JP3666036B2 - 火力発電プラント起動制御システム及び起動制御方法 - Google Patents

火力発電プラント起動制御システム及び起動制御方法 Download PDF

Info

Publication number
JP3666036B2
JP3666036B2 JP27089194A JP27089194A JP3666036B2 JP 3666036 B2 JP3666036 B2 JP 3666036B2 JP 27089194 A JP27089194 A JP 27089194A JP 27089194 A JP27089194 A JP 27089194A JP 3666036 B2 JP3666036 B2 JP 3666036B2
Authority
JP
Japan
Prior art keywords
schedule
startup
activation
power plant
thermal power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27089194A
Other languages
English (en)
Other versions
JPH08128305A (ja
Inventor
弘 松本
陽 大澤
美雄 佐藤
正衛 高橋
孝生 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27089194A priority Critical patent/JP3666036B2/ja
Publication of JPH08128305A publication Critical patent/JPH08128305A/ja
Application granted granted Critical
Publication of JP3666036B2 publication Critical patent/JP3666036B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Feedback Control In General (AREA)

Description

【0001】
【産業上の利用分野】
本発明は火力発電プラントの起動制御システム及び起動制御方法に係り、特にボイラと蒸気タービンに発生する熱応力やボイラから排出されるNOxなどに対する運転制限条件や環境規制値を満足しつつ、最短時間でプラント起動を行うための最適起動スケジュールを自動作成するのに好適な火力発電プラントの起動制御システム及び起動制御方法に関する。
【0002】
【従来の技術】
火力発電プラントの起動に関する従来の方法は、起動前の停止時間や機器の温度状態に応じて、ボイラへの初期投入燃料量,主蒸気の昇温及び昇圧の時間関数,タービンの昇速及び負荷上昇の時間関数を起動スケジュールとして決定し、この起動スケジュールをプラントの各系統に設けられた機器単位あるいは系統単位の制御システムで実行するという方法が採られていた。
【0003】
この最も代表的な方法は、Electrical World, Vol.165, No.6 の論文
“Thermal Stress Influence Starting, Loading of Boilers and Turbines” で述べられている。この方法は、プラントの限られた部分の初期状態によって一義的に起動スケジュールを決定する方法である。即ち、ボイラ蒸気圧,ボイラ出口蒸気温度,蒸気タービンケーシング温度の初期値に応じて、蒸気タービンの昇速率,初期負荷,速度保持並びに負荷保持による蒸気タービンの暖機時間及び負荷変化率を決定する方法である。この方法によると、運転制限要因である蒸気タービンの熱応力を管理する上で重要なボイラ発生蒸気の昇温特性を起動前に予測できないため、その不確定性を起動スケジュールに余裕をもたせることにより吸収している。そのため、作成される起動スケジュールは必要以上に長くなりがちであった。以上のことは、ガスタービンと蒸気タービンを組み合せた複合サイクル発電プラントにおいても同様である。この場合は、ボイラへの投入燃料量の代わりにガスタービンへの投入燃料量、即ち、ガスタービン昇速率及び負荷上昇率を決定することによりプラントへの入力エネルギーを規定している。
【0004】
また、別の従来方法としては、USP3,446,224 及びUSP4,228,359 が知られている。これらは、蒸気タービンに発生する熱応力をオンラインリアルタイムで監視しながら蒸気タービンの急速起動を図るものである。
【0005】
ボイラの起動時間の短縮を目的とした従来方法としては、特開昭59−157402号が知られている。この方法はボイラに発生する熱応力をオンラインでリアルタイムに監視しながらボイラ発生蒸気の急速昇温を図るものである。
【0006】
更に、オフライン動特性予測による起動スケジュールを最適化するものとしては、特開昭63−94008 号公報が知られている。この方法は、制御システムにプラント動特性モデルを内蔵させ、実際のプラント起動前に、これを用いた起動シミュレーションを反復し、予測した蒸気タービン熱応力の発生パターンに着目したファジィ推論により起動スケジュールを修正することにより起動時間の短縮を図るものである。
【0007】
【発明が解決しようとする課題】
しかしながら、上述した従来技術は、ボイラから排出されるNOx及び蒸気タービンに発生する熱応力の両方を考慮しておらず、それらのいずれか一方のみを考慮しているものであるから、プラント起動を行っている途中に熱応力及び NOx排出量のいずれか一方が制限値を超える可能性がある。また、熱応力及びNOx排出量の両方を制限値以下に抑えようとするならば、人為的な操作を介入せざるを得なく、起動時間が必要以上に長くなる可能性もある。
【0008】
プラント全体の起動時間は、ボイラと蒸気タービンの協調により短縮が可能であるが、以上述べた従来の方法は、何れもボイラもしくは蒸気タービンの片方のみに着目した急速起動方法であり、このような個別の方法を組み合せたとしてもプラント全体の起動時間が最短となる保証は何も無い。何故ならば、ボイラと蒸気タービンは相互干渉が極めて強く、個々の最適化が必ずしも全体の最適化にならないからである。ガスタービンと排熱回収ボイラ及び蒸気タービンからなる複合サイクル発電プラントにおいても同様であり、個々の運転は機器の相互干渉により、NOx排出量,排熱回収ボイラ及び蒸気タービンの出力と発生熱応力に影響する。
【0009】
本発明は、上記の課題に鑑みてなされたものであり、その第1の目的は、ボイラもしくは排熱回収ボイラ及び蒸気タービンに発生する熱応力や、ボイラもしくは排熱回収ボイラから排出されるNOx排出量を、運転制限条件や環境規制値等の制約条件を満たしつつ起動を行うための起動スケジュールを自動的に作成してそれを実行する火力発電プラントの起動制御システムを提供することにある。
【0010】
また、本発明の第2の目的は、ボイラもしくは排熱回収ボイラと蒸気タービンに発生する熱応力や、ボイラもしくは排熱回収ボイラから排出されるNOx排出量を、運転制限条件や環境規制値等の制約条件を満たしつつ起動時間を最短化する最適起動スケジュールを自動的に作成してそれを実行する火力発電プラントの起動制御方法を提供することにある。
【0011】
【課題を解決するための手段】
上記本発明の第1の目的を達成するための本発明に係る火力発電プラントの起動制御システムは、蒸気を発生させるボイラ及び該ボイラにより発生された蒸気により駆動される蒸気タービンを有する火力発電プラントを起動させるための起動スケジュールを作成し、この起動スケジュールに従って前記プラントを構成する機器を動作させて起動を行う火力発電プラントの起動制御システムにおいて、前記起動スケジュールに従って前記プラントを起動したと仮定したときの、前記ボイラ及び前記蒸気タービンに発生する熱応力と、前記ボイラから排出される NOx排出量との起動特性を求める動特性モデルと、該動特性モデルにより求められた前記起動特性の所定の制約条件に対する余裕値を求める起動特性評価手段と、該起動特性評価手段により求められた余裕値と、該余裕値と前記起動スケジュールの修正量との関係を定めた所定のファジィルールとを用いて、前記余裕値の大きさに応じて前記起動スケジュールの修正量をファジィ推論により演算する起動スケジュール修正量決定手段と、該起動スケジュール修正量決定手段により得られた起動スケジュールの修正量に基づいて、前記起動スケジュールを修正する起動スケジュール修正手段と、該起動スケジュール修正手段により得られた起動スケジュールを、前記機器を動作させるための起動スケジュールとして設定する起動スケジュール設定手段と、を設けたことを特徴とする。
【0012】
ガスタービン及び排熱回収ボイラを有するコンバインドサイクルプラントに適用する場合は、上記動特性モデルを、排熱回収ボイラ及び前記蒸気タービンに発生する熱応力と、前記排熱回収ボイラから排出されるNOx排出量との起動特性を求めるように構成すればよい。
【0013】
また、上記本発明の第2の目的を達成するための本発明に係る火力発電プラントの起動制御方法は、
蒸気を発生させるボイラ及び該ボイラにより発生された蒸気により駆動される蒸気タービンを有する火力発電プラントを起動させるための起動スケジュールを作成し、この起動スケジュールに従って前記プラントを構成する機器を動作させて起動を行う火力発電プラントの起動制御方法において、
(a)前記起動スケジュールに従って前記プラントを起動したと仮定したときの、前記ボイラ及び前記蒸気タービンに発生する熱応力と、前記ボイラから排出されるNOx排出量との起動特性を求めるステップと、
(b)該起動特性の所定の制約条件に対する余裕値を求めるステップと、
(c)前記起動特性が前記所定の制約条件を満足するような前記起動スケジュールの修正量を、前記余裕値と、該余裕値と前記スケジュールの修正量との関係を定めた所定のファジィルールとを用いてファジィ推論により演算するステップと、
(d)前記起動スケジュールの修正量に基づいて前記起動スケジュールを修正するステップとを有し、
前記(a)乃至(d)のステップを所定回数繰り返して実行し、この繰り返して実行する過程で修正された所定数の起動スケジュールの中から、前記起動特性が前記所定の制約条件を満足し、かつその起動スケジュールを実行した場合の起動時間が最短となるような最適起動スケジュールを選択し、この最適起動スケジュールに従って前記機器を動作させて起動を行うことを特徴とする。
【0014】
ガスタービン及び排熱回収ボイラを有するコンバインドサイクルプラントに適用する場合は、上記(a)のステップを、排熱回収ボイラ及び前記蒸気タービンに発生する熱応力と、前記排熱回収ボイラから排出されるNOx排出量との起動特性を求めるようにすればよい。
【0015】
また、前記起動スケジュールは、前記ガスタービンの昇速率,定格速度保持時間,初負荷,初負荷保持時間,負荷上昇率,負荷保持時間、及び前記蒸気タービンの高圧タービンバイパス弁の操作速度,中圧タービンバイパス弁の操作速度,低圧タービンバイパス弁の操作速度,高圧加減弁操作速度,中圧加減弁操作速度,低圧加減弁操作速度のうち、少なくとも1つ以上のパラメータにより規定され、更に前記スケジュール修正量決定手段は、該パラメータに対する修正量を演算するようにする。
【0016】
更に、前記所定のファジィルールは、前記排熱回収ボイラに発生する熱応力の起動特性の、前記所定の制約条件に対する余裕値と前記パラメータの修正量との関係に基づいて定めたボイラ応力調整ルールと、前記蒸気タービンに発生する熱応力の起動特性の、前記所定の制約条件に対する余裕値と前記パラメータ修正量との関係に基づいて定めたタービン応力調整ルールと、前記排熱回収ボイラから排出されるNOx排出量の起動特性の、前記所定の制約条件に対する余裕値と前記パラメータ修正量との関係に基づいて定めた排出NOx調整ルールとを有するものであってもよい。
【0017】
更にまた、前記所定のファジィルールは、前記ガスタービンに関するパラメータを修正の対象とし、前記排熱回収ボイラから排出されるNOx排出量の起動特性の、前記所定の制約条件に対する余裕値と、前記ガスタービンに関するパラメータの修正量との関係を定めた第1の調整ルールと、前記第1の調整ルールよりも少ない前記ガスタービンに関するパラメータを修正の対象とし、前記熱応力の起動特性の、前記所定の制約条件に対する余裕値と、前記ガスタービンに関するパラメータの修正量との関係を定めた第2の調整ルールと、前記蒸気タービンに関するパラメータを修正の対象とし、前記熱応力の起動特性の、前記所定の制約条件に対する余裕値と、前記蒸気タービンに関するパラメータの修正量との関係を定めた第3の調整ルールと、前記第3の調整ルールよりも少ない前記蒸気タービンに関するパラメータを修正の対象とし、前記排熱回収ボイラから排出されるNOx排出量の起動特性の、前記所定の制約条件に対する余裕値と、前記蒸気タービンに関するパラメータの修正量との関係を定めた第4の調整ルールとを有するものであってもよい。
【0018】
【作用】
本発明によれば、おいて上記手段は下記のように作用する。起動スケジュール修正手段は、専門家の思考方法と似た方法で起動スケジュールを改善するために、上記起動特性評価手段で得られる起動特性を重み付き定性的評価結果に変換し、ファジィ推論を適用して起動スケジュールを修正する。このとき用いるファジィルールは、起動特性と起動スケジュール修正量との関係について専門家が知識としてもつ定性的因果関係情報に基づいて作成したものである。
【0019】
また、この起動スケジュールの最適性を判定する際に、上記の起動スケジュール仮定,プラント動特性予測,起動特性評価,起動スケジュール修正を繰り返す過程(これを最適値探索過程と呼ぶ)で起動スケジュールが最適値に収束したか否かを判定するため、収束結果として、起動時間が短く、プラント運用上の安全性が高く、環境に優しい最適起動スケジュールが得られる。このように、専門家の思考方法に似た最適起動スケジュールの探索は、最適値求解の収束性が極めて良好となるため、詳細な計算式を用いた大規模な動特性モデルを用いることが可能で、起動特性を高精度で予測することができる。また、起動スケジュール設定手段は、機器制御システムに上記最適起動スケジュールを規定するスケジュールパラメータを設定することにより、最適起動シケジュールに沿って実際のプラントを起動するため制御を任せることになる。
【0020】
以上述べた本発明における各手段の作用により、プラントを構成する機器間で相互干渉結果として現れる起動特性である熱応力やNOx排出量などの運転制限条件を満足し、かつ起動所要時間を最小にし、中央給電指令所から指定される時刻どおりに起動を完了できる最適起動スケジュールを作成することが可能となる。また、プラント起動中に運転制限値が変更される場合も、以上述べた各手段は同様に作用し、変更後の新たな運転制限値に適合する最適な起動スケジュールを自動生成し、これを実行することが可能となる。
【0021】
【実施例】
以下、本発明の実施例として、ガスタービン,排熱回収ボイラ及び蒸気タービンから成る複合サイクル発電プラントを対象とした起動制御システムについて説明する。
【0022】
図1は複合サイクル発電プラント300と本発明を適用した起動制御システム1000の基本構成を示すものである。
【0023】
起動制御システム1000は大きく分けて最適起動スケジュール探索手段100 と機器制御システム200から成る。最適起動スケジュール探索手段100は、更に起動スケジュール仮定手段110,動特性モデル130,起動特性評価手段120,最適性評価手段140,起動スケジュール修正量決定手段150,ファジィルール160,起動スケジュール設定手段170,起動スケジュール表示手段180及びCRT表示装置20から構成されている。機器制御システム200は、更にガスタービン制御システム210と蒸気タービン制御システム220から成る。また、複合サイクル発電プラント300は大きく分けてガスタービン設備320,排熱回収ボイラ設備310,蒸気タービン設備330から成る。
【0024】
本発明の起動制御システム1000について説明する前に、複合サイクル発電プラント300の起動時を中心とした動作原理を説明する。
【0025】
ガスタービン設備320では、燃料322を燃焼器323に供給し、燃焼用空気324をコンプレッサ320により圧入することにより燃焼で発生するエネルギーは、ガスタービン326で機械エネルギーに変換され、これにより、共通軸328に接続された発電機335を駆動し電気エネルギーに変換するとともに一部はコンプレッサ320の駆動力となる。起動時にはガスタービン制御システム210からの燃料調節弁開度指令211により燃料調節弁321を操作し、燃料流量を調節することでガスタービン設備320及び共通軸328に接続された蒸気タービン設備330と発電機335が昇速される。
【0026】
また、ガスタービン326からの排ガス327は排熱回収ボイラ設備310に導かれ、排ガス327のもつ熱エネルギーが回収される。このとき、排ガス327 により排熱回収ボイラ設備310の煙洞314に配置された各種熱交換器内の流体が熱を受け蒸発し、過熱される。本実施例の排熱回収ボイラ設備310では3つの圧力レベルをもつ蒸気系統から成り、それぞれから発生する蒸気が高圧蒸気241,中圧蒸気242,低圧蒸気243である。
【0027】
これらの蒸気がもつ熱エネルギーにより蒸気タービン設備330において、それぞれ高圧タービン331,中圧タービン332,低圧タービン333が駆動され、共通軸328に接続された発電機335による発電の一翼を担う。起動時には、排熱回収ボイラ設備310から発生する上記の高圧主蒸気241,中圧主蒸気242,低圧主蒸気243をそれぞれ高圧バイパス弁234,中圧バイパス弁235,低圧バイパス弁236を介してバイパスさせることにより個々の圧力を所定値に制御するとともに、高圧加減弁231,中圧加減弁232,低圧加減弁233を開操作することにより高圧タービン331,中圧タービン332,低圧タービン333の出力上昇がなされる。従って、高圧バイパス蒸気244,中圧バイパス蒸気245,低圧バイパス蒸気246の流量は、それぞれバイパス弁 234,235,236の開度を大きくすれば増加し、加減弁231,232,233の開度を大きくすると蒸気タービンへの蒸気流入量が増加し、その分減少する。これらのバイパス弁への開度指令224,225,226及び加減弁への開度指令221,222,223はいずれも蒸気タービン制御システム220より出力される。
【0028】
また、プラントの起動中に中圧過熱蒸気301と高圧タービン排気302の温度偏差が所定値内に入ったとき中圧止弁237を開操作する。このときの、操作信号227も蒸気タービン制御システム220より指令される。また、復水器 334からの復水337は、低圧給水ポンプ316,中圧給水ポンプ317,高圧給水ポンプ318により、それぞれ低圧ドラム306,中圧ドラム307,高圧ドラム308の水位を所定値内に保つように、それぞれ低圧給水303,中圧給水304,高圧給水305として流量制御される。
【0029】
ここで、運転制限要因となるのは、高圧タービン331と中圧タービン332のロータに発生する熱応力と、高圧過熱器311及び中圧過熱器312の出口にあるヘッダに発生する熱応力と、排熱回収ボイラ設備310の煙洞出口315から大気へのNOx排出量である。上記の各熱応力は、ガスタタービン排ガス326 から熱交換器のメタルへの伝熱,メタルから内部流体への伝熱,内部流体から着目部メタルへの伝熱という大きな時間遅れを伴う動的過程の結果として現れる。また、ボイラからのNOx排出量もガスタービン自体のNOx排出特性と煙洞中に設置された脱硝装置313の温度特性に大きく依存する。そのため、これらの運転制限要因を精度良く管理するには、上記各制御操作の協調性と整合性が必要となる。よって、既に述べたように、本発明の起動制御システム1000では、実際にプラントを起動する前に、これらの動的挙動の予見に基づいた最適な起動スケジュールを探索する手段を設けた。
【0030】
以下に、図1を用いて上記の複合サイクル発電プラント300の起動制御システム1000の動作原理を概説する。
【0031】
中央給電指令所10はプラントに対する起動要求11として、目標起動完了時間と目標負荷を起動制御システム1000に指令する。起動制御システム1000の起動スケジュール仮定手段110は、これを受けてプラントの停止時間に対応して仮の起動スケジュール111を作成し、これを動特性モデル130に送る。動特性モデル130では、機器制御システムモデル132によりこの仮の起動スケジュール111に沿ってガスタービンモデル133,ボイラモデル134,蒸気タービンモデル135を起動制御する。このときの機器制御は実機における上記説明と等価な方式でなされ、あたかも実際のプラントが起動された如くプラント動特性131が得られ、次の起動特性評価手段120に送られる。
【0032】
起動特性評価手段120は、さらに、前記高中圧蒸気タービンのロータに発生する熱応力を評価するためのタービン熱応力特性評価手段122,前記ボイラ高中圧過熱器出口部のヘッダに発生する熱応力を評価するためのボイラ熱応力特性評価手段123,排熱回収ボイラ310からの排出されるNOxを評価するための排出NOx特性評価手段124,起動所要時間評価手段125から成る。この評価手段のうち前3者は、起動特性評価手段120から得られた値と、それぞれに対する運転制限条件とを比較し、それらに対する余裕値を評価するためのもので、起動所要時間評価手段125は、ガスタービン起動から目標負荷到達までに要する時間を算出するためのものである。これらの評価が終ると、次の最適性評価手段140に処理が移る。
【0033】
ここでは、前記仮定された起動スケジュールの最適性を判定するためのもので、前記起動特性の各種評価結果が運転制約条件を満足する中で起動時間が最短となる最適起動スケジュールを判定する。従って、初回目は最適起動スケジュールは決らず、前記起動特性評価結果121に基づき起動スケジュールの改善を図るために、起動特性評価結果121とともに次の起動スケジュール修正量決定手段150に処理が渡される。起動スケジュール修正量決定手段150では、上記起動特性評価手段120で得られる評価結果に基づいてファジィ推論を適用して起動スケジュールを修正する。ここで決定される起動スケジュール修正量151は前述の起動スケジュール仮定手段110に転送され、再度起動スケジュールが仮定もしくは起動スケジュールが修正される。本実施例では、起動スケジュールを修正するための機能を起動スケジュール仮定手段110と兼ねているが、この機能は必ずしも起動スケジュール仮定手段110に兼ねる必要はなく、それとは別に設けてもよい。
【0034】
ここで用いるファジィルール160は、タービン熱応力調整ルール162,ボイラ熱応力調整ルール163,排出NOx調整ルール164から成り、起動特性と起動スケジュール修正量との関係について専門家が知識としてもつ定性的因果関係情報に基づいて作成したものである。前記の最適性判定手段140は上記の起動スケジュール仮定,プラント動特性予測,起動特性評価,起動スケジュール修正を繰り返す過程(これを最適値探索過程と呼ぶ)で起動スケジュールが最適値に収束したか否かを判定するため、収束結果として、起動時間が短く、運転制限条件を満たすことによりプラント運用上の安全性が高く、環境に優しい最適起動スケジュールが得られる。
【0035】
最適性判定手段140により最適起動スケジュールが決定されると、この最適起動スケジュールを規定するスケジュールパラメータ171が起動スケジュール設定手段170を介して機器制御システム200に設定される。また、最適起動スケジュールの探索過程は起動スケジュール表示手段180を介してCRT表示装置20に表示され、運転員に探索状況及び収束結果である最適起動スケジュールを提示することができる。この場合の表示内容は、仮定した起動スケジュール,動特性予測結果及び運転制限値に対するマンマシン特性,起動所要時間等である。
【0036】
以上、本発明の火力プラント起動制御システムを複合サイクル発電プラントに適用した実施例の概要を示した。以下、本実施例を更に具体的に説明してゆく。
図2は、前記最適起動スケジュール探索手段100における起動スケジュール最適化の基本的考え方を示すものである。動特性モデル130から得られるプラント動特性予測値より、ボイラ及び蒸気タービンの熱応力と排出NOxの特性に基づいてガスタービン起動計画と蒸気タービン起動計画を実施する。このとき、ガスタービン起動計画では、排出NOxを考慮したガスタービン主計画(GTPS:Gass Turbine Primal Schedulingの略)と熱応力を考慮したガスタービン広域調整(GTGT:Gass Turbine Global Tuning)を行い、蒸気タービン起動計画では、熱応力を考慮した蒸気タービン主計画(STPS:Steam Turbine Primal Schedulingの略)と排出NOxを考慮した蒸気タービン局部調整(STLT: Steam Turbine Local Tuning)を行う。ガスタービンの起動方法は排出NOx特性に直接的に大きな影響を与えるため、GTPSでは排出NOx特性の予測値に応じてガスタービンの起動スケジュールを全体的にきめ細かく作成する働きを持たせる。また、蒸気タービンの起動方法は熱応力特性に直接的に大きな影響を与えるため、STPSでは熱応力特性の予測値に応じて蒸気タービンの起動スケジュールを全体的にきめ細かく作成する働きを持たせる。一方、熱応力は排熱回収ボイラの伝熱を介して間接的にガスタービンの起動方法の影響を受けるため、 GTGTでは熱応力特性の予測値に応じてガスタービンの起動スケジュールを広域的に微調整する働きを持たせる。また、蒸気タービンの起動方法により排熱回収ボイラの熱吸収特性変化の結果として間接的により脱硝装置の特性が変化するため、STLTでは排出NOx特性の予測値に応じて蒸気タービンの起動スケジュールを部分的に微調整する働きを持たせる。
【0037】
次に、図3により、プラントの起動スケジュールを規定するパラメータ(以下、スケジュールパラメータと呼ぶ)の一例をプラントの起動過程との関係において説明する。
【0038】
図3に示すように、ガスタービン関係のスケジュールパラメータとしては、昇速率(DN),定格速度保持時間(DTNL),初負荷(LI),初負荷保持時間(DTLI),第1負荷上昇率(DL1),負荷保持時間(DTHL),第2負荷上昇率(DL2),第3負荷上昇率(DL3)である。これらにより規定される起動スケジュールを制御目標として、操作端である燃料調節弁321の開度を調整することによりガスタービンが起動される。また、蒸気タービン関係の操作端としては既に述べたように、高圧バイパス弁(HPBV),中圧バイパス弁(IPBV),低圧バイパス弁(LPBV),高圧加減弁(HPCV),中圧加減弁(IPCV),低圧加減弁(LPCV),中圧止弁(ISHV)があり、次のスケジュールパラメータに従って制御する。スケジュールパラメータとしては、高圧バイパス弁操作速度(DAHBV),中圧バイパス弁操作速度(DAIBV),低圧バイパス弁操作速度(DALBV),低圧バイパス弁操作待期時間 (DTLBV),高圧加減弁第1操作速度(DAHCV1),高圧加減弁第2操作速度(DAHCV2),低圧加減弁操作速度(DALCV)である。これらのスケジュールパラメータ以外の制御目標および操作タイミングは図3に示す通りである。
【0039】
ここで、蒸気条件としてのTMSは高圧主蒸気温度、PMSは高圧主蒸気圧力、PCRPは高圧タービン排気圧力,PISは中圧主蒸気圧力,PLSは低圧主蒸気圧力,ΔTは中圧過熱蒸気温度と高圧タービン排気温度との偏差である。また、図中、各弁の%表示は開度を示す。
【0040】
次に、蒸気タービン及びボイラの熱応力と排出NOxを予測するための動特性モデル130について説明する。まず、蒸気タービンの熱応力は前記USP
4,228,359に詳しく記載されている方法でモデル化した。即ち、蒸気タービンの入口蒸気条件と速度および負荷から蒸気タービン内部の蒸気条件(温度,圧力)及びロータ表面の熱伝達率を推定し、ロータメタル内部の非定常温度分布を求め、ロータの表面とボアの熱応力を算出する方式である。これを、プラント起動時に制限条件として管理すべき高圧タービン331と中圧タービン332の熱応力計算に適用した。ボイラの熱応力については、前記の特開昭59−157402号公報に詳しく記載されている方法でモデル化した。
【0041】
即ち、制限条件として着目すべき高圧過熱器出口ヘッダと中圧過熱器出口ヘッダの内部熱伝達率を蒸気条件(温度,圧力)と流量より推定し、上記蒸気タービンの場合と同様にメタル内部の非定常温度分布を求めて、ヘッダメタルの内面及び外面の熱応力を算出する方法とした。排出NOxについては、図4に示す動特性モデルを用いて予測する。ここで、本モデルの動作原理を説明する。本モデルは脱硝装置モデル34と脱硝制御システムモデル40で構成され、脱硝装置モデル34は入口ガス温度TG,ガス流量GG,入口ガスNOx濃度P1及び脱硝制御システムモデル40からのアンモニア注入量GNH3により大気への排出NOx 瞬時値PS及び排出NOx平均値PAを求める。脱硝制御システムモデル40では、ガス流量GG,入口ガスNOx濃度P1,排出NOx瞬時値PS,排出NOx 濃度設定値PSR等を用いてアンモニア注入量GNH3を求める。具体的には、まず、減算手段41で排出NOx瞬時値PSと排出NOx濃度設定値PSRとの偏差を求め、この偏差をPI調節系42でフィードバック制御としてのアンモニア注入量GNH3Bに変換する。また、ガス流量GG,入口ガスNOx濃度P1を乗算手段43で掛け合わせて、入口ガスNOx量Xを求めて、これに対応して脱硝に必要となるアンモニア注入量GNH3Aをフィードフォワード制御量として関数f(X)44を用いて求める。そして、加算手段45によるGNH3AとGNH3Bの加算値GNH3Cに脱硝能率Kが乗算手段46で掛けられて最終的なアンモニア注入量GNH3が決定される。脱硝装置モデル34では、脱硝能率Kに影響を与える触媒温度TCが入口ガス温度TGの一次遅れ特性36で表わされ、このときの遅れ時定数T1はガス流量GGの関数f(GG)35となる。前記脱硝能率Kは、触媒温度TCの関数f(TC)37として与えられるが、アンモニアが注入されると一次遅れ特性38をもって脱硝率αが決る。このようにして求められた脱硝率αと入口ガスNOx濃度P1とから、排出NOx算出手段39よりその瞬時値PSが定まり、この値が、移動平均手段49により、例えば1時間当たりの移動平均値PAとして変換される。
【0042】
次に、上記動特性モデル130から得られたタービン熱応力特性,ボイラ熱応力特性及び排出NOx特性を評価するための起動特性評価手段120について説明する。
【0043】
図5は、タービン熱応力特性評価手段122におけるタービン熱応力特性の評価方式を示すもので、まず、タービン起動開始から起動完了後の所定時間経過するまでの時間帯(t1〜t6)を複数区間に分割(本例では5分割の場合を示す)し、第i区間における最小熱応力マージンm(i)を求める。ここで、熱応力マージンmは、制限値をSL、動特性モデルによる計算値をSとすると、次式で定義する。
【0044】
【数1】
m=SL−S …(1)
既に述べたように、実際には熱応力着目箇所が高圧タービンの表面とボア及び中圧タービンの表面とボアの4箇所であるので、求めるべき最小熱応力マージンは区間毎に4つあり、これらをそれぞれ下記とする。
【0045】
mHS(i):区間iにおける高圧タービン表面最小熱応力マージン
mHB(i):区間iにおける高圧タービンボア最小熱応力マージン
mIS(i):区間iにおける中圧タービン表面最小熱応力マージン
mIB(i):区間iにおける中圧タービンボア最小熱応力マージン
ボイラ熱応力特性評価手段123における評価方式も、基本的には上記タービン熱応力特性評価手段122の場合と同様である。但し、着目すべき熱応力箇所は高圧過熱器と中圧過熱器のヘッダ内面の2箇所である。これは、ヘッダの場合、外面に発生する熱応力が内面のそれと比較して小さいため、内面のみに着目すれば十分であるためである。従って、求めるべき最小熱応力マージンは区間毎に2つあり、それぞれ下記とする。
【0046】
mHHD(i):区間iにおける高圧過熱器ヘッダ内面最小熱応力マージン
mIHD(i):区間iにおける中圧過熱器ヘッダ内面最小熱応力マージン
次に、排出NOx特性の評価方式について説明する。図6は、排出NOx特性評価手段124における排出NOx特性の評価方式を示すものである。本方式もタービン熱応力特性評価手段122と同様に、まず、ガスタービン起動開始からプラント起動完了後の所定時間経過するまでの時間帯(t1〜t7)を複数区間に分割(本例では6分割の場合を示す)し、第i区間における最小排出NOx瞬時値マージンmPS(i)と最小排出NOx平均値マージンmPA(i)を求める。ここで、排出NOx瞬時値マージンmPS及び排出NOx平均値マージンmPAは、それぞれの制限値をPSL,PAL,動特性モデルによる計算値をPS,PAとすると、次式で定義する。
【0047】
【数2】
mPS=PSL−PS …(2)
【0048】
【数3】
mPA=PAL−PA …(3)
図7は、上記動特性の評価結果を用いて起動スケジュールを修正するためのファジィルール160と修正用スケジュールパラメータの関係を示すものである。本図に示す実施例においては、修正用スケジュールパラメータとして、蒸気タービン関係では特に効果的と考えられる4つのパラメータ(DAHBV,DAIBV,DAHCV1,DAHCV2)を対象とし、ガスタービン関係では8つのパラメータ(DN,DTNL,LI,DTLI,DL1,DTHL,DL2,DL3)を対象としている。タービン熱応力調整ルール162及びボイラ応力調整ルール163は蒸気タービン主計画(STPS)とガスタービン広域調整(GTGT)の両者にて使用され、排出NOx調整ルール164は蒸気タービン局部調整(STLT)とガスタービン主計画(GTPS)に使用される。また、STPS,GTGT,STLT, GTPSにより修正の対象となるパラメータを○印で示した。
【0049】
図8は、前記の動特性評価手段120で得られたプラント動特性に基づき、ファジィルール160で使用するメンバーシップ関数を示す。図8(1)は、STPS用メンバーシップ関数を示すもので、(a)はファジィルールの条件部で用いる熱応力マージン評価用メンバーシップ関数であり4つ関数(NS,ZO,PS,PB)より成り、(b)は結論部で用いる蒸気タービン関係スケジュールパラメータ修正用メンバーシップ関数であり、5つの関数(NB,NS,ZO,PS,PB)より成る。ここで、各メンバーシップ関数の意味付けは、NB:NegativeBig,NS:Negative Small,ZO:Zero,PS:Positive Small,PB: Positive Bigである。図8(2)は、GTGT用メンバーシップ関数を示すもので、(a)はファジィルールの条件部で用いる熱応力マージン評価用メンバーシップ関数であり4つ関数(NS,ZO,PS,PB)より成り、(b)は結論部で用いるガスタービン関係スケジュールパラメータ修正用メンバーシップ関数であり、3つの関数(NS,ZO,PS)より成る。上記(1)(2)における熱応力マージン評価用メンバーシップ関数は、タービン熱応力とボイラ熱応力の両者に対して共通に適用される。図8(3)は、GTPS用メンバーシップ関数を示すもので、(a)及び(b)は、それぞれファジィルールの条件部で用いる排出NOx瞬時値マージン評価用メンバーシップ関数及び排出NOx平均値マージン評価用メンバーシップ関数であり、それぞれ4つ関数(NB,NS,ZO,PS)及び(NS,ZO,PS,PB)より成り成る。また、(c)は結論部で用いるガスタービン関係スケジュールパラメータ修正用メンバーシップ関数であり、5つの関数(NB,NS,ZO,PS,PB)より成る。図8(4)は、STLT用メンバーシップ関数を示すもので、(a)及び(b)は、それぞれファジィルールの条件部で用いる排出NOx瞬時値マージン評価用メンバーシップ関数及び排出NOx平均値マージン評価用メンバーシップ関数であり、それぞれ4つ関数 (NB,NS,ZO,PS)及び(NS,ZO,PS,PB)より成り成る。また、(c)は結論部で用いる蒸気タービン関係スケジュールパラメータ修正用メンバーシップ関数であり、5つの関数(NB,NS,ZO,PS,PB)より成る。
【0050】
次に、上記メンバーシップ関数を用いたファジィルールについて説明する。図9は、ファジィルール160の全体構成を示すもので、既に述べたように、大きく分けてタービン熱応力調整用ルール162,ボイラ熱応力調整用ルール163,排出NOx調整用ルール164から成る。
【0051】
タービン熱応力調整用ルール162はSTPS用とGTGT用に分けられ、 STPS用については、タービン熱応力の調整を目的として蒸気タービンの起動スケジュールパラメータを修正するためのもので、GTGT用については、タービン熱応力の調整を目的としてガスタービンの起動スケジュールパラメータを修正するためのものである。両者は更にHSルールテーブル,HBルールテーブル,ISルールテーブル,IBルールテーブルで構成されている。HSルールテーブルは高圧タービンロータ表面熱応力の調整を目的とするもので、具体的には、それぞれ4つのルールテーブル(STPS−HS12,STPS−HS23, STPS−HS34,STPS−HS45)と(GTGT−HS12,GTGT−HS23,GTGT−HS34,GTGT−HS45)から成る。HBルールテーブルは高圧タービンロータボア熱応力の調整を目的とするもので、具体的には、それぞれ4つのルールテーブル(STPS−HB12,STPS−HB23,STPS−HB34,STPS−HB45)と(GTGT−HB12,GTGT−HB23,GTGT−HB34,GTGT−HB45)から成る。ISルールテーブルは中圧タービンロータ表面熱応力の調整を目的とするもので、具体的には、それぞれ4つのルールテーブル(STPS−IS12,STPS−IS23,STPS−IS34,STPS−IS45)と(GTGT−IS12,GTGT−IS23,GTGT−IS34,GTGT−IS45)から成る。IBルールテーブルは中圧タービンロータボア熱応力の調整を目的とするもので、具体的には、それぞれ4つのルールテーブル(STPS−IB12,STPS−IB23,STPS−IB34,STPS−IB45)と(GTGT−IB12,GTGT−IB23,GTGT−IB34,GTGT−IB45)から成る。
【0052】
ボイラ熱応力調整用ルール163はSTPS用とGTGT用に分けられ、STPS用については、ボイラ熱応力の調整を目的として蒸気タービンの起動スケジュールパラメータを修正するためのもので、GTGT用については、ボイラ熱応力の調整を目的としてガスタービンの起動スケジュールパラメータを修正するためのものである。両者は更にHHDルールテーブル,IHDルールテーブルで構成されている。HHDルールテーブルは高圧ヘッダ熱応力の調整を目的とするもので、具体的には、それぞれ4つのルールテーブル(STPS−HHD12,STPS−HHD23,STPS−HHD34,STPS−HHD45)と(GTGT− HHD12,GTGT−HHD23,GTGT−HHD34,GTGT−HHD45)から成る。IHDルールテーブルは中圧ヘッダ熱応力の調整を目的とするもので、具体的には、それぞれ4つのルールテーブル(STPS−IHD12,STPS−IHD23,STPS−IHD34,STPS−IHD45)と (GTGT−IHD12,GTGT−IHD23,GTGT−IHD34,GTGT−IHD45)から成る。
【0053】
排出NOx調整用ルール164はGTPS用とSTLT用に分けられ、GTPS用については、排出NOxの調整を目的としてガスタービンの起動スケジュールパラメータを修正するためのもので、STLT用については、排出NOxの調整を目的として蒸気タービンの起動スケジュールパラメータを修正するためのものである。両者は更にPSルールテーブル,PAルールテーブルで構成されている。PSルールテーブルは排出NOx瞬時値の調整を目的とするもので、具体的には、それぞれ5つのルールテーブル(GTPS−PS12,GTPS−PS23,GTPS−PS34,GTPS−PS45,GTPS−PS56)と2つのルールテーブル(STLT−PS12,STLT−PS23)から成る。PAルールテーブルは排出NOx平均値の調整を目的とするもので、具体的には、それぞれ5つのルールテーブル(GTPS−PA12,GTPS−PA23,GTPS−PA34,GTPS−PA45,GTPS−PA56)と2つのルールテーブル(STLT−PA12,STLT−PA23)から成る。
【0054】
次に、前記ルールテーブルの内容を具体的に説明する。図10,図11,図 12,図13は、それぞれSTPS用,GTGT用,GTPS用,STLT用のルールテーブルの具体例を示すもので、前記図9のSTPS−HSルールテーブル、GTGT−HSルールテーブル,GTPS−PSルールテーブル,STLT−PSルールテーブル及びSTLT−PAルールテーブルを代表例として示す。図10は、蒸気タービン主計画(STPS)で用いるタービン熱応力調整ルールの一部分として、高圧タービンロータ表面最小熱応力マージンを調整するためのSTPS−HSルールテーブルを例示したものである。ここでは、4つの修正用スケジュールパラメータとしての高圧バイパス弁操作速度(DAHBV),中圧バイパス弁操作速度(DAIBV),高圧加減弁第1操作速度(DAHCV1),高圧加減弁第2操作速度(DAHCV2)を、図5で示した5つの着目区間における高圧タービンロータ表面最小熱応力マージンとの関係において修正するためのファジィルールを示す。即ち、STPS−HS12ルールテーブルでは、第1区間及び第2区間における高圧タービンロータ表面最小熱応力マージンmHS(1),mHS(2)との定性的関係の組み合せよりDAHBVとDAHCV1の修正量を定義している。STPS−HS23ルールテーブルでは、第2区間及び第3区間におけるマージンmHS(2),mHS(3)との定性的関係の組み合せより、同じくDAHBVとDAHCV1の修正量を定義している。STPS−HS34ルールテーブルでは、第3区間及び第4区間におけるマージンmHS(3),mHS(4)との定性的関係の組み合せより、DAHBV,DAHCV1、DAHCV2の修正量を定義している。STPS−HS45ルールテーブルでは、第4区間及び第5区間におけるマージンmHS(4),mHS(5)との定性的関係の組み合せより、DAHCV2の修正量を定義している。但し、ルールテーブルの空白部は、上記各熱応力マージンとスケジュールパラメータの因果関係が小さいか殆ど無いことを意味する。
【0055】
図11は、ガスタービン広域調整(GTGT)で用いるタービン熱応力調整ルールの一部分として、高圧タービンロータ表面最小熱応力マージンを調整するためのGTGT−HSルールテーブルを例示したものである。ここでは、6つの修正用スケジュールパラメータとしての昇速率(DN),初負荷保持時間(DTLI),第1負荷上昇率(DL1),負荷保持時間(DTHL),第2負荷上昇率 (DL2),第3負荷上昇率(DL3)を、図5で示した5つの着目区間における高圧タービンロータ表面最小熱応力マージンとの関係において修正するためのファジィルールを示す。即ち、GTGT−HS12ルールテーブルでは、第1区間及び第2区間における高圧タービンロータ表面最小熱応力マージンmHS(1),mHS(2)との定性的関係の組み合せよりDN,DTLI,DL1の修正量を定義している。GTGT−HS23ルールテーブルでは、第2区間及び第3区間におけるマージンmHS(2),mHS(3)との定性的関係の組み合せより、 DTLI,DL1,DTHLの修正量を定義している。GTGT−HS34ルールテーブルでは、第3区間及び第4区間におけるマージンmHS(3),mHS(4)との定性的関係の組み合せより、DL1,DTHL,DL2の修正量を定義している。GTGT−HS45ルールテーブルでは、第4区間及び第5区間におけるマージンmHS(4),mHS(5)との定性的関係の組み合せより、DTHL,DL2,DL3の修正量を定義している。この場合も、ルールテーブルの空白部は、上記各熱応力マージンとスケジュールパラメータの因果関係が小さいか殆ど無いことを意味する。
【0056】
図12は、ガスタービン主計画(GTPS)で用いる排出NOx調整ルールの一部分として、最小排出NOx瞬時値マージンを調整するためのGTPS−PSルールテーブルを例示したものである。ここでは、8つの修正用スケジュールパラメータとしての昇速率(DN),定格速度保持時間(DTNL),初負荷(LI),初負荷保持時間(DTLI),第1負荷上昇率(DL1),負荷保持時間(DTHL),第2負荷上昇率(DL2),第3負荷上昇率(DL3)を、図6で示した6つの着目区間における最小排出NOx瞬時値マージンとの関係において修正するためのファジィルールを示す。即ち、GTPS−PS12ルールテーブルでは、第1区間及び第2区間における最小排出NOx瞬時値マージンmPS(1),mPS(2)との定性的関係の組み合せよりDN,DTNL,LI,DTLI,DL1,DTHL,DL2,DL3の修正量を定義している。GTPS−PS23ルールテーブルでは、第2区間及び第3区間におけるマージンmPS(2),mPS(3)との定性的関係の組み合せより、DTNL,LI,DTLI,DL1,DTHL,DL2,DL3の修正量を定義している。GTPS−PS34ルールテーブルでは、第3区間及び第4区間におけるマージンmPS(3),mPS(4)との定性的関係の組み合せより、LI,DTLI,DL1,DTHL,DL2,DL3の修正量を定義している。GTPS−PS45ルールテーブルでは、第4区間及び第5区間におけるマージンmPS(4),mPS(5)との定性的関係の組み合せより、DTHL, DL2,DL3の修正量を定義している。GTPS−PS56ルールテーブルでは、第5区間及び第6区間におけるマージンmPS(5),mPS(6)との定性的関係の組み合せより、DTHL,DL2,DL3の修正量を定義している。この場合も、ルールテーブルの空白部は、上記各排出NOxマージンとスケジュールパラメータの因果関係が小さいか殆ど無いことを意味する。
【0057】
図13は、蒸気タービン局部調整(STLT)で用いる排出NOx調整ルールの一部分として、最小排出NOx瞬時値マージンを調整するためのSTLT−PSルールテーブルと最小排出NOx平均値マージンを調整するためのSTLT−PAルールテーブルを示したものである。ここでは、3つの修正用スケジュールパラメータとしての高圧バイパス弁操作速度(DAHBV),中圧バイパス弁操作速度(DAIBV),高圧加減弁第1操作速度(DAHCV1)を、図6で示した3つの着目区間における最小排出NOx瞬時値マージン及び最小排出NOx平均値マージンとの関係において修正するためのファジィルールを示す。即ち、STLT−PS12ルールテーブルでは、第1区間及び第2区間における最小排出NOx瞬時値マージンmPS(1),mPS(2)との定性的関係の組み合せよりDAHBV,DAIBV,DAHCV1の修正量を定義している。STLT−PS23ルールテーブルでは、第2区間及び第3区間におけるマージンmPS(2),mPS(3)との定性的関係の組み合せより、DAHBV,DAIBV,DAHCV1の修正量を定義している。STLT−PA12ルールテーブルでは、第1区間及び第2区間における最小排出NOx平均値マージンmPA(1),mPA(2)との定性的関係の組み合せよりDAHBV,DAIBV,DAHCV1の修正量を定義している。STLT−PA23ルールテーブルでは、第2区間及び第3区間におけるマージンmPA(2)、mPA(3)との定性的関係の組み合せより、DAHBV,DAIBV,DAHCV1の修正量を定義している。
【0058】
次に、起動スケジュール修正量決定手段150について説明する。本手段は、前記ファジィルール160より得られたルール別結論161(該当するメンバーシップ関数およびメンバーシップ値の全て)を修正用スケジュールパラメータ毎に総合評価することにより、スケジュールパラメータの修正量151を決定する。一例として、図14に蒸気タービン関係スケジュールパラメータの修正量KSの総合評価方法を示す。本図の例では、或スケジュールパラメータについて、4つのルールからの結論としてメンバーシップ関数とメンバーシップ値がそれぞれ(NS,0.6),(ZO,0.8),(PS,0.4),(PB,0.2)が得られた場合を示す。総合評価は、それぞれのメンバーシップ値で定まる台形部の重さW(i)と位置KS(i)の重心位置KSGで定義する。即ち、W(1)= 0.126,W(2)=0.096,W(3)=0.096,W(4)=0.09であり、KS(1)=−0.15,KS(2)=0,KS(3)=0.15,KS(4)=0.35 であるから、KSGは次のように算出される。
【0059】
【数4】
Figure 0003666036
【0060】
従って、この起動ケジュールパラメータに対する修正量KSGは0.0662 である。この値は次の起動スケジュール仮定手段110に渡され、次式に従って元のスケジュールパラメータを修正することにより新たな起動スケジュールを作成する。
【0061】
【数5】
i+1=Xi+KSG Xi(5) …(5)
ここで、スケジュールパラメータXiは前回値、Xi+1は修正後の値であり、i=0は初期値を意味し、予め定めた値を用いる。
【0062】
上記方法で作成された新たな起動スケジュール111は、再び動特性モデル130に設定される。このような手順を繰り返す過程で、最適性判定手段140において起動スケジュールの最適性をその都度判定する。ここでは、次の判定条件を満足ものを最適起動スケジュールとして採用する。
【0063】
【数6】
(n>nS).AND.(Min(t SCP(n)) …(6)
ここで、nは起動過程で全ての運転制限条件を満足すると予測された起動回数であり、nSは予め設定しておく所定回数(例えばnS=10)であり、tSCP(n) は上記n回の起動ケースにおける起動所要時間であり、その中から起動時間が最短となるものが最適起動スケジュールとして最終的に採用される。
【0064】
以上説明した本発明のプラント起動制御システムを動作させたときのプラント動特性の予測結果と本発明の効果を図15に示す。本図では、起動スケジュールとして、最適化前の2ケースと最適化後の1ケースを示す。尚、図中の排出NOx は移動平均値を示し、熱応力は高圧タービンのロータ表面応力を代表して示したが、その他の着目応力も同様な傾向を示す。ケース1では、ガスタービンの立ち上げが速過ぎたため、排出NOxが制限値を超過し、一方、負荷上昇の後半が遅いため熱応力は制限値を満足しているが蒸気タービン負荷の定格到達が遅れ、結果的に起動時間が長くなっている。ケース2では、ケース1と逆に、ガスタービンの立ち上げが遅いたため、排出NOxは制限値を満足しているが、一方、負荷上昇の後半が急激なため熱応力が制限値を超過し、かつ、蒸気タービン負荷の定格到達が遅れ、結果的に起動時間が長くなっている。両ケースとも、排出NOxもしくは熱応力が制限値を超過しているにもかかわらず、片方には大きなマージンを残すというアンバランスで無駄のある起動スケジュールとなっている。ケース3は、本発明を適用して起動スケジュールの最適化を図った結果であり、排出NOxと熱応力の両者とも制限値を満足し、かつケース1,2よりも短時間で起動を完了できることを示している。
【0065】
以上述べた本発明の実施例では、複合サイクル発電プラントを対象として具体的に説明したが、本発明はその他のプラント、例えば、ボイラ,蒸気タービン,発電機から成る通常の発電プラントや、石炭ガス化発電プラント、常圧あるいは加圧流動層ボイラ発電プラントにも適用可能なことは勿論である。また、使用燃料としても、石炭,石油,LNGなどを限定しないことも明らかである。
【0066】
また、本発明の実施例では、蒸気タービン及び排熱回収ボイラヘッダの熱応力と排出NOxを運転制限要因として扱ったが、適用プラントの特質に応じて、他の要因、例えば、蒸気タービンのロータとケーシングの延び差、排熱回収ボイラのドラム等他部所の熱応力、排出SOxやCOなどを考慮した方式とすることも可能である。また、熱応力を必ずしも予測しなくても、蒸気温度やメタル温度の変化率や変化幅など間接的な制限値管理とすることも本発明の本質を変えることなく実施できることは明らかである。
【0067】
さらに、本発明の実施例では、最適化の過程で修正対象とする起動スケジュールパラメータをガスタービン関係で8個,蒸気タービン関係で4個としたが、必ずしもこれらに限定する必要はなく、図3に示した他のパラメータ、例えば、加減弁の開操作タイミング条件や蒸気圧力制御用設定値など、プラントの起動パターンを規定するパラメータであれば本発明は基本原理を変えることなく実施できることは明らかである。
【0068】
また、本発明の実施例では、起動スケジュールの最適性を判断するに当たり、熱応力や排出NOxを制限条件とした起動所要時間のみで評価したが、起動に伴うエネルギー損失や機器寿命消費量も起動所要時間と共に加重評価する方式とし、季節や時間帯など電力需要や環境条件からくる必要性に応じて加重値を変更することにより、柔軟に起動スケジュールを作成することも本発明を適用すれば容易に実現できる。
【0069】
また、本発明の実施例では、中央給電指令所から指令される起動完了時刻を正確にまもり、かつ最短時間の起動スケジュールを作成できるが、中央給電指令所から指令される起動完了時刻の代りに、ガスタービン点火時刻,負荷併入時刻,目標負荷到達時刻などであっても、基準時刻をシフトするのみで本発明の原理を変えることなく実施できることは明らかである。さらに、実際にプラントが起動開始後、中央給電指令所からの指令により起動完了時刻が変更される場合や、起動中のプラント異常によりガスタービンの速度保持や負荷保持が発生し、その後、異常復旧して起動を続行する場合の再スケジューリングによる最適化も本発明によると、動特性モデルを用いて容易に実施することができる。
【0070】
本発明の主要部をなす最適起動スケジュール探索手段100は、本実施例で説明したように、実プラントの起動制御システム用として利用するのみでなく、その他、種々の活用が可能である。例えば、運転訓練用シミュレータ,マイナ制御系設計及びチューニング用などである。運転訓練用として利用すると、起動スケジュールとプラント動特性の関連性を理解しながら異常時や緊急時における迅速かつ適切な操作方法についてシミュレータを用いて習得することができる。マイナ制御系設計及びチューニング用として利用すると、最適起動スケジュールを実行するときに、ドラムレベル制御系や蒸気温度制御系などのマイナ制御系を適切に設計し、それらの制御パラメータを事前にチューニングすることが可能となり、現地での調整作業工数を大幅に削減できる。
【0071】
また、本発明の実施例では、火力発電プラント起動制御システムを、主に、ボイラと蒸気タービンから成る通常の火力発電プラントとガスタービンと排熱回収ボイラと蒸気タービンから成る複合サイクル発電プラントへの適用について説明したが、ガスタービン用燃料を生成するための石炭ガス化炉を有するガス化複合サイクル発電プラントや、通常のバーナの代りに流動層の中で石炭を燃焼させるボイラを用いた常圧あるいは加圧流動層ボイラ発電プラントにおいても、本発明の基本原理を変えることなく容易に実施できる。
【0072】
【発明の効果】
本発明の第1の効果は、火力発電プラントの起動制御システムにおいて前記従来方式では不可能であった機器寿命や排出NOxなど運転制限条件や環境規制値を同時に満しながら起動時間を最短化する最適起動スケジュールの自動作成と実行を可能とすることにある。これにより、運転員の負担が大幅に軽減されるとともに、起動時間の短縮に伴うエネルギー損失も低減できるため発電プラントの運用コストを大幅に低減できる。
【0073】
本発明の第2の効果は、火力発電プラントの起動制御システムにおいて、機器寿命や排出NOxなど運転制限条件や環境規制値を同時に満しながら、中央給電指令所から指定される時刻通りに起動を完了できることにある。これにより、電力需要の変動に伴い発電プラントの頻繁な起動停止が必要となる電力系統への安定かつ正確な電力供給が可能となる。
【0074】
本発明の第3の効果は、火力発電プラントの起動制御システムにおいて、プラント起動中に運転制限値が変更されたり、中央給電指令所より起動完了指定時刻が変更されたり、異常復旧後や緊急時に再スケジューリングが必要となる場合でも、最適な起動スケジュールを自動生成し、これを実行することが可能なことである。これにより、柔軟かつ安全なプラント運用及び電力系統の運用が可能となる。
【図面の簡単な説明】
【図1】本発明の実施例である複合サイクル発電プラントの起動制御システムの基本構成と機器構成を示す。
【図2】本発明の主要部である起動スケジュール最適化手段の基本的考え方を示す。
【図3】プラント起動過程と起動スケジュールパラメータの関係を示す。
【図4】排出NOx予測モデルを示す。
【図5】タービン熱応力特性評価方式を示す。
【図6】排出NOx特性評価方式を示す。
【図7】起動スケジュール最適化のためのファジィルールと修正用スケジュールパラメータの関係を示す。
【図8】ファジィルールで使用するメンバーシップ関数を示す。
【図9】ファジィルールの全体構成を示す。
【図10】蒸気タービン主計画(STPS)で用いるタービン熱応力調整ルールの一部を示す。
【図11】ガスタービン広域調整(GTGT)で用いるタービン熱応力調整ルールの一部を示す。
【図12】ガスタービン主計画(GTPS)で用いる排出NOx調整ルールの一部を示す。
【図13】蒸気タービン局部調整(STLT)で用いる排出NOx調整ルールの一部を示す。
【図14】起動スケジュール修正量の決定方法を示す。
【図15】本発明を適用した複合サイクル発電プラント起動制御システムの動作結果とその効果を示す。
【符号の説明】
100…最適起動スケジュール探索手段、110…起動スケジュール仮定手段、120…起動特性評価手段、130…動特性モデル、140…最適性評価手段、150…起動スケジュール修正量決定手段、160…ファジィルール、170…起動スケジュール設定手段、180…起動スケジュール表示手段、200…機器制御システム、1000…起動制御システム。

Claims (15)

  1. 蒸気を発生させるボイラ及び該ボイラにより発生された蒸気により駆動される蒸気タービンを有する火力発電プラントを起動させるための起動スケジュールを作成し、この起動スケジュールに従って前記プラントを構成する機器を動作させて起動を行う火力発電プラントの起動制御システムにおいて、
    前記起動スケジュールに従って前記プラントを起動したと仮定したときの、前記ボイラ及び前記蒸気タービンに発生する熱応力と、前記ボイラから排出されるNOx排出量との起動特性を求める動特性モデルと、
    該動特性モデルにより求められた前記起動特性の所定の制約条件に対する余裕値を求める起動特性評価手段と、
    該起動特性評価手段により求められた余裕値と、該余裕値と前記起動スケジュールの修正量との関係を定めた所定のファジィルールとを用いて、前記余裕値の大きさに応じて前記起動スケジュールの修正量をファジィ推論により演算する起動スケジュール修正量決定手段と、
    該起動スケジュール修正量決定手段により得られた起動スケジュールの修正量に基づいて、前記起動スケジュールを修正する起動スケジュール修正手段と、
    該起動スケジュール修正手段により得られた起動スケジュールを、前記機器を動作させるための起動スケジュールとして設定する起動スケジュール設定手段と、
    を設けたことを特徴とする火力発電プラントの起動制御システム。
  2. 蒸気を発生させるボイラ及び該ボイラにより発生された蒸気により駆動される蒸気タービンを有する火力発電プラントを起動させるための起動スケジュールを作成し、この起動スケジュールに従って前記プラントを構成する機器を動作させて起動を行う火力発電プラントの起動制御方法において、
    (a)前記起動スケジュールに従って前記プラントを起動したと仮定したときの、前記ボイラ及び前記蒸気タービンに発生する熱応力と、前記ボイラから排出されるNOx排出量との起動特性を求めるステップと、
    (b)該起動特性の所定の制約条件に対する余裕値を求めるステップと、
    (c)前記起動特性が前記所定の制約条件を満足するような前記起動スケジュールの修正量を、前記余裕値と、該余裕値と前記スケジュールの修正量との関係を定めた所定のファジィルールとを用いてファジィ推論により演算するステップと、
    (d)前記起動スケジュールの修正量に基づいて前記起動スケジュールを修正するステップとを有し、
    前記(a)乃至(d)のステップを所定回数繰り返して実行し、この繰り返して実行する過程で修正された所定数の起動スケジュールの中から、前記起動特性が前記所定の制約条件を満足し、かつその起動スケジュールを実行した場合の起動時間が最短となるような最適起動スケジュールを選択し、この最適起動スケジュールに従って前記機器を動作させて起動を行うことを特徴とする火力発電プラントの起動制御方法。
  3. ガスタービンと、該ガスタービンの排ガスを用いて蒸気を発生する排熱回収ボイラと、該排熱回収ボイラにより発生された蒸気により駆動される蒸気タービンとを有する火力発電プラントを起動させるための起動スケジュールを作成し、この起動スケジュールに従って前記プラントを構成する機器を動作させて起動を行う火力発電プラントの起動制御システムにおいて、
    前記起動スケジュールに従って前記プラントを起動したと仮定したときの、前記排熱回収ボイラ及び前記蒸気タービンに発生する熱応力と、前記排熱回収ボイラから排出されるNOx排出量の起動特性を求める動特性モデルと、
    該動特性モデルにより求められた起動特性の所定の制約条件に対する余裕値を求める起動特性評価手段と、
    該起動特性評価手段により求められた余裕値と、該余裕値と前記起動スケジュールの修正量との関係を定めた所定のファジィルールとを用いて、前記余裕値の大きさに応じて前記起動スケジュールの修正量をファジィ推論により演算する起動スケジュール修正量決定手段と、
    該起動スケジュール修正量決定手段により得られた起動スケジュールの修正量に基づいて、前記起動スケジュールを修正する起動スケジュール修正手段と、
    該起動スケジュール修正手段により得られた起動スケジュールを、前記機器を動作させるための起動スケジュールとして設定する起動スケジュール設定手段と、
    を設けたことを特徴とする火力発電プラントの起動制御システム。
  4. ガスタービンと、該ガスタービンの排ガスを用いて蒸気を発生する排熱回収ボイラと、該排熱回収ボイラにより発生された蒸気により駆動される蒸気タービンとを有する火力発電プラントを起動させるための起動スケジュールを作成し、この起動スケジュールに従って前記プラントを構成する機器を動作させて起動を行う火力発電プラントの起動制御方法において、
    (a)前記起動スケジュールに従って前記プラントを起動したと仮定したときの、前記排熱回収ボイラ及び前記蒸気タービンに発生する熱応力と、前記排熱回収ボイラから排出されるNOx排出量の起動特性を求めるステップと、
    (b)該起動特性の所定の制約条件に対する余裕値を求めるステップと、
    (c)前記起動特性が前記所定の制約条件を満足するような前記起動スケジュールの修正量を、該余裕値と、前記余裕値と前記スケジュールの修正量との関係を定めた所定ファジィルールとを用いてファジィ推論により演算するステップと、
    (d)前記起動スケジュールの修正量に基づいて前記起動スケジュールを修正するステップとを有し、
    前記(a)乃至(d)のステップを所定回数繰り返して実行し、この繰り返して実行する過程で修正された所定数の起動スケジュールの中から、前記熱応力及びNOx排出量が前記所定の制約条件を満足し、かつその起動スケジュールを実行した場合の起動時間が最短となるような最適起動スケジュールを選択し、この最適起動スケジュールに従って前記機器を動作させて起動を行うことを特徴とする火力発電プラントの起動制御方法。
  5. 請求項3に記載の火力発電プラントの起動制御システムにおいて、前記起動スケジュールは、前記ガスタービンの昇速率,定格速度保持時間,初負荷,初負荷保持時間,負荷上昇率,負荷保持時間、及び前記蒸気タービンの高圧タービンバイパス弁の操作速度,中圧タービンバイパス弁の操作速度,低圧タービンバイパス弁の操作速度,高圧加減弁操作速度,中圧加減弁操作速度,低圧加減弁操作速度のうち、少なくとも1つ以上のパラメータにより規定され、更に前記スケジュール修正量決定手段は、該パラメータに対する修正量を演算することを特徴とする火力発電プラント起動制御システム。
  6. 請求項5に記載の火力発電プラントの起動制御システムにおいて、前記所定のファジィルールは、
    前記排熱回収ボイラに発生する熱応力の起動特性の、前記所定の制約条件に対する余裕値と前記パラメータの修正量との関係に基づいて定めたボイラ応力調整ルールと、
    前記蒸気タービンに発生する熱応力の起動特性の、前記所定の制約条件に対する余裕値と前記パラメータ修正量との関係に基づいて定めたタービン応力調整ルールと、
    前記排熱回収ボイラから排出されるNOx排出量の起動特性の、前記所定の制約条件に対する余裕値と前記パラメータ修正量との関係に基づいて定めた排出 NOx調整ルールと、
    を有することを特徴とする火力発電プラントの起動制御システム。
  7. 請求項5に記載の火力発電プラント起動制御システムにおいて、前記所定のファジィルールは、
    前記ガスタービンに関するパラメータを修正の対象とし、前記排熱回収ボイラから排出されるNOx排出量の起動特性の、前記所定の制約条件に対する余裕値と、前記ガスタービンに関するパラメータの修正量との関係を定めた第1の調整ルールと、
    前記第1の調整ルールよりも少ない前記ガスタービンに関するパラメータを修正の対象とし、前記熱応力の起動特性の、前記所定の制約条件に対する余裕値と、前記ガスタービンに関するパラメータの修正量との関係を定めた第2の調整ルールと、
    前記蒸気タービンに関するパラメータを修正の対象とし、前記熱応力の起動特性の、前記所定の制約条件に対する余裕値と、前記蒸気タービンに関するパラメータの修正量との関係を定めた第3の調整ルールと、
    前記第3の調整ルールよりも少ない前記蒸気タービンに関するパラメータを修正の対象とし、前記排熱回収ボイラから排出されるNOx排出量の起動特性の、前記所定の制約条件に対する余裕値と、前記蒸気タービンに関するパラメータの修正量との関係を定めた第4の調整ルールと、
    を有することを特徴とする火力発電プラント起動制御システム。
  8. 請求項3に記載の火力発電プラント起動制御システムにおいて、前記動特性モデルは、前記排熱回収ボイラの熱応力として高圧過熱器出口ヘッダ及び中圧過熱器出口ヘッダに発生するの熱応力を予測し、かつ蒸気タービンの熱応力として高圧及び中圧タービンのロータに発生する熱応力を予測するものであって、前記起動特性評価手段は、前記熱応力予測値に対してはプラント起動過程を複数区間に分割した各区間毎に前記所定の制約条件である運転制限値に対する余裕値を求め、前記排出NOx予測値に対しては、該排出NOxの瞬時値と時間平均値を求め、前記プラント起動過程を複数区間に分割した各区間毎に前記所定の制約条件である環境規制値に対する余裕値を求めることを特徴とする火力発電プラント起動制御システム。
  9. 請求項7に記載の火力発電プラント起動制御システムにおいて、前記各ファジィルールは、前記起動特性評価により予測された起動特性のうち、連続する複数区間の評価結果を条件部に入力し、結論部からは修正対象となる前記パラメータとその修正量を出力するものであって、前記スケジュール修正量決定手段に用いられるファジィ推論は、該各ファジィルールを用いて前記パラメータの修正量を演算することを特徴とする火力発電プラント起動制御システム。
  10. 前記選択された最適起動スケジュールに、排出NOx,起動所要時間,起動に伴うエネルギー損失,機器寿命消費量に対して加重値を掛けることによって、その起動スケジュールの最適性を総合的に評価判定するとともに、季節あるいは一日の時間帯など電力需要や環境保護条件からくる必要性に応じて該加重値の変更を可能としたことを特徴とする請求項2及び4のいずれかに記載の火力発電プラント起動制御方法。
  11. 実際に前記プラントが起動開始後、中央給電指令所からの指令により起動時刻、前記所定の制約条件である運転制限値及び環境規制値が変更されたときに、再度起動起動スケジュールを作成可能にしたことを特徴とする請求項1及び3のいずれかに記載の火力発電プラント起動制御システム。
  12. 実際に前記プラントが起動開始後、該プラントが異常により当初の起動スケジュールから実際の起動がずれたとき、その異常復旧後に再度前記起動スケジュールを作成可能にしたことを特徴とする請求項1及び3のいずれかに記載の火力発電プラント起動制御システム。
  13. 請求項1及び3のいずれかに記載の火力発電プラント起動制御システムにおいて、前記起動スケジュールの開始基準時刻を、ボイラあるいはガスタービン点火時刻,負荷併入時刻,目標負荷到達時刻,定格負荷到達時刻の何れかにしたことを特徴とする火力発電プラント起動制御システム。
  14. 請求項1,3,5,6及び7項のいずれかに記載の火力発電プラント起動制御システムを、ガス化複合サイクル発電プラント、常圧および加圧流動層ボイラ発電プラントに用いて起動を行うことを特徴とする火力発電プラント起動制御システム。
  15. 請求項1及び3に記載の火力発電プラント起動制御システムを、プラント運転訓練用シミュレータにおける起動スケジュール作成手段として用いることを特徴とする火力発電プラント起動制御システム。
JP27089194A 1994-11-04 1994-11-04 火力発電プラント起動制御システム及び起動制御方法 Expired - Lifetime JP3666036B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27089194A JP3666036B2 (ja) 1994-11-04 1994-11-04 火力発電プラント起動制御システム及び起動制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27089194A JP3666036B2 (ja) 1994-11-04 1994-11-04 火力発電プラント起動制御システム及び起動制御方法

Publications (2)

Publication Number Publication Date
JPH08128305A JPH08128305A (ja) 1996-05-21
JP3666036B2 true JP3666036B2 (ja) 2005-06-29

Family

ID=17492415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27089194A Expired - Lifetime JP3666036B2 (ja) 1994-11-04 1994-11-04 火力発電プラント起動制御システム及び起動制御方法

Country Status (1)

Country Link
JP (1) JP3666036B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562371A3 (en) * 2011-08-22 2017-06-21 General Electric Company Emissions prediction system for power generation system
CN109026221A (zh) * 2018-08-01 2018-12-18 国家电投集团河南电力有限公司技术信息中心 一种发电机组状态监控系统、方法及设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4115958B2 (ja) 2004-03-26 2008-07-09 株式会社東芝 プラントの運転スケジュール最適化方法および最適化システム
US8352148B2 (en) * 2008-05-21 2013-01-08 General Electric Company System for controlling input profiles of combined cycle power generation system
JP5050013B2 (ja) * 2009-07-27 2012-10-17 株式会社日立製作所 複合発電プラント及びその制御方法
CN102654768B (zh) * 2012-05-09 2014-02-26 北京华电天仁电力控制技术有限公司 基于规则的电站锅炉燃烧节煤降氮控制方法和装置
EP3260671A1 (en) * 2016-06-21 2017-12-27 General Electric Technology GmbH Turbine control valves dynamic interaction
JP7351678B2 (ja) * 2019-09-03 2023-09-27 三菱重工業株式会社 起動制御装置、起動制御方法およびプログラム
CN113671837B (zh) * 2021-08-24 2024-05-24 华能南京燃机发电有限公司 一种联合循环机组冷态启动NOx排放控制方法和系统
CN114609896B (zh) * 2022-02-25 2024-05-14 中国大唐集团科学技术研究院有限公司西北电力试验研究院 基于模糊规则及控制强度自适应的火电厂脱硝控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562371A3 (en) * 2011-08-22 2017-06-21 General Electric Company Emissions prediction system for power generation system
CN109026221A (zh) * 2018-08-01 2018-12-18 国家电投集团河南电力有限公司技术信息中心 一种发电机组状态监控系统、方法及设备

Also Published As

Publication number Publication date
JPH08128305A (ja) 1996-05-21

Similar Documents

Publication Publication Date Title
CA2914954C (en) Model-based combined cycle power plant load control
EP2067936B1 (en) Steam temperature control in a boiler system using reheater variables
CN102374518B (zh) 使用动态矩阵控制的蒸汽温度控制
US6766646B1 (en) Rapid power producing system and method for steam turbine
JP3666036B2 (ja) 火力発電プラント起動制御システム及び起動制御方法
CN106933202A (zh) 利用基于所估计的状态信息的间歇重新初始化的前馈控制
CN114089795A (zh) 一种基于事件触发的模糊神经网络温度控制系统及方法
JP3333674B2 (ja) プラント運転計画作成方法および装置
JPH08339204A (ja) 火力発電プラント自律適応最適化制御システム
JP3666035B2 (ja) 火力発電プラント自律適応制御システム
Darwish et al. Advanced boiler control system for steam power plants using modern control techniques
CN104685426B (zh) 用于热电厂中的控制和故障分析的优化的方法
Orrala et al. Model predictive control strategy for a combined-cycle power-plant boiler
US5850740A (en) Fluidized bed power plant, and control apparatus and method thereof
JPH08303210A (ja) 火力発電プラントの自律適応最適化制御システム
JP2002106305A (ja) コンバインドサイクル発電プラントの起動制御装置
KR101887971B1 (ko) 복합 화력 발전 설비들의 저 부하 턴다운
JP2004076658A (ja) コンバインドサイクル発電プラントの起動スケジュール策定方法および起動スケジュール策定装置
Nannarone et al. Start-Up Optimization of a CCGT Power Station Using Model Based Gas Turbine Control
JPH08303211A (ja) 火力発電プラント自律適応最適化制御システム
Xie et al. Deep Reinforcement Learning Based Load Control Strategy for Combined Heat and Power Units
JP3234055B2 (ja) 複合発電プラントの系列負荷制御装置
JPH0486359A (ja) コージェネレーションプラントの出力制御装置
Sanchez-Parra et al. Intelligent coordinated control for combined cycle power plants
Strušnik et al. Off-design flow analysis of cogeneration steam turbine with real process data

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term