the present invention, 30% to 40% of raw or calcined diatomaceous earth, 10% to 20% of coral sand, 35% to 40% of cement, 5% to 15% of acrylic resin, polyester Fiber and carbon fiber are blended in a ratio (weight ratio) of 0.5% to 2.0%, so that it is possible to paint thinly by spray painting or rollers, etc., and to achieve a coating excellent in the effect of preventing radiant heat. Can be easily constructed.

Claims (2)

下記A〜Eの材料が下記の割合(重量比)で配合してあることを特徴とする塗布材。
A:生又は焼成珪藻土が30%〜40%
B:サンゴ砂が10%〜20%
C:セメントが35%〜40%
D:アクリル樹脂が5%〜15%
E:ポリエステルファイバー及びカーボンファイバーが0.5%〜2.0%
A coating material comprising the following materials A to E in the following ratio (weight ratio).
A: Raw or calcined diatomaceous earth is 30% to 40%
B: Coral sand is 10% to 20%
C: 35% to 40% of cement
D: 5% to 15% of acrylic resin
E: 0.5% to 2.0% of polyester fiber and carbon fiber
下記A〜Eの材料をそれぞれ所定の割合で混合したことを特徴とする塗布材の製造方法。
A:生又は焼成珪藻土粉末を100〜150重量部
B:琉球石灰岩粉末を40〜100重量部
C:白色セメントを100〜120重量部
D:粒径0.06ミクロン〜2ミクロンのアクリル樹脂を20〜40重量部
E:長さ1.0mm〜12.0mmのポリエステルファイバー及びカーボンファイバーを2〜8重量部
A method for producing a coating material, comprising mixing the following materials A to E at predetermined ratios.
A: 100 to 150 parts by weight of raw or calcined diatomaceous earth powder B: 40 to 100 parts by weight of Ryukyu limestone powder C: 100 to 120 parts by weight of white cement D: 20 of acrylic resin having a particle size of 0.06 to 2 microns 4040 parts by weight E: 2 to 8 parts by weight of polyester fiber and carbon fiber having a length of 1.0 mm to 12.0 mm
JP2003014323A 2003-01-23 2003-01-23 Coating material and method of manufacturing the same Pending JP2004224638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014323A JP2004224638A (en) 2003-01-23 2003-01-23 Coating material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014323A JP2004224638A (en) 2003-01-23 2003-01-23 Coating material and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004224638A true JP2004224638A (en) 2004-08-12

Family

ID=32902407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014323A Pending JP2004224638A (en) 2003-01-23 2003-01-23 Coating material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004224638A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037150A1 (en) * 2004-10-06 2006-04-13 Damien Knoop Roll on render and application system
JP2007210804A (en) * 2006-02-07 2007-08-23 Nachuru:Kk Asbestus solidification method
CN106167390A (en) * 2016-07-13 2016-11-30 张静 A kind of preparation method of bio-based diatom ooze coating
CN110272221A (en) * 2019-05-27 2019-09-24 深圳大学 A kind of preparation method of modified coral sand concrete
CN110510944A (en) * 2019-08-13 2019-11-29 中冶建筑研究总院有限公司 A kind of basalt fibre coral concrete and preparation method thereof
CN111533494A (en) * 2020-06-12 2020-08-14 吉林省绿森林环保科技有限公司 Energy-saving heating diatom ooze and preparation method and application thereof
CN114735985A (en) * 2022-05-17 2022-07-12 广州大学 Anti-cracking high-strength coral mortar and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037150A1 (en) * 2004-10-06 2006-04-13 Damien Knoop Roll on render and application system
JP2007210804A (en) * 2006-02-07 2007-08-23 Nachuru:Kk Asbestus solidification method
CN106167390A (en) * 2016-07-13 2016-11-30 张静 A kind of preparation method of bio-based diatom ooze coating
CN110272221A (en) * 2019-05-27 2019-09-24 深圳大学 A kind of preparation method of modified coral sand concrete
CN110272221B (en) * 2019-05-27 2022-05-17 深圳大学 Preparation method of modified coral sand concrete
CN110510944A (en) * 2019-08-13 2019-11-29 中冶建筑研究总院有限公司 A kind of basalt fibre coral concrete and preparation method thereof
CN111533494A (en) * 2020-06-12 2020-08-14 吉林省绿森林环保科技有限公司 Energy-saving heating diatom ooze and preparation method and application thereof
CN111533494B (en) * 2020-06-12 2021-09-24 吉林省绿森林环保科技有限公司 Energy-saving heating diatom ooze and preparation method and application thereof
CN114735985A (en) * 2022-05-17 2022-07-12 广州大学 Anti-cracking high-strength coral mortar and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101604127B1 (en) Eco-friendly aggregate decreasing heat and alkalinity, and method for manufacturing the same, concrete composition
KR100883330B1 (en) Cement mortar composite with water holding characterics using absorbent polymer and manufacturing method of block using the same
CN1951858A (en) Mortar
CN105330318A (en) Multi-pore high-strength sintering permeable floor brick
US20100285224A1 (en) Agent and method for curing pervious concrete
KR101617067B1 (en) Exterior insulation mortar for cold weather and construction method of exterior insulation system using the same
KR102117062B1 (en) Crack reduction type quick-hardening cement concrete composition comprising phase change material and functional binder, or repairing method for road pavement therewith
KR102232477B1 (en) Mortar composition with excellent wet curable properties and method of repairing concrete structure using the same
KR101300515B1 (en) High-performance cement concrete composite and overlay pavement method using the composite
CN105367042A (en) Environment-friendly permeable floor tile capable of purifying air
CN105330325A (en) Porous high-water-seepage permeable floor tile doped with waste ash
KR101146190B1 (en) Concrete compostion for facing layer of block decreasing heat island effect, and a concrete block for roadway and sidewalk using thereof
CN111116088A (en) Special cementing agent for self-curing pervious concrete and application thereof
JP2004224638A (en) Coating material and method of manufacturing the same
JP6283214B2 (en) Cement composition for heat insulation and laminate for heat insulation
CN105367125A (en) Novel antibacterial corrosion-resistant permeable floor tile
CN201915512U (en) Thermal insulation wall structure
CN108285308A (en) A kind of thermal insulation mortar, heat insulation layer structure and heat preserving exterior wall body structure
KR100924765B1 (en) Road pavement composition of enhanced retentiveness and drainage, and constructing method using the composition
KR100841781B1 (en) Mortar for environment-friendly wet facing
TWI751740B (en) Radiative cooling inorganic coating
CN101418597A (en) Heat dissipation and energy saving method of building external wall and roof covering
JP2006214221A (en) Road pavement material having water-retentivity
CN110627392B (en) Micro-nano inorganic cementing material and preparation method thereof
JP4856333B2 (en) Cooling film