JP3681951B2 - Thin film electronic components and substrates - Google Patents

Thin film electronic components and substrates Download PDF

Info

Publication number
JP3681951B2
JP3681951B2 JP2000092187A JP2000092187A JP3681951B2 JP 3681951 B2 JP3681951 B2 JP 3681951B2 JP 2000092187 A JP2000092187 A JP 2000092187A JP 2000092187 A JP2000092187 A JP 2000092187A JP 3681951 B2 JP3681951 B2 JP 3681951B2
Authority
JP
Japan
Prior art keywords
electrode layer
layer
thin film
lower electrode
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000092187A
Other languages
Japanese (ja)
Other versions
JP2001284482A (en
Inventor
潤哉 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000092187A priority Critical patent/JP3681951B2/en
Publication of JP2001284482A publication Critical patent/JP2001284482A/en
Application granted granted Critical
Publication of JP3681951B2 publication Critical patent/JP3681951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は薄膜電子部品および基板に関し、例えば、薄膜コンデンサ、薄膜インダクタ、薄膜フィルタ等に好適に用いられる高周波用途の薄膜電子部品および基板に関するものである。
【0002】
【従来技術】
近年、電子機器の小型化、高機能化に伴い、電子機器内に設置される電子部品にも小型化、薄型化、高周波対応などの要求が強くなってきている。
【0003】
特に、大量の情報を高速に処理する必要のあるコンピュータの高速デジタル回路では、パーソナルコンピュータレベルにおいても、CPUチップ内のクロック周波数は200MHzから1GHz、チップ間バスのクロック周波数も75MHzから133MHzという具合に高速化が顕著である。
【0004】
また、LSIの集積度が高まりチップ内の素子数の増大につれ、消費電力を抑えるために電源電圧は低下の傾向にある。これらIC回路の高速化、高密度化、低電圧化に伴い、コンデンサ等の受動部品も小型大容量化と併せて、高周波もしくは高速パルスに対して優れた特性を示すことが必須になってきている。
【0005】
動作周波数が高くなるにつれ、素子の持つ抵抗やインダクタンスがロジック回路側の電源電圧の瞬時低下、または新たな電圧ノイズを発生させてしまい。結果として、ロジック回路上のエラーを引き起こしてしまう。特に最近のLSIは総素子数の増大による消費電力増大を抑えるために電源電圧は低下しており、電源電圧の許容変動幅も小さくなっている。今後、さらに素子数の増大と動作周波数の増加が促進されると、実装部分の抵抗、インダクタンス成分も無視できなくなり、ロジック回路エラーの一要因となってくる。
【0006】
また、素子数の増大に伴う実装精度の向上や、部品実装に伴うリフロー耐性の向上等、前述した受動素子自身の電気的な特性だけではなく、実装に関する特性(実装精度、実装信頼性)も高いレベルで要求されるようになってきている。
【0007】
コンデンサの接続部のインダクタンスを低減させる手法に関して、USP4,439,813には、支持基板上に、下側電極、絶縁体層、上側電極、保護層を積層してなり、TiW、Ta及びAl、Cuからなる下側電極からの電気信号を最短距離で得るため、絶縁体層、上側電極及び保護層に貫通孔を設け、この貫通孔内壁にCr/Cu/AuからなるBLM層を形成した後、このBLM層上に半田バンプを形成した薄膜コンデンサが開示されている。
【0008】
【発明が解決しようとする課題】
しかしながら、支持基板と電極との密着性は元来弱く、半田バンプからなる外部端子に過剰な負荷がかかり、外部端子が剥離する場合に、外部端子強度が最大限発揮される時の半田バンプの破壊ではなく、例えば、支持基板と導体層の界面で破壊が起こり、元来半田バンプの強度が最大限発揮されないという問題があった。
【0009】
特に、スパッタリング法等の薄膜形成法で作製される膜は内部応力が残留し易く、このような残留応力に起因して、支持基板と電極とが剥離し易いという問題があった。
【0010】
本発明は、支持基板と電極層との密着強度を向上できる薄膜電子部品および基板を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の薄膜電子部品は、支持基板と、該支持基板上に設けられ、電極層上に絶縁体層を有する薄膜素子とを具備するとともに、前記電極層に多数の空隙が形成され、前記支持基板と前記電極層との間に接合強化絶縁体層が形成されていることを特徴とする。
【0012】
このように電極層に多数の空隙を形成することにより、例えば、スパッタリング法等の薄膜形成法により発生する電極層の残留応力のベクトルを分散でき、該電極層の内部応力が緩和され、支持基板と電極層との密着強度を向上できる。また、支持基板と電極層との間に接合強化絶縁体層を形成することにより、支持基板とその上面の絶縁体層との密着強度を向上できるとともに、電極層の空隙の底面に絶縁体層が露出し、空隙の底面に露出した絶縁体層と、電極層上に形成された絶縁体層との密着強度が更に向上し、これにより、支持基板と、該支持基板上に形成された電極層との密着強度、および電極層と、該電極層上に形成された絶縁体層の密着強度が更に向上する。
【0013】
また、電極層の空隙内に絶縁体層の絶縁材料を充填することにより、絶縁体層と支持基板とが、電極層の空隙の絶縁体を介して接合され、この絶縁体によるアンカー効果により支持基板と電極層との密着強度をさらに向上できる。
【0014】
さらに、電極層の空隙を該電極層面積中10〜30%とすることにより、支持基板と電極層との密着強度を向上できるとともに、容量を発生させる電極層の有効電極面積の低減を防止し、薄膜電子部品の機能を高く維持できる。
【0016】
また、薄膜素子の電極層はAuからなることが望ましい。このようにAuからなる電極層を用いることにより、薄膜素子の高周波化を促進できる。
【0017】
本発明の基板は、基体の表面および/または内部に上記薄膜電子部品を設けてなるものである。
【0018】
【発明の実施の形態】
(参考例)図1は、参考例の薄膜コンデンサからなる薄膜電子部品を示すもので、この薄膜コンデンサは、図1に示すように、支持基板1上に、絶縁体層3(誘電体薄膜)と電極層5、7を有する薄膜素子Aが複数設けられて構成されている。電極層5、7はAuから構成され、絶縁体層3は電極層5、7により挟持されて、薄膜素子A(容量素子)が構成されている。
【0019】
上側電極層7上は、薄膜コンデンサを保護するための保護層9により被覆されており、その絶縁体層3が形成されていない絶縁体層非形成領域Bには、半田バンプからなる外部端子11a、11bが突出して設けられている。
【0020】
下側電極層5は、外部端子11bを取り囲むように環状にエッチングされ、容量を形成する下側電極層5aと容量を形成しない下側電極層5bとに分離されている。
【0021】
また、上側電極層7は、絶縁体層3上において外部端子11aを取り囲むように環状にエッチングされ、容量を形成する上側電極層7aと容量を形成しない上側電極層7bとに分離されている。薄膜素子Aは、下側電極層5aと上側電極層7aにより絶縁体層3を挟持して構成されている。
【0022】
絶縁体層非形成領域Bおよびその周囲における上側電極層7上には半田拡散防止層17が形成されており、この半田拡散防止層17には、該半田拡散防止層17よりも狭い領域で半田密着層18が形成されている。
【0023】
絶縁体層非形成領域Bにおける保護層9には貫通孔13a、13bが形成され、貫通孔13a、13bの底面には半田密着層18が露出しており、貫通孔13a、13bの底面に露出した半田密着層18は、電極層5、7および半田拡散防止層17を介して支持基板1に接合されている。
【0024】
外部端子11a、11bは、貫通孔13a、13b内に下端部が収容されており、この外部端子11a、11bの下端部は、貫通孔13a、13bの底面に露出した半田密着層18に接合されている。
【0025】
そして、図1および図2に示すように、下側電極層5には多数の空隙31が形成されており、この下側電極層5の空隙31内には絶縁体層3の絶縁材料が充填されている。下側電極層5の空隙31は、下側電極層5を上方から見て、下側電極層5の全電極面積中10〜30%とされている。
【0026】
このように、下側電極層5に空隙31を形成するためには、下側電極層5をAuにより形成し、該下側電極層5の膜厚を0.1〜0.3μmとする必要がある。下側電極層5の膜厚が0.1μmよりも薄いと、全下側電極層面積に対する空隙31の割合が多くなり、容量が低下する傾向があり、下側電極層5の膜厚が0.3μmよりも厚くなると、下側電極層5の空隙31の割合が低下したり、あるいは全く形成できなくなるからである。
【0027】
さらに、下側電極層5の空隙31は、下側電極層5形成後、支持基板1、下側電極層5および絶縁体層3を750℃以上の温度で20分〜40分間熱処理することにより確実に形成できる。
【0028】
また、下側電極層5の空隙31内に絶縁体層3の絶縁材料を充填するには、上記したように、下側電極層5に空隙31を形成した後、例えば、ゾルゲル法等により作製した塗布溶液を下側電極層5上に塗布したり、あるいは下側電極層5上にスパッタリング法等の薄膜形成法により膜形成することにより形成できる。
【0029】
下側電極層5の空隙31の形状は、上方から見て、図2に示すように、円形状、楕円形状となることが望ましく、その最大径は、高周波領域での電極層5のインピーダンス増加を抑制するには、3.0μm以下が望ましい。
【0030】
下側電極層5の空隙31を、下側電極層5を上方から見て、下側電極層5の全電極面積中10〜30%としたのは、この範囲ならば、支持基板1と下側電極層5との密着強度を向上できるとともに、容量を発生させる下側電極層5の有効電極面積の低減を防止し、薄膜コンデンサの容量を高く維持できるからである。
【0031】
一方、空隙31の面積比が10%よりも低いと、空隙31の底面に露出している酸化物が少なく、支持基板1と絶縁体層3の密着強度向上効果が小さくなり、また30%よりも大きくなると、高周波領域におけるインピーダンスが大きくなるだけでなく、薄膜コンデンサの容量を発生させる下側電極層5の有効電極面積が低下するからである。
【0032】
薄膜コンデンサの誘電体薄膜を構成する絶縁体層3は、高周波領域において高い比誘電率を有するペロブスカイト型酸化物結晶からなる誘電体でよく、例えばPb(Mg,Nb)O3 系、Pb(Mg,Nb)O3 −PbTiO3 系、
Pb(Zr,Ti)O3 系、Pb(Mg,Nb)O3 −Pb(Zr,Ti)O3 系、(Pb,La)ZrTiO3 系、BaTiO3 系、(Sr,Ba)
TiO3 系、あるいはこれに他の添加物を添加したり、置換した化合物であってもよく、特に限定されるものではない。これらの絶縁体層3は、ゾルゲル法、スパッタリング法等の薄膜形成法により作製される。
【0033】
また、絶縁体層3の膜厚は、高容量と絶縁性を確保するため0.3〜1.0μmが望ましい。これは0.3μmよりも薄い場合には被覆性が良好でなく、絶縁性が低下する場合があり、1.0μmよりも厚い場合には、容量が小さくなる傾向があるからである。絶縁体層3の膜厚は0.4〜0.8μmが望ましい。
【0034】
上側電極層7の膜厚は、高周波領域でのインピーダンスと膜の被覆性を考慮すると0.1〜0.3μmが望ましい。上側電極層7の膜厚が0.3μmよりも薄い場合には、一部に被覆されない部分が発生する虞があるからであり、また0.5μmよりも厚い場合は、高周波領域における導体の表皮効果を考慮すると導体層の抵抗は殆ど変化しないからである。尚、上側電極層7については、容量を確保するという点から空隙が形成されないように制御することが望ましい。
【0035】
支持基板1としては、アルミナ、サファイア、窒化アルミ、MgO単結晶、SrTiO3 単結晶、表面酸化シリコン、ガラス、石英等から選択されるもので特に限定されない。
【0036】
半田拡散防止層17は、Ti、Cr、Ni、Cu、Pd、Pt、またはこれらの金属から選ばれる2種以上からなる合金のうちいずれかからなり、スパッタ、蒸着、メッキ等で形成可能であれば良い。半田拡散防止層17の厚みは、半田バリアとしての機能を発現するためには0.3μm以上の厚みであれば良い。
【0037】
また、半田密着層18は半田濡れ性の良好な材料であることが望ましく、前記材料として、Ni−Cr、Au等があり、特にAuが望ましい。更に、半田拡散防止層17とAuからなる電極層5、7との密着性を向上させるため、これらの間に公知の密着材料であるTiやCrを介在させても良い。
【0038】
保護層9は、薄膜コンデンサの表面を保護するためのものであり、例えば、Si34 、SiO2 、ポリイミド樹脂およびベンゾシクロブテン(BCB)等から構成されている。
【0039】
外部端子11a、11bは、Pb、Sn、Ag、In、Cu、Bi、SbおよびZnのうち少なくとも2種以上の金属からなることが望ましく、薄膜電子部品の用途に応じて、融点及び共晶温度の異なる材料を選択すればよい。また、半田バンプからなる外部端子11a、11bはスクリーン印刷、ボールマウンター等の公知の技術を用いて形成される。
【0040】
以上のように構成された薄膜電子部品では、絶縁体層非形成領域Bに外部端子11a、11bが形成されているため、外部端子11a、11bがリフロー時に収縮しても、リフロー工程で生じる外部端子11a、11bの熱収縮に伴う応力に対して、絶縁体層3が直接ダメージを受けず、絶縁体層3に過大な応力が発生することが無く、絶縁体層3におけるクラック発生を防止することができ、クラックに半田が流れ込むことがなく、これにより絶縁性を確保することができ、素子特性を維持した状態で、且つ実装信頼性も確保できる。
【0041】
また、薄膜素子Aの電極層5、7として、抵抗の小さいAuからなる電極層5、7を用いたため、高周波での抵抗を低下でき、薄膜素子Aの高周波化を促進できる。さらに、高誘電率のペロブスカイト型酸化物を絶縁体層3として使用できるため、高容量の薄膜コンデンサを形成でき、高周波でのインピーダンスを低下することができる。
【0042】
そして、この参考例では、下側電極層5に多数の空隙31を形成したので、例えば、スパッタリング法等の薄膜形成法により発生する下側電極層5の残留応力のベクトルを分散でき、下側電極層5の内部応力が緩和され、支持基板1と下側電極層5との密着強度を向上できる。
【0043】
また、下側電極層5の空隙31内に絶縁体層3の絶縁材料を充填したので、絶縁体層3と支持基板1とが、下側電極層5の空隙31内の絶縁体を介して接合され、この絶縁体によるアンカー効果により、支持基板1と絶縁体層3との密着強度を向上でき、支持基板1と下側電極層5との密着強度をさらに向上でき、外部端子11a、11bに過剰な負荷がかかり、外部端子11a、11bが剥離する場合、その剥離面がほとんど半田バンプ破壊であって、例えば支持基板1と下側電極5の界面ではなく、薄膜電子部品の端子電極11a、11bの強度を最大限生かすことができ、端子電極の破壊面が薄膜間であることを抑制できる。
【0044】
(本発明)図2は、本発明の薄膜コンデンサからなる薄膜電子部品を示すもので、下側電極層5と支持基板1との間に接合強化絶縁体層32が形成されている。この接合強化絶縁体層32は、密着強度向上の点から絶縁体層3と同一材料からなることが望ましい。尚、図2の薄膜コンデンサは、接合強化絶縁体層32を有する以外は、図1の参考例の薄膜コンデンサと同一である。
【0045】
このように下側電極層5と支持基板1との間に接合強化絶縁体層32を形成することにより、支持基板1とその上面の接合強化絶縁体層32との密着強度を向上できるとともに、下側電極層5の空隙31の底面に接合強化絶縁体層32が露出し、空隙31の底面に露出した接合強化絶縁体層32と、下側電極層5上に形成された絶縁体層3との密着強度が更に向上し、これにより、支持基板1と絶縁体層3の密着強度が更に向上し、支持基板1と下側電極層5との密着性を向上できる。
【0046】
このような薄膜コンデンサは、基体(母基板)の表面に形成された表面電極に、外部端子11a、11bを接合して用いられる。
【0047】
尚、本発明での電極層5、7の材料は低抵抗であり、かつ高温での耐酸化性及び誘電体材料との反応の小さいAuからなる材料であるが、支持基板1との密着性を上げるために、電極層5、7と支持基板1との間にTiやCrに代表される密着層を介在しても良い。
【0048】
また、上記例では、絶縁体層3を電極層5、7により挟持した単板型の薄膜コンデンサについて説明したが、本発明では、絶縁体層と電極層を交互に積層した積層型の薄膜コンデンサであっても良い。
【0049】
さらに、上記例では、本発明を薄膜コンデンサに適用した例について説明したが、本発明では上記例に限定されるものではなく、例えば、薄膜インダクタ、薄膜LCフィルタ、あるいはこれらを複合した薄膜複合部品に適用しても良い。
【0050】
【参考例】
電極層および半田拡散防止層の形成はDCスパッタ法を、絶縁体層(誘電体薄膜)はゾルゲル法にて作製した。
【0051】
先ず、アルミナからなる支持基板上にTiからなる3nmの密着層を形成し、この密着層の上面に、0.3μmのAu層を形成し、下側電極層とした。
【0052】
フォトリソグラフィ技術を用いて、下側電極層をパターン加工した。加工された下側電極層に、ゾルゲル法にて合成したPb(Mg1/3 Nb2/3 )O3 −PbTiO3 −PbZrO3 塗布溶液をスピンコート法を用いて塗布し、乾燥させた後、380℃で熱処理、815℃で焼成(熱処理)を行い、膜厚0.7μmのPb(Mg1/3 Nb2/3 )O3 −PbTiO3 −PbZrO3 からなる絶縁体層を形成した。その後フォトリソグラフィ技術を用いて、絶縁体層に貫通孔を形成した。
【0053】
次に、絶縁体層の上面に、膜厚30nmのTiからなる密着層を形成し、この密着層上に、膜厚0.3μmのAu層を形成し、上側電極層とし、フォトリソグラフィ技術を用いて、上側電極層および密着層を加工し、薄膜コンデンサとした。
【0054】
この後、膜厚1.5μmの半田拡散防止層を形成し、この後、膜厚0.1μmの半田密着層Auを形成し、直径120μmの形状にフォトリソグラフィを用いて加工した。
【0055】
この後、光感光性BCBを塗布し、露光、現像を行い、Auからなる半田密着層が露出するように、直径約100μm、深さ1μmの貫通孔を有する保護層を形成した。
【0056】
最後に、スクリーン印刷を用いて、半田密着層の上にPbが63重量%、Snが37重量%からなる共晶半田ペーストを転写し、リフローを行い、半田バンプからなる外部端子を形成し、図1に示したような薄膜コンデンサを得た。
【0057】
得られた薄膜コンデンサの有効電極面積は1.4mm2 であり、周波数1kHzでの静電容量は約40nFであった。
【0058】
また、下側電極層の空隙の効果を調べるために、下側電極層の膜厚を変化させた以外は、上記と同様にして、全電極面積中の空隙の面積比率を変化させ、空隙の面積比率の異なる薄膜コンデンサを得た。
【0059】
得られた薄膜コンデンサの半田バンプからなる外部端子に過剰な負荷をかけて、意図的に外部端子を剥離させた際、外部端子の破壊モードは全半田バンプに対し、95%以上が半田バンプで破壊しており、残りの5%は支持基板と下側電極層との界面で、外部端子が剥離していた。
【0060】
また、全電極面積中の空隙比率に対する下側電極層のシート抵抗を求め、その結果を図4に記載した。
【0061】
さらに、絶縁体層形成前後の薄膜コンデンサの反り量の差から、下部電極層と絶縁体層の薄膜内部応力の和を算出し、絶縁体層のみの内部応力を差し引き、下側電極層の薄膜内部応力を算出し、その結果を図5に記載した。
【0062】
図4によると、全電極面積に対する空隙面積の割合が増加するにつれて、下側電極層のシート抵抗が増加することがわかる。さらに、空隙面積の割合が30%を越えたところから、シート抵抗が急激に増加しており、高周波領域でのインピーダンスを考慮すると、空隙面積の割合は30%以下が望ましいことが判る。
【0063】
また、図5によると、空隙の存在により下側電極層の薄膜内部応力が減少し、減少率が空隙面積の割合が30%付近で収束していることが判る。また、空隙面積の割合が10%で、薄膜内部応力がほぼ半減しており、空隙の効果が顕著に現れていることが判る。
【0064】
【発明の効果】
以上の詳述したように、本発明によれば、電極層上に絶縁体層を有する薄膜素子の前記電極層に多数の空隙が形成されているので、例えば、スパッタリング法等の薄膜形成法により発生する電極層の残留応力のベクトルを分散でき、該電極層の内部応力が緩和され、支持基板と電極層との密着強度を向上できる。また、支持基板と電極層との間に接合強化絶縁体層を形成することにより、支持基板とその上面の絶縁体層との密着強度を向上できるとともに、電極層の空隙の底面に絶縁体層が露出し、空隙の底面に露出した絶縁体層と、電極層上に形成された絶縁体層との密着強度が更に向上し、これにより、支持基板と、該支持基板上に形成された電極層との密着強度、および電極層と、該電極層上に形成された絶縁体層の密着強度が更に向上する。
【図面の簡単な説明】
【図1】参考例の薄膜電子部品を示す断面図である。
【図2】下側電極層の平面図である。
【図3】支持基板と下側電極層との間に接合強化絶縁体層を形成した本発明の薄膜電子部品を示す断面図である。
【図4】全電極面積中の空隙面積の割合に対する下側電極層のシート抵抗増加率を示すグラフである。
【図5】全電極面積中の空隙面積の割合に対する薄膜内部応力減少率を示すグラフである。
【符号の説明】
1・・・支持基板
3・・・絶縁体層
5・・・下側電極層
7・・・上側電極層
31・・・空隙
32・・・接合強化絶縁体層
A・・・薄膜素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film electronic component and a substrate, and more particularly to a thin film electronic component and a substrate for high frequency use suitably used for a thin film capacitor, a thin film inductor, a thin film filter, and the like.
[0002]
[Prior art]
In recent years, with the downsizing and high functionality of electronic devices, there has been an increasing demand for downsizing, thinning, and high frequency compatibility for electronic components installed in electronic devices.
[0003]
In particular, in a high-speed digital circuit of a computer that needs to process a large amount of information at high speed, even at the personal computer level, the clock frequency in the CPU chip is 200 MHz to 1 GHz, the clock frequency of the inter-chip bus is 75 MHz to 133 MHz, and so on. The speedup is remarkable.
[0004]
As the degree of integration of LSIs increases and the number of elements in a chip increases, the power supply voltage tends to decrease in order to reduce power consumption. As these IC circuits increase in speed, density, and voltage, passive components such as capacitors have become essential to exhibit excellent characteristics for high-frequency or high-speed pulses in conjunction with downsizing and large capacity. Yes.
[0005]
As the operating frequency increases, the resistance and inductance of the element cause an instantaneous drop in the power supply voltage on the logic circuit side or new voltage noise. As a result, an error on the logic circuit is caused. Particularly in recent LSIs, the power supply voltage is lowered to suppress the increase in power consumption due to the increase in the total number of elements, and the allowable fluctuation range of the power supply voltage is also reduced. If the number of elements and the increase in operating frequency are further promoted in the future, the resistance and inductance components of the mounting part will no longer be negligible, which will cause a logic circuit error.
[0006]
In addition to the electrical characteristics of the passive element itself, such as improvements in mounting accuracy due to the increase in the number of elements and reflow resistance due to component mounting, characteristics related to mounting (mounting accuracy, mounting reliability) It has been demanded at a high level.
[0007]
Regarding the method of reducing the inductance of the capacitor connection, USP 4,439,813 is formed by laminating a lower electrode, an insulator layer, an upper electrode, and a protective layer on a support substrate, and TiW, Ta and Al, In order to obtain an electrical signal from the lower electrode made of Cu at the shortest distance, through holes are formed in the insulator layer, the upper electrode and the protective layer, and a BLM layer made of Cr / Cu / Au is formed on the inner wall of the through hole A thin film capacitor in which solder bumps are formed on the BLM layer is disclosed.
[0008]
[Problems to be solved by the invention]
However, the adhesion between the support substrate and the electrodes is weak originally, and when the external terminals made of solder bumps are overloaded and the external terminals are peeled off, the solder bumps when the external terminal strength is maximized are exhibited. For example, there is a problem that the breakage occurs at the interface between the support substrate and the conductor layer, and the strength of the solder bump is not fully exhibited.
[0009]
In particular, a film produced by a thin film formation method such as a sputtering method has a problem that internal stress tends to remain, and the support substrate and the electrode easily peel off due to such residual stress.
[0010]
An object of this invention is to provide the thin film electronic component and board | substrate which can improve the adhesive strength of a support substrate and an electrode layer.
[0011]
[Means for Solving the Problems]
The thin film electronic component of the present invention comprises a support substrate and a thin film element provided on the support substrate and having an insulator layer on the electrode layer, and a plurality of voids are formed in the electrode layer, and the support A bond-strengthened insulator layer is formed between the substrate and the electrode layer .
[0012]
By forming a large number of voids in the electrode layer in this way, for example, the residual stress vector of the electrode layer generated by a thin film forming method such as a sputtering method can be dispersed, the internal stress of the electrode layer is relaxed, and the support substrate The adhesion strength between the electrode layer and the electrode layer can be improved. In addition, by forming a bonding-strengthened insulator layer between the support substrate and the electrode layer, the adhesion strength between the support substrate and the insulator layer on the upper surface thereof can be improved, and the insulator layer is formed on the bottom surface of the gap of the electrode layer. The adhesion strength between the insulating layer exposed at the bottom of the gap and the insulating layer formed on the electrode layer is further improved, whereby the support substrate and the electrode formed on the support substrate are improved. The adhesion strength between the electrode layer and the adhesion strength between the electrode layer and the insulating layer formed on the electrode layer is further improved.
[0013]
Also, by filling the insulating material of the insulating layer into the gap of the electrode layer, the insulating layer and the support substrate are joined via the insulating substance of the gap of the electrode layer, and supported by the anchor effect by this insulator. The adhesion strength between the substrate and the electrode layer can be further improved.
[0014]
Furthermore, by making the gap of the electrode layer 10 to 30% of the electrode layer area, the adhesion strength between the support substrate and the electrode layer can be improved, and the reduction of the effective electrode area of the electrode layer that generates capacity can be prevented. The function of the thin film electronic component can be maintained high.
[0016]
The electrode layer of the thin film element is preferably made of Au. By using the electrode layer made of Au as described above, the high frequency of the thin film element can be promoted.
[0017]
The substrate of the present invention is obtained by providing the above thin film electronic component on the surface and / or inside of a base.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
(Reference Example) FIG. 1 shows a thin film electronic component comprising a thin film capacitor of a reference example . As shown in FIG. 1, this thin film capacitor has an insulating layer 3 (dielectric thin film) on a support substrate 1. And a plurality of thin film elements A having electrode layers 5 and 7 are provided. The electrode layers 5 and 7 are made of Au, and the insulator layer 3 is sandwiched between the electrode layers 5 and 7 to form a thin film element A (capacitive element).
[0019]
The upper electrode layer 7 is covered with a protective layer 9 for protecting the thin film capacitor, and in the insulator layer non-formation region B where the insulator layer 3 is not formed, external terminals 11a made of solder bumps are formed. 11b are provided so as to protrude.
[0020]
The lower electrode layer 5 is annularly etched so as to surround the external terminal 11b, and is separated into a lower electrode layer 5a that forms a capacitor and a lower electrode layer 5b that does not form a capacitor.
[0021]
The upper electrode layer 7 is annularly etched on the insulator layer 3 so as to surround the external terminal 11a, and is separated into an upper electrode layer 7a that forms a capacitor and an upper electrode layer 7b that does not form a capacitor. The thin film element A is configured by sandwiching the insulator layer 3 between the lower electrode layer 5a and the upper electrode layer 7a.
[0022]
A solder diffusion prevention layer 17 is formed on the insulating layer non-formation region B and the upper electrode layer 7 therearound, and the solder diffusion prevention layer 17 is soldered in a region narrower than the solder diffusion prevention layer 17. An adhesion layer 18 is formed.
[0023]
Through holes 13a and 13b are formed in the protective layer 9 in the insulating layer non-formation region B. The solder adhesion layer 18 is exposed on the bottom surfaces of the through holes 13a and 13b, and is exposed on the bottom surfaces of the through holes 13a and 13b. The solder adhesion layer 18 is bonded to the support substrate 1 via the electrode layers 5 and 7 and the solder diffusion preventing layer 17.
[0024]
The external terminals 11a and 11b have lower ends accommodated in the through holes 13a and 13b. The lower ends of the external terminals 11a and 11b are joined to the solder adhesion layer 18 exposed on the bottom surfaces of the through holes 13a and 13b. ing.
[0025]
As shown in FIGS. 1 and 2, a large number of voids 31 are formed in the lower electrode layer 5, and the void 31 of the lower electrode layer 5 is filled with the insulating material of the insulator layer 3. Has been. The gap 31 of the lower electrode layer 5 is 10 to 30% of the total electrode area of the lower electrode layer 5 when the lower electrode layer 5 is viewed from above.
[0026]
Thus, in order to form the space | gap 31 in the lower electrode layer 5, the lower electrode layer 5 needs to be formed with Au, and the film thickness of this lower electrode layer 5 needs to be 0.1-0.3 micrometer. There is. If the film thickness of the lower electrode layer 5 is thinner than 0.1 μm, the ratio of the voids 31 to the total area of the lower electrode layer increases, and the capacity tends to decrease, and the film thickness of the lower electrode layer 5 is 0. This is because if the thickness is larger than 3 μm, the ratio of the voids 31 in the lower electrode layer 5 is reduced or cannot be formed at all.
[0027]
Further, the gap 31 in the lower electrode layer 5 is formed by heat-treating the support substrate 1, the lower electrode layer 5 and the insulator layer 3 at a temperature of 750 ° C. or more for 20 minutes to 40 minutes after the formation of the lower electrode layer 5. Can be reliably formed.
[0028]
Further, in order to fill the gap 31 of the lower electrode layer 5 with the insulating material of the insulator layer 3, as described above, after the gap 31 is formed in the lower electrode layer 5, for example, the sol-gel method is used. The applied solution can be applied on the lower electrode layer 5 or can be formed on the lower electrode layer 5 by a thin film forming method such as sputtering.
[0029]
The shape of the gap 31 of the lower electrode layer 5 is desirably a circular shape or an elliptical shape as shown in FIG. 2 when viewed from above, and the maximum diameter is an increase in impedance of the electrode layer 5 in the high frequency region. In order to suppress this, 3.0 μm or less is desirable.
[0030]
The gap 31 of the lower electrode layer 5 is 10 to 30% of the total electrode area of the lower electrode layer 5 when the lower electrode layer 5 is viewed from above. This is because the adhesion strength with the side electrode layer 5 can be improved, the effective electrode area of the lower electrode layer 5 that generates the capacitance can be prevented from being reduced, and the capacity of the thin film capacitor can be kept high.
[0031]
On the other hand, when the area ratio of the void 31 is lower than 10%, the oxide exposed on the bottom surface of the void 31 is small, and the effect of improving the adhesion strength between the support substrate 1 and the insulator layer 3 is small, and more than 30%. This is because not only the impedance in the high frequency region increases, but also the effective electrode area of the lower electrode layer 5 that generates the capacitance of the thin film capacitor decreases.
[0032]
The insulator layer 3 constituting the dielectric thin film of the thin film capacitor may be a dielectric made of a perovskite type oxide crystal having a high relative dielectric constant in a high frequency region. For example, Pb (Mg, Nb) O 3 type, Pb (Mg) , Nb) O 3 —PbTiO 3 system,
Pb (Zr, Ti) O 3 system, Pb (Mg, Nb) O 3 —Pb (Zr, Ti) O 3 system, (Pb, La) ZrTiO 3 system, BaTiO 3 system, (Sr, Ba)
It may be a TiO 3 system, or a compound in which other additives are added or substituted thereto, and is not particularly limited. These insulator layers 3 are produced by a thin film forming method such as a sol-gel method or a sputtering method.
[0033]
The film thickness of the insulator layer 3 is preferably 0.3 to 1.0 μm in order to ensure high capacity and insulation. This is because when the thickness is smaller than 0.3 μm, the covering property is not good and the insulating property may be lowered, and when the thickness is larger than 1.0 μm, the capacity tends to be small. The film thickness of the insulator layer 3 is preferably 0.4 to 0.8 μm.
[0034]
The film thickness of the upper electrode layer 7 is preferably 0.1 to 0.3 μm in consideration of impedance in the high frequency region and film coverage. This is because when the upper electrode layer 7 is thinner than 0.3 μm, there is a possibility that a portion that is not partially covered may occur, and when it is thicker than 0.5 μm, the skin of the conductor in the high frequency region. This is because the resistance of the conductor layer hardly changes in consideration of the effect. The upper electrode layer 7 is desirably controlled so as not to form a gap from the viewpoint of securing capacity.
[0035]
The support substrate 1 is not particularly limited as it is selected from alumina, sapphire, aluminum nitride, MgO single crystal, SrTiO 3 single crystal, surface silicon oxide, glass, quartz and the like.
[0036]
The solder diffusion preventing layer 17 is made of any one of Ti, Cr, Ni, Cu, Pd, Pt, or an alloy composed of two or more selected from these metals, and can be formed by sputtering, vapor deposition, plating, or the like. It ’s fine. The thickness of the solder diffusion preventing layer 17 may be 0.3 μm or more in order to exhibit a function as a solder barrier.
[0037]
The solder adhesion layer 18 is desirably a material having good solder wettability, and examples of the material include Ni—Cr and Au, and Au is particularly desirable. Further, in order to improve the adhesion between the solder diffusion preventing layer 17 and the electrode layers 5 and 7 made of Au, a well-known adhesion material such as Ti or Cr may be interposed therebetween.
[0038]
The protective layer 9 is for protecting the surface of the thin film capacitor, and is made of, for example, Si 3 N 4 , SiO 2 , polyimide resin, benzocyclobutene (BCB), or the like.
[0039]
The external terminals 11a and 11b are preferably made of at least two kinds of metals among Pb, Sn, Ag, In, Cu, Bi, Sb and Zn, and have a melting point and a eutectic temperature depending on the use of the thin film electronic component. Different materials may be selected. The external terminals 11a and 11b made of solder bumps are formed using a known technique such as screen printing or a ball mounter.
[0040]
In the thin film electronic component configured as described above, since the external terminals 11a and 11b are formed in the insulating layer non-forming region B, even if the external terminals 11a and 11b contract during reflow, the external terminals generated in the reflow process The insulator layer 3 is not directly damaged by the stress accompanying the thermal contraction of the terminals 11a and 11b, and no excessive stress is generated in the insulator layer 3, thereby preventing the occurrence of cracks in the insulator layer 3. Therefore, the solder does not flow into the cracks, so that the insulation can be ensured, the device characteristics can be maintained, and the mounting reliability can be secured.
[0041]
Further, since the electrode layers 5 and 7 made of Au having a small resistance are used as the electrode layers 5 and 7 of the thin film element A, the resistance at high frequency can be lowered, and the high frequency of the thin film element A can be promoted. Furthermore, since a high-permittivity perovskite oxide can be used as the insulator layer 3, a high-capacity thin film capacitor can be formed and impedance at high frequencies can be reduced.
[0042]
In this reference example , since many voids 31 are formed in the lower electrode layer 5, for example, the residual stress vector of the lower electrode layer 5 generated by a thin film forming method such as a sputtering method can be dispersed. The internal stress of the electrode layer 5 is relaxed, and the adhesion strength between the support substrate 1 and the lower electrode layer 5 can be improved.
[0043]
Further, since the insulating material of the insulator layer 3 is filled in the gap 31 of the lower electrode layer 5, the insulator layer 3 and the support substrate 1 are interposed via the insulator in the gap 31 of the lower electrode layer 5. Due to the anchor effect by the insulator, the adhesion strength between the support substrate 1 and the insulator layer 3 can be improved, the adhesion strength between the support substrate 1 and the lower electrode layer 5 can be further improved, and the external terminals 11a, 11b When an excessive load is applied to the external terminals 11a and 11b, the peeled surface is almost a solder bump breakage. For example, not the interface between the support substrate 1 and the lower electrode 5, but the terminal electrode 11a of the thin-film electronic component , 11b can be utilized to the maximum, and the destruction surface of the terminal electrode can be prevented from being between thin films.
[0044]
(Invention) FIG. 2 shows a thin-film electronic component comprising the thin- film capacitor of the present invention, in which a junction-reinforced insulator layer 32 is formed between the lower electrode layer 5 and the support substrate 1. It is desirable that the bonding strengthened insulator layer 32 be made of the same material as the insulator layer 3 from the viewpoint of improving the adhesion strength. The thin film capacitor shown in FIG. 2 is the same as the thin film capacitor of the reference example shown in FIG.
[0045]
Thus, by forming the bonding strengthened insulator layer 32 between the lower electrode layer 5 and the support substrate 1, the adhesion strength between the support substrate 1 and the bond strengthened insulator layer 32 on the upper surface thereof can be improved, The bonding reinforcing insulator layer 32 is exposed at the bottom surface of the gap 31 of the lower electrode layer 5, the bonding reinforcing insulator layer 32 exposed at the bottom face of the gap 31, and the insulating layer 3 formed on the lower electrode layer 5. The adhesion strength between the support substrate 1 and the insulator layer 3 is further improved, and the adhesion between the support substrate 1 and the lower electrode layer 5 can be improved.
[0046]
Such a thin film capacitor is used by joining external terminals 11a and 11b to a surface electrode formed on the surface of a base (mother substrate).
[0047]
In addition, the material of the electrode layers 5 and 7 in the present invention is a material made of Au that has low resistance, oxidation resistance at high temperature, and small reaction with the dielectric material. In order to increase the adhesion, an adhesion layer typified by Ti or Cr may be interposed between the electrode layers 5 and 7 and the support substrate 1.
[0048]
In the above example, the single plate type thin film capacitor in which the insulating layer 3 is sandwiched between the electrode layers 5 and 7 has been described. However, in the present invention, a laminated thin film capacitor in which the insulating layer and the electrode layer are alternately stacked. It may be.
[0049]
Further, in the above example, the example in which the present invention is applied to a thin film capacitor has been described. However, the present invention is not limited to the above example. For example, a thin film inductor, a thin film LC filter, or a thin film composite component in which these are combined You may apply to.
[0050]
[Reference example]
The electrode layer and the solder diffusion prevention layer were formed by DC sputtering, and the insulator layer (dielectric thin film) was prepared by sol-gel method.
[0051]
First, a 3 nm adhesion layer made of Ti was formed on a support substrate made of alumina, and a 0.3 μm Au layer was formed on the upper surface of this adhesion layer to form a lower electrode layer.
[0052]
The lower electrode layer was patterned using photolithography technology. After the Pb (Mg 1/3 Nb 2/3 ) O 3 —PbTiO 3 —PbZrO 3 coating solution synthesized by the sol-gel method is applied to the processed lower electrode layer using a spin coating method and dried. Heat treatment was performed at 380 ° C. and firing (heat treatment) was performed at 815 ° C. to form an insulator layer made of Pb (Mg 1/3 Nb 2/3 ) O 3 —PbTiO 3 —PbZrO 3 having a thickness of 0.7 μm. Thereafter, through holes were formed in the insulator layer using a photolithography technique.
[0053]
Next, an adhesion layer made of Ti having a thickness of 30 nm is formed on the upper surface of the insulator layer, an Au layer having a thickness of 0.3 μm is formed on the adhesion layer, and an upper electrode layer is formed. The upper electrode layer and the adhesion layer were processed to form a thin film capacitor.
[0054]
Thereafter, a 1.5 μm-thick solder diffusion prevention layer was formed, and then a 0.1 μm-thick solder adhesion layer Au was formed and processed into a 120 μm diameter shape using photolithography.
[0055]
Thereafter, a photosensitive BCB was applied, exposed and developed to form a protective layer having a through hole having a diameter of about 100 μm and a depth of 1 μm so that the solder adhesion layer made of Au was exposed.
[0056]
Finally, by using screen printing, a eutectic solder paste composed of 63% by weight of Pb and 37% by weight of Sn is transferred onto the solder adhesion layer, reflowed, and external terminals composed of solder bumps are formed. A thin film capacitor as shown in FIG. 1 was obtained.
[0057]
The effective electrode area of the obtained thin film capacitor was 1.4 mm 2 , and the capacitance at a frequency of 1 kHz was about 40 nF.
[0058]
Further, in order to investigate the effect of the voids in the lower electrode layer, the area ratio of the voids in the total electrode area was changed in the same manner as above except that the film thickness of the lower electrode layer was changed. Thin film capacitors with different area ratios were obtained.
[0059]
When an excessive load is applied to the external terminals composed of solder bumps of the obtained thin film capacitor and the external terminals are intentionally peeled off, the destruction mode of the external terminals is 95% or more of all the solder bumps. The remaining 5% was the interface between the support substrate and the lower electrode layer, and the external terminals were peeled off.
[0060]
Further, the sheet resistance of the lower electrode layer with respect to the void ratio in the total electrode area was determined, and the result is shown in FIG.
[0061]
Furthermore, the sum of the thin film internal stress of the lower electrode layer and the insulator layer is calculated from the difference in the amount of warpage of the thin film capacitor before and after the formation of the insulator layer, and the internal stress of only the insulator layer is subtracted to obtain the thin film of the lower electrode layer The internal stress was calculated and the result is shown in FIG.
[0062]
As can be seen from FIG. 4, the sheet resistance of the lower electrode layer increases as the ratio of the void area to the total electrode area increases. Furthermore, it can be seen that the sheet resistance increases rapidly from the point where the void area ratio exceeds 30%, and considering the impedance in the high frequency region, the void area ratio is desirably 30% or less.
[0063]
Further, according to FIG. 5, it can be seen that the internal stress of the thin film of the lower electrode layer is decreased due to the presence of the void, and the rate of decrease converges around 30% of the void area. It can also be seen that the void area ratio is 10%, the internal stress of the thin film is almost halved, and the void effect is remarkably exhibited.
[0064]
【The invention's effect】
As described above in detail, according to the present invention, since a large number of voids are formed in the electrode layer of the thin film element having the insulator layer on the electrode layer, for example, by a thin film forming method such as a sputtering method. The generated residual stress vector of the electrode layer can be dispersed, the internal stress of the electrode layer is relaxed, and the adhesion strength between the support substrate and the electrode layer can be improved. In addition, by forming a bonding reinforcement insulator layer between the support substrate and the electrode layer, the adhesion strength between the support substrate and the insulator layer on the upper surface thereof can be improved, and the insulator layer is formed on the bottom surface of the gap of the electrode layer. The adhesion strength between the insulator layer exposed on the bottom surface of the gap and the insulator layer formed on the electrode layer is further improved, whereby the support substrate and the electrode formed on the support substrate are improved. The adhesion strength between the electrode layer and the adhesion strength between the electrode layer and the insulating layer formed on the electrode layer is further improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a thin film electronic component of a reference example .
FIG. 2 is a plan view of a lower electrode layer.
FIG. 3 is a cross-sectional view showing a thin-film electronic component of the present invention in which a junction reinforcing insulator layer is formed between a support substrate and a lower electrode layer.
FIG. 4 is a graph showing the sheet resistance increase rate of the lower electrode layer with respect to the ratio of the void area in the total electrode area.
FIG. 5 is a graph showing the thin film internal stress reduction rate with respect to the ratio of the void area in the total electrode area.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Support substrate 3 ... Insulator layer 5 ... Lower electrode layer 7 ... Upper electrode layer 31 ... Gap 32 ... Bonding reinforcement insulator layer A ... Thin film element

Claims (5)

支持基板と、該支持基板上に設けられ、電極層上に絶縁体層を有する薄膜素子とを具備するとともに、前記電極層に多数の空隙が形成され、前記支持基板と前記電極層との間に接合強化絶縁体層が形成されていることを特徴とする薄膜電子部品。A support substrate and a thin film element provided on the support substrate and having an insulator layer on the electrode layer, and a plurality of voids are formed in the electrode layer, and the space between the support substrate and the electrode layer A thin-film electronic component, characterized in that a bonding-strengthened insulator layer is formed on the thin film electronic component. 電極層の空隙内に絶縁体層の絶縁材料が充填されていることを特徴とする請求項1記載の薄膜電子部品。2. The thin film electronic component according to claim 1, wherein an insulating material of the insulator layer is filled in a gap of the electrode layer. 電極層の空隙は該電極層面積中10〜30%であることを特徴とする請求項1または2記載の薄膜電子部品。3. The thin film electronic component according to claim 1, wherein the gap of the electrode layer is 10 to 30% in the area of the electrode layer. 薄膜素子の電極層はAuからなることを特徴とする請求項1乃至のうちいずれかに記載の薄膜電子部品。Thin film electronic component according to any one of claims 1 to 3 electrode layer of the thin film element is characterized in that it consists of Au. 基体の表面および/または内部に、請求項1乃至のうちいずれかに記載の薄膜電子部品を設けてなることを特徴とする基板。A substrate comprising the thin film electronic component according to any one of claims 1 to 4 provided on a surface and / or inside of a substrate.
JP2000092187A 2000-03-29 2000-03-29 Thin film electronic components and substrates Expired - Fee Related JP3681951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000092187A JP3681951B2 (en) 2000-03-29 2000-03-29 Thin film electronic components and substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000092187A JP3681951B2 (en) 2000-03-29 2000-03-29 Thin film electronic components and substrates

Publications (2)

Publication Number Publication Date
JP2001284482A JP2001284482A (en) 2001-10-12
JP3681951B2 true JP3681951B2 (en) 2005-08-10

Family

ID=18607553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000092187A Expired - Fee Related JP3681951B2 (en) 2000-03-29 2000-03-29 Thin film electronic components and substrates

Country Status (1)

Country Link
JP (1) JP3681951B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624500B2 (en) * 2000-11-30 2003-09-23 Kyocera Corporation Thin-film electronic component and motherboard
JP4952937B2 (en) * 2007-11-30 2012-06-13 Tdk株式会社 Thin film capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001284482A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
US6624501B2 (en) Capacitor and semiconductor device
JP4211210B2 (en) Capacitor, mounting structure thereof, manufacturing method thereof, semiconductor device and manufacturing method thereof
JP3843708B2 (en) Semiconductor device, manufacturing method thereof, and thin film capacitor
JP5463908B2 (en) Capacitor-mounted interposer and manufacturing method thereof
US8810007B2 (en) Wiring board, semiconductor device, and method for manufacturing wiring board
JP5387407B2 (en) Semiconductor device
JP4470013B2 (en) Capacitor, chip carrier type capacitor, semiconductor device and mounting board
JP2004055769A (en) Semiconductor device
JP2007234843A (en) Thin-film capacitor element, interposer, manufacturing method therefor, and semiconductor device
US6624500B2 (en) Thin-film electronic component and motherboard
JPWO2009028596A1 (en) Passive element embedded substrate, manufacturing method, and semiconductor device
JP4447881B2 (en) Manufacturing method of interposer
JP3709117B2 (en) Thin film electronic components and substrates
JP3681951B2 (en) Thin film electronic components and substrates
JP3967964B2 (en) Thin film electronic components
US8324623B2 (en) Semiconductor chip, semiconductor mounting module, mobile communication device, and process for producing semiconductor chip
JP2001284168A (en) Thin-film electronic component and substrate
JP2007266182A (en) Semiconductor device and manufacturing method thereof
JP2001185444A (en) Thin film electronic component
JP4009078B2 (en) Thin film electronic components
JP3652281B2 (en) Thin film electronic components and substrates
JP4864313B2 (en) Thin film capacitor substrate, manufacturing method thereof, and semiconductor device
JP2001345234A (en) Thin film electronic part, laminated thin film electronic part, and substrate
JP3572228B2 (en) Thin film electronic components
JP2008300560A (en) Semiconductor device, and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees