JP3662951B2 - 液位感知プローブおよび制御回路 - Google Patents

液位感知プローブおよび制御回路 Download PDF

Info

Publication number
JP3662951B2
JP3662951B2 JP15750094A JP15750094A JP3662951B2 JP 3662951 B2 JP3662951 B2 JP 3662951B2 JP 15750094 A JP15750094 A JP 15750094A JP 15750094 A JP15750094 A JP 15750094A JP 3662951 B2 JP3662951 B2 JP 3662951B2
Authority
JP
Japan
Prior art keywords
probe
amplitude
liquid
signal
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15750094A
Other languages
English (en)
Other versions
JPH07146166A (ja
Inventor
ブレイン・エドワード・ラメイ
マリオ・モレノ
Original Assignee
アクゾ・ノベル・エヌ・ベー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクゾ・ノベル・エヌ・ベー filed Critical アクゾ・ノベル・エヌ・ベー
Publication of JPH07146166A publication Critical patent/JPH07146166A/ja
Application granted granted Critical
Publication of JP3662951B2 publication Critical patent/JP3662951B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7287Liquid level responsive or maintaining systems
    • Y10T137/7306Electrical characteristic sensing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Level Indicators Using A Float (AREA)
  • Cookers (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、容器中の液体の表面を検出する方法および装置に関し、さらに詳細には、容器中の液体の表面を検出し、液体の表面に対するプローブの位置を制御するために、自動血液/血漿サンプリング・システムで使用される方法および装置に関する。
【0002】
【従来の技術】
本発明を適用できる自動/血液血漿サンプリング・システムの一例は、たとえば、1989年12月1日に出願され、現在は放棄されている米国特許出願第07/443951号の一部継続出願である、1992年2月11日に出願された米国特許出願第07/833951号に記載されている。この一部継続出願の主題は、引用によって本明細書に合体されている。貫通サンプリング・プローブの一例は、1992年4月27日に出願された米国特許出願第07/874371号で開示されている。この出願の主題は、引用によって本明細書に合体されている。サンプリング・プローブの他の例は、1993年1月12日に発行された米国特許第5178019号で開示されている。この特許の主題は引用によって本明細書に合体されている。ロボット・アーム制御装置に関連するメモリ制御装置の一例は、本出願と同時に出願された米国特許出願(整理番号ORTEK0038)で開示されている。この出願の主題は、引用によって本明細書に合体されている。米国特許出願第07/833951号、米国特許出願第07/874371号および前記本出願の同時出願、ならびに米国特許第5178019号の主題はそれぞれ、本出願と同じ出願人に譲渡されている。
【0003】
血漿や試薬などの流体サンプルをキュベットの反応ウエ ルに自動的に分与する自動サンプル・ハンドリング・システムは既知である。そのような器具は、凝血時間を測定し、他のバイオアッセイを自動的に実施するための生化学分析の分野で有用である。このような器具は、化学検定を自動的に実施するための化学検定の分野でも有用である。血液および血漿のバイオアッセイを実施するための自動サンプル・ハンドリング・システムは、米国特許出願第07/443951号に記載されている。
【0004】
この特定のシステムでは、血液や血漿などの流体サンプルが、試験管などの容器に格納される。該容器は、ゴム製中隔をによって真空密封されており、試験のために測定された量のサンプルを抜き取るには、該中隔を貫通しなければならない。引用によって本明細書に合体された米国特許出願第07/874371号は、貫通させて測定された量の液体をサンプリングするのに適した貫通サンプリング・プローブの例を開示している。
【0005】
米国特許出願第07/443951号のシステムは、サンプル分析の前に流体サンプルおよび試薬が劣化するのを防ぐためにサンプルおよび試薬を比較的低温で格納するために提供された温度調整ハウジングを含む。温度調整ハウジングは通常、流体サンプルおよび試薬を10℃の温度に維持する。実際の分析は一般に、標準的な人間の体温の37℃(98.6゜F)で実施される。したがって、分析の前に流体サンプルおよび試薬を37℃まで加熱しておく必要がある。引用によって本明細書に合体された米国特許第5179019号は、分析の前に流体サンプルおよび試薬を加熱しておくのに有用なサンプル・プローブ装置を開示している。
【0006】
米国特許出願07/443951号の貫通サンプリング・プローブは作動時に、試薬を自動的に吸引して分与するために試薬容器と反応キュベットとの間でプローブを操作するロボット・アームによって上下させられる。サンプルであれ試薬であれ、液体の表面は、プローブの移動を正確に制御するために検出される。基本的に、液体の表面は、自動血液/血漿サンプリング・システムの本体に対するプローブのキャパシタンスの変化を検出することによって検出される。
【0007】
米国カリフォルニア州 SunnyvaleのCAVRO Scientific Instruments,Inc. から供給される現在入手可能な液面感知装置は、少量の液体を正確に感知できず、同時に、サンプリング・プローブを保持する可動ラック・アセンブリ上に容易に取り付けるために寸法が非常に小さくなっている。高感度のCAVRO液面感知装置は、10x75mmのガラス管で試験すると、希釈度1:1000の10μlの生理食塩液を検出することができる。米国ネバダ州RenoのHamiltonによって製造されている他の液位感知装置も、少量の液体を感知せず、同時に、サンプリング・プローブを保持する可動ラック・アセンブリ上に取り付けるのに丁度よい寸法を有する。本発明は、密封中隔を貫通している間でさえ、少量の液体、たとえば、プラスチック製の3ml試薬ビン中の300μlより少ない液量の食塩液の表面を確実に感知する。
【0008】
【発明が解決しようとする課題】
本発明は、バイオアッセイ装置用の貫通サンプリング・プローブなどのプローブが液体の表面と接触したときに液体の表面を正確に感知する。
【0009】
【課題を解決するための手段】
本発明の上記および他の目的は、容器中の液体の表面と接触するためのサンプリング・プローブと、サンプリング・プローブが液体の表面と接触したときに振幅が変化する、定周波数を有する第1の出力信号を生成するためにサンプリング・プローブに結合された発振器回路と、第1の出力信号の振幅を第1の基準振幅と比較して、第1の出力信号の振幅が基準信号に対して変化したときに変化信号を生成するために発振器回路に結合された比較器と、変化信号に応答して、液体の表面に対するサンプリング・プローブの位置を制御する制御装置とを含む、容器中の液体の表面に対するサンプリング・プローブの位置を制御するための、バイオアッセイ用の液位センサ制御回路を提供することによって達成される。
【0010】
他の態様によれば、本発明によるバイオアッセイ装置用の液位センサ制御回路は、第1の出力信号に関して整流された出力信号を生成するために第1の出力信号に結合された整流器も含み、比較器は、整流された出力信号の振幅を第1の基準振幅と比較して変化信号を生成する。
【0011】
本発明のサンプリング・プローブは、密封された容器中の液体をサンプリングするための貫通サンプリング・プローブであってよく、サンプリングされた液体を加熱するためのヒータを含むことができる。さらに、発振器回路および比較器は、サンプリング・プローブを保持するラック・アセンブリに取り付けることができる。
【0012】
本発明の他の態様によれば、液体の表面に対するサンプリング・プローブの位置を制御するための液位センサ制御回路は、サンプリング・プローブが液体の表面と接触していないときに第1の振幅を有し、サンプリング・プローブが液体の表面と接触したときに第1の振幅と異なる第2の振幅を有する、定周波数出力信号を生成するためにサンプリング・プローブに結合された発振器と、定周波数出力信号の整流された出力を生成するために発振器に結合された整流器回路と、フィルタされた信号を生成するために、整流された出力に結合されたフィルタと、定周波数信号の振幅が第1の振幅から第2の振幅に変化したことを検出し、応答で変化信号を生成するためにフィルタに結合された検出回路と、変化信号に応答して、液体の表面に対するサンプリング・プローブの位置を制御する制御回路とを含む。液位センサ制御回路は、発振器の利得を制御するために整流器の出力に結合された利得回路と、定周波数出力信号の整流された出力を増幅するための増幅器とを含むこともできる。
【0013】
本発明の他の態様によれば、サンプリング・プローブが液体の表面と接触したことを検出する方法は、サンプリング・プローブが液体の表面と接触していないときに第1の振幅を有し、サンプリング・プローブが液体の表面と接触したときに第2の振幅を有する、定周波数発振信号を生成するステップと、定周波数信号の振幅が第1の振幅のときに第3の振幅を有し、定周波数信号の振幅が第2の振幅のときに第4の振幅を有するように、定周波数出力信号の出力を整流するステップと、定周波数信号の整流された出力の振幅が第3の振幅から第4の振幅に変化したことを検出するステップと、第3の振幅から、サンプリング・プローブが液体の表面と接触中であることを示す第4の振幅への変化が検出されたことに応答して変化信号を生成するステップとを含む。
【0014】
本発明による方法はさらに、変化信号に応答して液体の表面に対するサンプリング・プローブの位置を制御するステップと、定周波数信号の整流された出力が第3の振幅から第4の振幅に変化したことを検出したときに定周波数信号の第2の振幅を第1の振幅に戻すステップとを含むことができる。
【0015】
【実施例】
図1は、自動血液/血漿サンプリング・システム用のプローブの実施例の概略ブロック図と、該実施例と本発明による液体センサ回路および制御回路との関係を示す。ロボット・アーム10は、たとえば米国特許出願第07/443951号に記載されたように、試薬を自動的に吸引して分与するために、プローブ11を、槽13などの試薬容器の間でキュベット(図示せず)へ操作する。ロボット・アーム10は、矢印12で示された方向に沿ってプローブ11を上下させて、測定された量の液体を液体槽13から取り出し、あるいは該液体を反応キュベットに分与する。一般に、プローブ11は、槽13に浸して、測定された容積の試薬を吸引するための狭い先端14aを有する金属製管14を含む。プローブ11は、尖った先端を有することによって、ゴム製中隔で密閉された容器を貫通し、測定された量の液体を容器から吸引するように適応することもできる。
【0016】
前述のように、ある種の応用分野では、プローブが、試薬が分与されるキュベットに向かってロボット・アーム10によって移動されている間に、プローブ11中の試薬を加熱することが望ましい。このような応用分野では、プローブ11は任意選択のヒータ15を備えている。ヒータ15は、管14に巻き付けられ、本体18と共通の接地を共用する電源17にワイヤ16によって電気的に接続された、コイル・ニクロム線を含むことが好ましい。電源17は、特定の応用分野の要件に応じてDC電源でもAC電源でもよい。
【0017】
測定された量の試薬を槽13から吸引するために、プローブ11が試薬の表面と接触したことを検出する必要がある。前記で論じたように、これは通常、キャパシタンス測定装置を使用して、管14が槽13中の試薬と接触したときに、本体18で形成された接地面に対する管14のキャパシタンスの変化を検出することによって行われる。管14は、本体18に対する第1のキャパシタンスCP を提供する。任意選択のヒータ15を提供すると、ヒータ15は器具本体18と共通の接地を有し、したがって、キャパシタンスに関して本体18の一部になる。したがって、任意選択のヒータ15は管14に対する第2のキャパシタンスC H を提供する。液体槽13は、プローブ11と器具本体18の間に追加キャパシタンスCL を提供する。したがって、プローブ11が液体の表面に接触する前は、キャパシタンス測定装置によって測定される総キャパシタンスCT1は次のとおりである。
【0018】
【数1】
Figure 0003662951
【0019】
任意選択のヒータを提供すると、CH はゼロに等しく、総キャパシタンスCT1はCP である。プローブ11が液体の表面と接触した後、キャパシタンス測定装置によって測定される総キャパシタンスCT2は次のとおりである。
【0020】
【数2】
Figure 0003662951
【0021】
キャパシタンス測定装置によって追加キャパシタンスCL が検出されたことは、プローブ11が容器13中の液体の表面と接触したことを示す。しかし、任意選択のヒータ15によって発生するキャパシタンスCH の存在が非常に大きくてキャパシタンス測定装置がCT1がCL だけ変化したことを感知する能力が制限される恐れがある。
【0022】
本発明の液体センサ回路および液位センサ制御回路は、任意選択のヒータが存在するときでもプローブとシステム本体の間のキャパシタンスの変化を確実に感知する。そればかりでなく、本発明による液位センサ・システムは、密封中隔を貫通する間でさえ、プラスチック製の3ml試薬ビン中の300μlより少ない液量の食塩液の表面を確実に感知する。
【0023】
図2は、プローブ11と、本発明による液位センサ制御回路とを含む、ロボット・アーム10の好ましい実施例を全体的に示す斜視図である。プローブ11は、サンプリング・プローブでも、前述の米国特許出願第07/874371号で開示されたものなどの、医療サンプル収集管を密封するために使用されるゴム製キャップを貫通するための貫通サンプリング・プローブでもよい。プローブ11が貫通サンプリング・プローブの場合、前述の米国特許出願第07/874371号で開示された貫通プローブに従って尖らせることが好ましい。さらに、プローブ11が貫通サンプリング・プローブのときは、容器のキャップを貫通するときに容器中の液体の表面を検出するように適応される。プローブ11は、容器13に入ってそれ自体を液体の表面に対して正確に位置決めする間に、血液や血漿などの、容器13中の導電性液体の液気界面を感知する。
【0024】
プローブ11は、水平親ねじモータ24によって駆動される親ねじ23で水平軸22に沿って制御可能に移動する。プローブ11を軸25に沿って上下させるための垂直移動は、垂直モータ27で駆動されるギア・ラック26と、ピニオン・アセンブリ(図示せず)とによって提供される。モータ24および27はそれぞれ、関連するモータ制御装置から受け取る信号によって選択的に制御される。該モータ制御装置は、本発明の液位センサ制御回路の一部である。モータ制御回路32はたとえば、図3の概略ブロック図に示されている。モータ27は、プローブ11が貫通プローブのときに、密封された容器の中隔を介してプローブ11を駆動するのに十分なトルクを提供する。
【0025】
液位センサ制御回路30は、図3および図4に示されており、液気界面を感知するためにプローブ11に結合されている。液位センサ制御回路の一部は、プローブ11を28で保持するラック・アセンブリに取り付けられたプリント回路30は基板上に位置する。回路30の他の部分は、29で取り付けられたプリント回路基板上に位置する。もちろん、本発明による液位センサ制御回路は、単一のプリント回路基板上に一緒に配置することができる。
【0026】
マイクロコントローラ31は、2軸アーム制御装置であり、すなわち、マイクロコントローラ31および2つのモータ制御装置は、プローブ11を保持するラック・アセンブリの水平位置と、液体の表面に対するプローブの垂直位置とを監視して制御する。マイクロコントローラ31およびモータ制御装置32は、プローブ11の位置を液体センサ回路40から受け取る信号と相関させ(図3および図4)、容器内の液体の高さを判定する。フレックス・ケーブル21は本発明による制御システムの様々な部分間で電気信号を結合する。前述のように、プローブ11には、サンプリングされた流体を反応チャンバ中に分与する前に事前加熱しておくための加熱コイルを取り付けることもできる。
【0027】
図3は、本発明による液体センサ回路40を有する液位センサ制御回路30の概略ブロック図である。プローブ11は、定周波数発振器回路33に結合されている。発振器回路33の定周波数出力は、発振器の整流された出力を生成するために整流回路34に結合されている。整流器回路34の出力は、低域フィルタ35に結合されており、発振器の振幅レベルを制御するために発振器にフィードバックされる。比較器36も、発振器回路33の整流された出力の振幅変化を検出するために整流器回路34の出力に結合されている。比較器36の出力は、振幅の変化が検出されたときに割込みパルスを生成するために単安定マルチバイブレータ37に結合されている。
【0028】
割込みパルスは、プローブ11が液体の表面と接触したことを示し、制御回路は、分析すべき所定の量の液体を吸引するのにプローブ11を液体の表面からどれだけ下降させられるかを判定することによって応答する。マイクロコントローラ31は、プローブ11の位置を制御するための制御信号をモータ制御装置32に提供する。モータ制御装置32は、適当な駆動信号をドライバ38に出力することによって、マイクロコントローラ31から出力された制御信号に応答する。モータ27は、ドライバ38からの出力信号に応答してプローブ11を垂直に駆動する。モータ27に関連するコード・ホイル39は、プローブ11の垂直位置を監視するための信号をモータ制御装置32に出力する。
【0029】
図4は、本発明による液体センサ回路40の細部を示す概略図である。発振器回路33は、定周波数で発振するようにL101、C153、およびC155によって形成されたタンク回路を含むコルピッツ発振器として構成される。タンク回路は、プローブ11に容量結合されている。プローブ11は、液体センサ回路40への単極入力であり、発振器回路33のタンク回路に容量結合されている。プローブ11が、本発明の状況では液体である導電材料に接触すると、プローブと、自動血液/血漿サンプリング・システムの本体18で形成された接地面との間のキャパシタンス増加によって、定周波数発振器出力の振幅がわずかに小さくなる。この振幅の変化は検出され、出力がマイクロコントローラ31への割込みを活動化する単安定マルチバイブレータをトリガするために使用される。
【0030】
図4を参照すると、発振器回路33は、それぞれコルピッツ発振器33およびエミッタ・ホロワとして構成されたトランジスタQ105およびQ106を含む。もちろん、発振器33は、発振器の利得が制御可能に調整できるかぎり、ピアス発振器回路構成やハートレー発振器回路構成などの他の周知の発振器回路として構成することができる。コルピッツ発振器のタンク回路は、以下の数式によって与えられる定共振周波数を有するL101、C153、およびC155によって形成される。
【0031】
【数3】
Figure 0003662951
【0032】
この特定の周波数は、標準構成要素値を使用する容量性液体感知の最適感度、すなわち、所与の最小量の液体に対する液体センサ回路40からの最大応答を提供する。液体センサ回路40の構成要素に利用可能な空間に応じて、たとえば400KHzないし1MHzの他の周波数も使用することができる。Q105のコレクタで利用可能な信号は、発振器に正のフィードバックを提供するようにL101およびC155に結合されている。+5Vと接地の間に結合された抵抗器R154およびR145は、トランジスタQ105のベースのバイアス・レベルを設定する。+5V電源とQ105のコレクタとの間に結合された抵抗器R156と、Q105のエミッタと接地の間に結合されたR158とはそれぞれ、トランジスタQ105のコレクタとエミッタ用のバイアス・レベルを設定する。エミッタ抵抗器R158は、発振器のAC利得も制限する。トランジスタQ105は、たとえばTHPT3904などの任意の適当なトランジスタであってよい。
【0033】
MOSFETトランジスタQ108のドレーンは、Q105のエミッタに結合されているが、トランジスタQ108のソースはキャパシタC156を介して接地に結合されている。トランジスタQ108は、C156を介してAC信号をバイパスすることによって、トランジスタQ108のゲートに印加される電圧が増加するにつれて、発振器のAC利得を増加させるように作動する。増幅器のフィードバック・ネットワーク利得およびオープン・ループ利得の積が1を超えると、回路53が発振する。トランジスタQ108は、たとえば2N7002などの任意の適当なトランジスタであってよい。
【0034】
トランジスタQ106は、発振器出力を緩衝するためのエミッタ・ホロワとして構成される。トランジスタQ106のベースは、トランジスタQ105のコレクタに結合されている。トランジスタQ106のコレクタは+5V電源に結合されているが、エミッタはエミッタ抵抗器R155を介して接地に結合されている。ノードZ105は、トランジスタQ106のエミッタに結合されている。安定状態では、ノードZ105でのAC信号レベルは約1.6Vピーク・ピーク値である。
【0035】
整流器回路34は、キャパシタC158と、ダイオードD112およびD113と、バッファU127Bと、増幅器U127Aとを含む。キャパシタC158は、トランジスタQ106のエミッタからの発振器信号をダイオードD112およびD113に結合する。ダイオードD112およびD113はそれぞれ、キャパシタC158を介して結合されたAC電圧を半波整流するためのダイオードとして構成された、THPT3904などのトランジスタである。もちろん、D112およびD113用のトランジスタの代わりにダイオードを使用することができ、全波整流回路構成を使用することもできる。抵抗器R157およびキャパシタC162は、半波整流信号をフィルタして約350mVのDCレベルをノードZ104で提供するためにダイオードD112およびD113に接続されている。バッファU127Bは、整流された出力を緩衝する。図のように、バッファU127Bは、単位利得用に構成されたLM356などの作動可能な増幅器であるが、出力が容量性負荷で少なくとも3.7Vまでスイングする場合、たとえば専用集積回路バッファやエミッタ・ホロワとして構成されたトランジスタなど、どんな単位利得回路構成でも使用することができる。
【0036】
バッファU127Bの出力は、抵抗器R149を介して増幅器U127Aの反転入力に接続されている。増幅器U127Aは、LM356などの集積回路作動可能増幅器で形成しても、本発明の目的に十分な利得帯域幅積およびDCオフセット性能が提供されるように離散構成要素で形成してもよい。増幅器U127Aの出力は、バッファU127Bの出力が約−5.6だけ増幅されるように、負のフィードバックを提供する並列に組み合わされた抵抗器R146とC157を介して再び反転入力に結合されている。抵抗器R152およびR150は、約800mVの基準電圧を生成するために+5Vと接地の間に結合されている。この基準電圧は、増幅器U127Aの非反転入力に結合され、約6.6だけ増幅される。言い換えると、U127Bからの緩衝された出力電圧は、800mV基準レベルと比較され、差分が増幅される。したがって、発振器33の整流された出力が減少すると、U127Aの出力が増加する。
【0037】
増幅器U127Aの出力は、低域フィルタ35、R147、およびC159によってフィルタされ、MOSFETトランジスタQ108のゲートに結合されている。トランジスタQ108のゲートに印加されるフィルタされた電圧が増加すると、AC信号が公称安定状態レベルに戻るまで発振器のAC利得が増加する。すなわち、Q105のエミッタでのAC信号を接地に分流し、コルピッツ発振器のループ利得を増加させる、低域フィルタ35の出力が増大するにつれて、トランジスタQ108の導電性が増大する。低域フィルタ35の出力は、サーボ機構によって発振器出力を固定レベルにするように働き、プローブおよびラック・システムの機械的振動または任意選択のプローブ・ヒータの存在、あるいはその両方によって発生する、プローブ入力での電気インピーダンスの変化を調整する。
【0038】
低域フィルタ35のR147およびC159と、増幅器U127Aのフィードバック・ループ中のR146およびC157とによって生成されるサーボ・ループ中のRC時間定数により、U127Aの出力は、プローブ11が導電材料と接触して発振器回路33の定発振周波数を変化させるときに発生する遷移を含む。この振幅の遷移は比較器36に結合されている。
【0039】
比較器36は、比較器として構成された、キャパシタC148と、増幅器U128Bと、増幅器U128Aとを含む。振幅の遷移は、C148を介して増幅器U128BにAC結合されており、該増幅器で、該遷移はたとえば約11だけ増幅され、増幅器U128Aの反転入力に結合される。抵抗器ディバイダ・ネットワークR159およびR160は、増幅器U128Aの非反転入力に結合された約275mVの基準電圧を生成する。増幅器U128Bの出力が275mVの基準レベルを上回るとき、比較器として構成された増幅器U128Aの出力はローになり、単安定マルチバイブレータ37をトリガする。
【0040】
マルチバイブレータ37は、液体の表面が感知されたことを伝える、マイクロコントローラ31の割込み入力に結合された10ミリ秒のパルス出力を生成するように構成された、たとえばLM555で形成される。もちろん、集積回路で形成するか、それとも離散構成要素で形成するかにかかわらず、適切なパルスを生成する、増幅器U128Aの出力に応答するマルチバイブレータ回路ならどれでもマルチバイブレータ37に使用することができる。
【0041】
液体センサ回路40用の+5V電源は、任意選択のプローブ・ヒータに電力を供給するためにも使用される+15V電源から導かれる。電圧基準U129は、自動血液/血漿サンプリング・システムのディジタル回路によって生成される電気雑音から液体センサ回路40を絶縁し、擬液気界面割込み信号を発生させる+15V電源上に出現させるための、安定な+5V電源を提供する。電圧基準U129はまた、プローブ・ヒータが活動状態のときにプローブ・ヒータを+15V電源に断続的に接続することによって+15V電源上に生成される電気雑音から液体センサ回路40を絶縁する。プローブ・ヒータは、さらに擬割込み信号を回避するために、「move to liquid」コマンドが実行されたときにマイクロコントローラ31によってしばらくの間ディスエーブルされる。液気界面が感知された後、あるいはプローブ11の最大シーク距離が達成されたとき、ヒータがイネーブルされる。
【0042】
液体センサ回路40を使用して、プローブ・アセンブリのホーム位置を見つけることもできる。プローブ・アセンブリの行程の上端に、接地されたスプリング・ピンを取り付ける。プローブ・アセンブリ上のポストがこのピンと接触すると、発振器33の振幅が小さくなり、液体センサ回路40は割込みパルスを生成する。
【0043】
液体センサ回路40は、ラック・アセンブリ保持プローブ11上で図2の28に取り付けられるように、表面取付け技術を使用して小形のアセンブリが得られるように製造することが好ましい。しかし、本発明による制御回路全体またはその一部は、表面取付け技術によって製造することができ、あるいはそのために、応用分野特有の集積回路(ASIC)であってよい。
【0044】
現在本発明の好ましい実施例とみなされるものについて説明したが、当業者には、本明細書に記載され、添付の特許請求の範囲で定義された、本発明から逸脱せずに、前記実施例で述べた構造、比率、および条件に多数の変更を加えられることが理解されよう。
【図面の簡単な説明】
【図1】プローブと、本発明による液体センサ制御回路との一実施例の概略ブロック図である。
【図2】プローブと、本発明による液位センサ制御回路とを含むロボット・アームの斜視図である。
【図3】本発明による液位センサ制御回路の概略ブロック図である。
【図4】本発明による液位センサ制御回路の概略図である。
【符号の説明】
10 ロボット・アーム
11 プローブ
13 槽
14 金属製管
15 任意選択のヒータ
17 電源
18 本体
23 親ねじ
24 親ねじモータ
26 ギヤ・ラック
30 液位センサ制御回路
32 モータ制御装置
40 液体センサ回路

Claims (19)

  1. 容器中の液体の表面と接触するためのプローブと、
    プローブに結合された、振幅と定周波数とを有する第1の出力信号を生成するための発振器回路であって、フィルタ手段が前記発振器回路と通信し、第1の出力信号の振幅を制御することによって発振器の出力信号を一定のレベルにサーボ制御し、プローブが液体の表面と接触したときに第1の出力信号の振幅が容量の変化に応答して変化する発振器回路と、
    発振器回路に結合された、第1の出力信号を第1の基準振幅と比較し、第1の出力信号の振幅が基準信号に対して変化したときに変化信号を生成するための比較器であって、変化信号はプローブによって検出された液体の表面を表示する比較器とを備えることを特徴とする、容器中の液体の表面を感知するための液位センサ回路。
  2. さらに、第1の出力信号に結合された、第1の出力信号に関する整流された出力信号を生成するための整流器を備え、比較器が、整流された出力信号を第1の基準振幅と比較して変化信号を生成することを特徴とする、請求項1に記載の液位センサ回路。
  3. プローブが、サンプリング・プローブであり、プローブと共に含まれるサンプリングされた液体を加熱するためのヒータを含むことを特徴とする、請求項1に記載の液位センサ回路。
  4. 発振器回路および比較器が、プローブを保持するラック・アセンブリに取り付けられることを特徴とする、請求項1に記載の液位センサ回路。
  5. 変化信号に応答して液体の表面に対するプローブの位置を制御するための制御装置をさらに備えることを特徴とする、請求項1に記載の液位センサ回路。
  6. プローブが、密封された容器のシールを貫通し、密封された容器中の液体をサンプリングするための貫通サンプリング・プローブであり、制御装置が、変化信号に応答して、密封された容器中の液体の表面に対するプローブの位置を制御することを特徴とする、請求項に記載の液位センサ回路。
  7. 前記フィルタが低域フィルタである、請求項1に記載の液位センサ回路。
  8. プローブに結合された、プローブが液体の表面と接触していないときに第1の振幅を有し、プローブが液体の表面と接触したときに容量の変化に応答して第1の振幅と異なる第2の振幅を有する、定周波数出力信号を生成するための発振器と、
    発振器に結合された、定周波数出力信号の整流された出力を生成するための整流器手段と、
    整流器手段と発振器との間に結合された、発振器の出力信号を出力信号の第1の振幅に制御することによって固定されたレベルにサーボ制御するためのフィルタと、
    整流器手段に結合された、定周波数信号の振幅が第1の振幅から第2の振幅に変化したことを検出し、応答で変化信号を生成して検出された液体の表面を示すための検出器手段とを備えることを特徴とする、液体の表面に対するプローブの位置を感知するための液位センサ回路。
  9. さらに、整流器の出力に結合された、発振器の利得を制御するための利得制御回路を備えることを特徴とする、請求項に記載の液位センサ回路。
  10. プローブがサンプリング・プローブであり、プローブと共に含まれるサンプリングされた液体を加熱するためのヒータを含むことを特徴とする、請求項に記載の液位センサ回路。
  11. 整流器が、定周波数出力信号の整流された出力を増幅するための増幅器を含むことを特徴とする、請求項に記載の液位センサ回路。
  12. 発振器、整流器手段、フィルタ、および検出器手段が、サンプリング・プローブを保持するラック・アセンブリに取り付けられていることを特徴とする、請求項に記載の液位センサ回路。
  13. 変化信号に応答して液体の表面に対するプローブの位置を制御する 制御装置手段をさらに備える、請求項8に記載の液位センサ回路。
  14. ローブが、密封された容器のシールを貫通し、密封された容器中の液体をサンプリングするための貫通サンプリング・プローブであり、制御装置手段が、変化信号に応答して、密封された容器中の液体の表面に対するサンプリング・プローブの位置を制御することを特徴とする、請求項13に記載の液位センサ回路。
  15. 前記フィルタが低域フィルタである、請求項8に記載の液位センサ回路。
  16. プローブが液体の表面と接触していないときに第1の振幅を有し、プローブが液体の表面と接触したときに容量の変化に応答して第2の振幅に変化する、定周波数発振信号を発振器によって生成するステップと、
    発振信号を発振出力信号の第1の振幅に制御することによって固定されたレベルにサーボ制御するための発振器に結合されたフィルタによって、発振信号をフィルタリングするステップと、
    定周波数信号の振幅が第1の振幅のときに第3の振幅を有し、定周波数信号の振幅が第2の振幅のときに第4の振幅を有するように、フィルタに結合された整流器によって定周波数出力信号の出力を整流するステップと、
    定周波数信号の整流された出力の振幅が第3の振幅から第4の振幅に変化したことを検出するステップと、
    第3の振幅から、プローブが液体の表面と接触中であることを示す第4の振幅への変化を検出したことに応答して変化信号を生成するステップとを備えることを特徴とする、プローブが液体の表面と接触したことを検出する方法。
  17. さらに、変化信号に応答して、液体の表面に対するプローブの位置を制御するステップを備えることを特徴とする、請求項16に記載の、プローブが液体の表面と接触したことを検出する方法。
  18. プローブが、密封された容器中の液体をサンプリングするための貫通サンプリング・プローブであり、さらに、密封された容器中の液体の表面に対するプローブの位置を制御するステップを備えることを特徴とする、請求項17に記載の、プローブが液体の表面と接触したことを検出する方法。
  19. さらに、定周波数信号の整流された出力の振幅が第3の振幅から第4の振幅に変化したときに、定周波数信号の第2の振幅を第1の振幅に戻すステップを備えることを特徴とする、請求項16に記載の、プローブが液体の表面と接触したことを検出する方法。
JP15750094A 1993-07-09 1994-07-08 液位感知プローブおよび制御回路 Expired - Fee Related JP3662951B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US088656 1993-07-09
US08/088,656 US5493922A (en) 1993-07-09 1993-07-09 Liquid level sensing probe and control circuit

Publications (2)

Publication Number Publication Date
JPH07146166A JPH07146166A (ja) 1995-06-06
JP3662951B2 true JP3662951B2 (ja) 2005-06-22

Family

ID=22212636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15750094A Expired - Fee Related JP3662951B2 (ja) 1993-07-09 1994-07-08 液位感知プローブおよび制御回路

Country Status (13)

Country Link
US (1) US5493922A (ja)
EP (1) EP0633456B1 (ja)
JP (1) JP3662951B2 (ja)
KR (1) KR100434818B1 (ja)
AT (1) ATE237795T1 (ja)
AU (1) AU678248B2 (ja)
CA (1) CA2126823C (ja)
DE (1) DE69432501T2 (ja)
DK (1) DK0633456T3 (ja)
ES (1) ES2196017T3 (ja)
FI (1) FI943270A (ja)
PT (1) PT633456E (ja)
ZA (1) ZA944646B (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879628A (en) * 1996-05-06 1999-03-09 Helena Laboratories Corporation Blood coagulation system having a bar code reader and a detecting means for detecting the presence of reagents in the cuvette
JP3158054B2 (ja) * 1996-07-19 2001-04-23 株式会社日立製作所 液体採取装置
US5866426A (en) * 1996-12-17 1999-02-02 Akzo Nobel N.V. Device and method for determining liquid-probe contact
US6024249A (en) * 1997-06-27 2000-02-15 Taiwan Semiconductor Manufacturing Company Fluid delivery system using an optical sensor to monitor for gas bubbles
JP3062481B2 (ja) 1997-11-19 2000-07-10 グルポ グリフォルス,エス.エー. 実験室試験を自動的に行う装置
ES2132034B1 (es) * 1997-11-19 2000-03-01 Grifols Grupo Sa Dispositivo para la manipulacion y deteccion de nivel de liquidos.
US5992447A (en) * 1998-09-04 1999-11-30 Miller; Russell Device for filling vinyl lined pools
EP0990908A1 (de) * 1998-09-30 2000-04-05 F. Hoffmann-La Roche Ag Analysenautomat mit Mitteln zur Überwachung von Pipettiervorgängen
US6604054B2 (en) 2000-02-29 2003-08-05 Gen-Probe, Inc. Method of detecting fluid flow through a conduit
CA2342023C (en) * 2000-04-10 2007-07-03 Randox Laboratories Ltd. Paramagnetic particle detection
US20040084065A1 (en) * 2002-11-04 2004-05-06 Edelmann David Charles Systems and methods for controlling warewasher wash cycle duration, detecting water levels and priming warewasher chemical feed lines
US7222526B2 (en) * 2004-06-17 2007-05-29 Ortho-Clinical Diagnostics, Inc Liquid measurements using capacitive monitoring
EP1817541B8 (en) * 2004-11-09 2019-09-18 PerkinElmer Health Sciences, Inc. Methods and systems for determining a position of a probe
US7150190B2 (en) * 2005-03-21 2006-12-19 Dade Behring Inc. Method and apparatus for capacitively determining the uppermost level of a liquid in a container
US8296088B2 (en) 2006-06-02 2012-10-23 Luminex Corporation Systems and methods for performing measurements of one or more materials
KR100794125B1 (ko) * 2006-07-27 2008-01-10 웅진코웨이주식회사 비접촉식 수위 제어 장치
US7814788B2 (en) 2006-10-20 2010-10-19 Abbott Laboratories, Inc. Liquid level sensor
EP1947463A1 (en) * 2007-01-16 2008-07-23 Roche Diagnostics GmbH Collection of liquid analytical samples for clinical analytical purpose
US7804599B2 (en) * 2008-07-24 2010-09-28 MGM Instruments, Inc. Fluid volume verification system
WO2010063026A1 (en) * 2008-11-28 2010-06-03 Ametek, Inc. Apparatus for high precision measurement of varied surface and material levels
CN101858770B (zh) * 2009-04-09 2013-04-24 深圳迈瑞生物医疗电子股份有限公司 液面检测装置及加样系统
GB201015009D0 (en) 2010-09-09 2010-10-20 Randox Lab Ltd Capacitive liquid level sensor
ITMI20111313A1 (it) * 2011-07-14 2013-01-15 Carpigiani Group Ali Spa Macchina per preparazione di gelato
US9599501B2 (en) * 2011-12-29 2017-03-21 Abbott Laboratories Devices and systems for liquid level detection in hematology instruments, and methods related thereto
US9521941B2 (en) 2012-08-21 2016-12-20 Premark Feg L.L.C. Warewash machine chemical sensor and related system and method
JP6040733B2 (ja) * 2012-11-27 2016-12-07 東ソー株式会社 検知機能を有した試料分注装置
WO2014123519A1 (en) * 2013-02-06 2014-08-14 Empire Technology Development Llc Devices, systems, and methods for detecting odorants
US10240966B2 (en) 2013-07-12 2019-03-26 Siemens Healthcare Diagnostics Inc. Fluid level detection system and method
US20160097670A1 (en) * 2014-10-01 2016-04-07 Honeywell International Inc. Resolution mode switching for pulsed radar
CN104697605A (zh) * 2015-03-19 2015-06-10 北京中航赛维生物科技有限公司 一种液面智能感应电路及其装置
CH711157A2 (de) * 2015-06-02 2016-12-15 Tecan Trading Ag Verfahren zur Detektion einer Schaumgrenze und entsprechend ausgestattete Vorrichtung.
CN106289448A (zh) * 2015-06-11 2017-01-04 北京勤邦生物技术有限公司 一种液位检测预警装置
WO2017223214A1 (en) * 2016-06-22 2017-12-28 Abbott Laboratories Liquid level sensing apparatus and related methods
US11819890B2 (en) * 2016-12-27 2023-11-21 Hitachi High-Tech Corporation Nozzle cleaner and automatic analyzer using the same
CN108107929B (zh) * 2018-02-06 2023-11-10 欣灵电气股份有限公司 液位控制器
JP2022142208A (ja) * 2021-03-16 2022-09-30 キヤノンメディカルシステムズ株式会社 自動分析装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173893A (en) * 1976-10-12 1979-11-13 Hedrick Geoffrey S Fluid quantity indicator
US4169543A (en) * 1977-10-20 1979-10-02 Keystone International, Inc. Amplitude responsive detector
US4380091A (en) * 1978-11-13 1983-04-19 Lively Olin A Control circuitry for water level control of pools
US4559507A (en) * 1983-09-01 1985-12-17 Simmonds Precision Products, Inc. Controlled hybrid microcircuit oscillator
US4736638A (en) * 1985-12-20 1988-04-12 Beckman Instruments, Inc. Liquid level sensor
US4912976A (en) * 1987-06-26 1990-04-03 Beckman Instruments, Inc. Liquid level sensing apparatus
JP2582795B2 (ja) * 1987-08-10 1997-02-19 株式会社東芝 液面検知装置
US4943353A (en) * 1988-03-10 1990-07-24 Pure Water, Inc. Control for modular water distiller
US5005407A (en) * 1988-10-11 1991-04-09 Level Electronics, Inc. Fluid level sensing system
US5083470A (en) * 1990-01-18 1992-01-28 E. I. Du Pont De Nemours And Company Capacitive liquid level sensor
US5216926A (en) * 1990-04-18 1993-06-08 E. I. Du Pont De Nemours And Company Closed and open tube sampling apparatus
US5130254A (en) * 1990-05-25 1992-07-14 E. I. Du Pont De Nemours And Company Method for pipetting liquid from a sealed container
US5178019A (en) * 1991-03-26 1993-01-12 Akzo N.V. Heated liquid sampling probe for an automated sampling apparatus
CA2109943A1 (en) * 1991-06-13 1992-12-23 Herbert S. Chow Automated specimen analyzing apparatus and method
US5365783A (en) * 1993-04-30 1994-11-22 Packard Instrument Company, Inc. Capacitive sensing system and technique

Also Published As

Publication number Publication date
DE69432501T2 (de) 2004-01-08
AU6736194A (en) 1995-01-19
CA2126823A1 (en) 1995-01-10
FI943270A (fi) 1995-01-10
ATE237795T1 (de) 2003-05-15
DK0633456T3 (da) 2003-05-19
ES2196017T3 (es) 2003-12-16
AU678248B2 (en) 1997-05-22
FI943270A0 (fi) 1994-07-08
ZA944646B (en) 1995-02-13
KR100434818B1 (ko) 2004-10-20
EP0633456A1 (en) 1995-01-11
EP0633456B1 (en) 2003-04-16
DE69432501D1 (de) 2003-05-22
JPH07146166A (ja) 1995-06-06
PT633456E (pt) 2003-09-30
US5493922A (en) 1996-02-27
CA2126823C (en) 2004-08-24
KR960014912A (ko) 1996-05-22

Similar Documents

Publication Publication Date Title
JP3662951B2 (ja) 液位感知プローブおよび制御回路
EP0645017B1 (en) Liquid dispensing system
EP1261876B1 (en) Fluid dispense and liquid surface verification system
US5866426A (en) Device and method for determining liquid-probe contact
AU2001245365A1 (en) Fluid dispense and liquid surface verification system and method
JPH04218726A (ja) 容量性液体境界面センサ
JPH0514889U (ja) 試薬分取装置における泡検知装置
EP0694784B1 (en) Liquid sampling apparatus
US6107810A (en) Analyzer with function of detecting liquid level
JP3421556B2 (ja) 液面検出機能を備えた分析装置
AU2005211572A1 (en) Fluid dispense and fluid surface verification system and method
JPH08297043A (ja) 液面検出装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees