JP3661704B2 - Multilayer ceramic substrate - Google Patents

Multilayer ceramic substrate Download PDF

Info

Publication number
JP3661704B2
JP3661704B2 JP07995292A JP7995292A JP3661704B2 JP 3661704 B2 JP3661704 B2 JP 3661704B2 JP 07995292 A JP07995292 A JP 07995292A JP 7995292 A JP7995292 A JP 7995292A JP 3661704 B2 JP3661704 B2 JP 3661704B2
Authority
JP
Japan
Prior art keywords
conductor layer
multilayer ceramic
ceramic substrate
thickness
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07995292A
Other languages
Japanese (ja)
Other versions
JPH05283863A (en
Inventor
広次 谷
充良 西出
一仁 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP07995292A priority Critical patent/JP3661704B2/en
Publication of JPH05283863A publication Critical patent/JPH05283863A/en
Application granted granted Critical
Publication of JP3661704B2 publication Critical patent/JP3661704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、複数のセラミック層と複数の導体層を積層した多層セラミック基板に関する。
【0002】
【従来の技術と課題】
従来より、1000℃以下で焼結する低温焼結セラミックシートの表面に、導電性ペーストを印刷等の手段を用いて塗布した後、このセラミックシートを複数枚積み重ねて圧着し、焼成して多層セラミック基板としたものが知られている。導電性ペーストを焼成してなる導体層の厚さは、6〜10μm程度(蛍光X線測定器による測定値である。以下、厚さの数値は蛍光X線測定器による測定値とする。)である。
【0003】
ところで、セラミックシートと導電性ペーストは同時焼成されるので、両者の焼結温度及び収縮率の違いから、セラミック層と導体層の収縮応力歪が多層セラミック基板の内部に発生する。すなわち、多層セラミック基板において、導体層が偏在している部分や構造的に弱い部分に、基板のそり、変形が発生し易かった。
【0004】
そこで、本発明の課題は、焼成時の収縮応力歪が少なく、そりや変形のない多層セラミック基板を提供することにある。
【0005】
【課題を解決するための手段と作用】
以上の課題を解決するため、本発明に係る多層セラミック基板は、導電性ペーストによる複数の導体層が、厚さが異なる少なくとも2種類の導体層にて構成され、かつ、薄い方の導体層の厚さが0.8〜5μmの範囲内であるとともに、占有面積が広く、収縮応力歪を受け易い導体層を前記薄い方の導体層で構成したことを特徴とする。
多層セラミック基板が、例えば厚みの異なる2種類の導体層を備え、薄い方の導体層は0.8〜5μmの厚さを有し、厚い方の導体層は従来の導体層と同じ厚さの6〜10μmの厚さを有するとする。そして、占有面積が広く、収縮応力歪を受け易いシールド用導体層及びコンデンサ用導体層等、あるいは、構造的に弱いキャビティ部の配線用導体層等に対して薄い方の導体層を使用することにより、導体層とセラミック層の収縮応力歪が緩和される。なぜなら、薄い方の導体層は、従来の厚さの導体層と比較してセラミック層に追随して挙動し易く、焼成時の収縮応力が小さいからである。
【0006】
また、占有面積が狭く、収縮応力歪を受けにくいコイル用導体層等に対して厚い方の導体層を使用することにより、多層セラミック基板の電気特性が確保される。
【0007】
【実施例】
以下、本発明に係る多層セラミック基板の実施例を添付図面を参照して説明する。
図1に示すように、多層セラミック基板1は、キャビティ部2、コイル部4、コンデンサ部6を内蔵したものである。キャビティ部2は、図示したIC部品60や表面波フィルタあるいはその他の部品が収納された空洞を備えている。このキャビティ部2はセラミックシート10,11,12,13,14と配線用導体層32,33,34,35を交互に積層したものである。
【0008】
コイル部4はセラミックシート16,17とコイル用導体層38を交互に積層したものである。
コンデンサ部6はセラミックシート18,19,20,21とコンデンサ用導体層39,40,41,42を交互に積層したものである。
キャビティ部2、コイル部4及びコンデンサ部6は、セラミックシート15,22及びボンディング用導体層36、シールドグランド用導体層37,43と共に、セラミックシートと導電層が交互に積層されるように配設されている。
【0009】
シールドグランド用導体層37の表面には、IC部品60が載置されている。IC部品の底面に設けた接続電極61は導体層37にダイボンドされており、上面に設けた接続電極63は金線64を介してボンディング用導体層36の表面にワイヤボンディングされている。
多層セラミック基板1の上面には外部電極31、側面には外部電極50、底面には外部電極51が設けられている。
【0010】
次に、以上の構成からなる多層セラミック基板1の製造手順について説明する。
セラミックシート10〜22の材料として、例えばBaO−Al23−SiO2系の材料等を準備し、この材料を粉砕して溶剤と混練してグリーンシートを作製する。各グリーンシートの表面には、後述の印刷等の方法を用いて導電性ペーストを導体層32〜43に要求される機能に適した厚さにて塗布する。導電性ペーストの材料としては、Cu,Ni等の卑金属、又は、Au,Ag,Ag−Pd,Ag−Pt,W等の貴金属(平均粒径1〜3μm、粒径範囲0.1〜10μmのもの)からなる導電成分と、エトセル系又はアクリル系等のワニス樹脂と、テレピネオール系等の溶剤とを混練したものが使用される。なお、内部導体層用の導電性ペーストであるため、ガラス成分を含まないものが使用される。
【0011】
導電性ペーストを塗布されたセラミックシート10〜14は、IC、表面波フィルタ、その他の部品等を収納するための空洞を形成するため、打ち抜き加工される。
次に、各セラミックシート10〜22は積み重ねられ、圧着され積層体を形成する。この積層体の表面に外部電極31,50,51を印刷等の手段にて形成した後、1000℃以下の温度で低温焼成して製品とする。
【0012】
次に、各導体層32〜43の厚さコントロールの方法について説明する。
各導体層32〜43の厚さのコントロール方法としては、例えば導電性ペーストの導電成分の含有率を変更させる方法がある。すなわち、導電性ペーストの導電成分の含有率を減少させると、導電性ペースト中の固形分が減少して液体分が増加する。焼結の際は液体分は蒸発し、固形分だけが残存して導体層を形成するので導体層の厚さは薄くなる。導電性ペーストの導電成分の含有率を80wt%から10〜50wt%とすることにより、導体層の厚さを6〜10μmから0.8〜5μmにすることができる。
【0013】
また、別の方法として、導電性ペーストは通常のものを用い、印刷する際の条件を変更して各導体層32〜43の厚さをコントロールする方法がある。例えば、表1に示すように、印圧、スキージスピード、スクリーン板と印刷面との隙間寸法、スクリーンの種類を変更することにより、導体層の厚さを6〜10μmから3〜6μmにすることができる。
【0014】
【表1】

Figure 0003661704
【0015】
次に、導電性ペーストの導電成分の含有率を変更させて、各導体層32〜43の厚さが異なる多層セラミック基板の試験結果を表2に示す。
【0016】
【表2】
Figure 0003661704
【0017】
表2において導電性ペーストの欄に表示されている「A」はキャビティ部2の配線用導体層32〜35、「B]はボンディング用導体層36、「C]はシールドグランド用導体層37,43、「D]はコイル部4のコイル用導体層38、[E」はコンデンサ部6のコンデンサ用導体層39〜42を表しており、試験結果の欄に表示されている「○」印は合格、「×」印は不合格、「△」印は不合格ではあるが不具合が軽微な場合を表している。なお、表2には比較のため、従来の多層セラミック基板の試験結果を合わせて示している。そして、導電性ペーストの導電成分含有率が90wt%,80wt%,70wt%,60wt%,50wt%,30wt%であるとき、それぞれによって形成される導体層の厚さは8〜15μm、6〜10μm、5〜9μm、3〜7μm、1〜5μm、0.8〜3μmとされる。
【0018】
表2には、キャビティ部2の配線用導体層32〜35の厚さを薄くするにつれて、キャビティ部2の変形量が小さくなることが示されている。また、ボンディング用導体層36の厚さを厚くするにつれてボンディング性が向上することが示されている。さらに、コイル部4のコイル用導体層38の厚さを厚くするにつれて電気特性が向上することが示されている。
【0019】
以上の試験結果から、各導体層32〜43の好ましい厚さをその効果と合わせて表3に示す。表3における「A」、「B」、「C」、「D」、「E」は、表2中の「A」〜「E」と同様の内容を表わしている。
【0020】
【表3】
Figure 0003661704
【0021】
キャビティ部2の配線用導体層32〜35、コンデンサ部6のコンデンサ用導体層39〜42及びシールドグランド導体層37,43の厚さを0.8〜5μmにすることにより、キャビティ部2の変形量や多層セラミック基板1のそり量を小さくすることができる。また、ボンディング用導体層36の厚さを5〜10μmにすることにより、ボンディング性が向上する。一方、コイル部4のコイル用導体層38は、占有面積が狭く、収縮応力歪も受けにくいため、逆に厚さを6〜15μmと厚くして抵抗値を低くし、電気特性を向上させる。こうして、焼成時の収縮応力歪が少なく、そりや変形のない多層セラミック基板が得られる。
【0022】
なお、本発明に係る多層セラミック基板は前記実施例に限定するものではなく、その要旨の範囲内で種々に変形することができる。特に、各導体層の厚さをコントロールする方法としては、さらに導電性ペーストの粘度をコントロールする方法がある。すなわち、導電性ペーストの粘度を高くすると印刷された導電性ペーストの膜厚は厚くなり、粘度を低くすると印刷された導電性ペーストの膜厚は薄くなることを利用するものである。
【0023】
【発明の効果】
以上の説明で明らかなように、本発明によれば、導電性ペーストによる複数の導体層を厚さの異なる少なくとも2種類の導体層にて構成し、かつ、薄い方の導体層の厚さを0.8〜5μmとし、厚い方の導体層の厚さを6〜15μmとしたので、占有面積が広く、吸収応力歪を受け易い導体層、あるいは、構造的に弱いキャビティ部の配線用導体層等には薄い方の導体層を使用することにより、変形やそりのない多層セラミック基板を得ることができる。また、占有面積が狭く、かつ、収縮応力歪を受けにくい導体層には厚い方の導体層を使用することにより、電気特性等を向上させることができる。
【0024】
この結果、設計に際して、導体層の位置やキャビティ部の構造等の制約が少ない多層セラミック基板が得られる。
【図面の簡単な説明】
【図1】本発明に係る多層セラミック基板の一実施例を示す断面図。
【符号の説明】
1…多層セラミック基板
10〜22…セラミックシート
32,33,34,35…キャビティ部配線用導体層
36…ボンディング用導体層
37…シールドグランド用導体層
38…コイル用導体層
39,40,41,42…コンデンサ用導体層
43…シールドグランド用導体層[0001]
[Industrial application fields]
The present invention relates to a multilayer ceramic substrate in which a plurality of ceramic layers and a plurality of conductor layers are laminated.
[0002]
[Prior art and issues]
Conventionally, a conductive paste is applied to the surface of a low-temperature sintered ceramic sheet that is sintered at 1000 ° C. or lower by means of printing or the like, and then a plurality of ceramic sheets are stacked, pressure-bonded, fired, and multilayer ceramic A substrate is known. The thickness of the conductor layer formed by firing the conductive paste is about 6 to 10 μm (measured value with a fluorescent X-ray measuring device. Hereinafter, the numerical value of the thickness is measured with a fluorescent X-ray measuring device). It is.
[0003]
By the way, since the ceramic sheet and the conductive paste are fired at the same time, the shrinkage stress strain between the ceramic layer and the conductor layer is generated in the multilayer ceramic substrate due to the difference in sintering temperature and shrinkage ratio between the two. That is, in the multilayer ceramic substrate, the substrate is easily warped or deformed in a portion where the conductor layer is unevenly distributed or a structurally weak portion.
[0004]
SUMMARY OF THE INVENTION An object of the present invention is to provide a multilayer ceramic substrate that has less shrinkage stress distortion during firing and is free from warping and deformation.
[0005]
[Means and Actions for Solving the Problems]
In order to solve the above-described problems, the multilayer ceramic substrate according to the present invention includes a plurality of conductive layers made of a conductive paste, which are composed of at least two types of conductive layers having different thicknesses, and a thin conductive layer. A conductor layer having a thickness in the range of 0.8 to 5 μm, a large occupation area, and subject to shrinkage stress strain is constituted by the thinner conductor layer .
The multilayer ceramic substrate includes, for example, two kinds of conductor layers having different thicknesses, the thinner conductor layer has a thickness of 0.8 to 5 μm, and the thicker conductor layer has the same thickness as the conventional conductor layer. Assume that the thickness is 6 to 10 μm. Use a thin conductor layer for shield conductor layers and capacitor conductor layers, etc., which occupy a large area and are susceptible to shrinkage stress strain, or for wiring conductor layers in a cavity with a weak structure. As a result, the shrinkage stress strain of the conductor layer and the ceramic layer is relaxed. This is because the thinner conductor layer is more likely to follow the ceramic layer and has a smaller shrinkage stress during firing as compared with a conductor layer having a conventional thickness.
[0006]
In addition, by using a thicker conductor layer for a coil conductor layer or the like that has a small occupied area and is less susceptible to shrinkage stress strain, the electrical characteristics of the multilayer ceramic substrate are ensured.
[0007]
【Example】
Hereinafter, embodiments of a multilayer ceramic substrate according to the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the multilayer ceramic substrate 1 includes a cavity portion 2, a coil portion 4, and a capacitor portion 6. The cavity 2 includes a cavity in which the illustrated IC component 60, surface wave filter, or other components are accommodated. The cavity portion 2 is formed by alternately laminating ceramic sheets 10, 11, 12, 13 and 14 and wiring conductor layers 32, 33, 34 and 35.
[0008]
The coil portion 4 is formed by alternately laminating ceramic sheets 16 and 17 and a coil conductor layer 38.
The capacitor portion 6 is formed by alternately stacking ceramic sheets 18, 19, 20, 21 and capacitor conductor layers 39, 40, 41, 42.
The cavity portion 2, the coil portion 4 and the capacitor portion 6 are disposed so that the ceramic sheets and the conductive layers are alternately laminated together with the ceramic sheets 15 and 22, the bonding conductor layer 36, and the shield ground conductor layers 37 and 43. Has been.
[0009]
An IC component 60 is placed on the surface of the shield ground conductor layer 37. The connection electrode 61 provided on the bottom surface of the IC component is die-bonded to the conductor layer 37, and the connection electrode 63 provided on the top surface is wire-bonded to the surface of the bonding conductor layer 36 via a gold wire 64.
The multilayer ceramic substrate 1 is provided with an external electrode 31 on the top surface, an external electrode 50 on the side surface, and an external electrode 51 on the bottom surface.
[0010]
Next, a manufacturing procedure of the multilayer ceramic substrate 1 having the above configuration will be described.
As a material for the ceramic sheets 10 to 22, for example, a BaO—Al 2 O 3 —SiO 2 -based material or the like is prepared, and this material is pulverized and kneaded with a solvent to produce a green sheet. On the surface of each green sheet, a conductive paste is applied at a thickness suitable for the function required for the conductor layers 32 to 43 using a method such as printing described later. As a material of the conductive paste, a base metal such as Cu or Ni, or a noble metal such as Au, Ag, Ag—Pd, Ag—Pt, or W (average particle size of 1 to 3 μm, particle size range of 0.1 to 10 μm) A kneaded mixture of a conductive component, a varnish resin such as etose or acrylic, and a terpineol or other solvent is used. In addition, since it is an electrically conductive paste for internal conductor layers, what does not contain a glass component is used.
[0011]
The ceramic sheets 10 to 14 coated with the conductive paste are punched to form cavities for accommodating ICs, surface wave filters, other components, and the like.
Next, the ceramic sheets 10 to 22 are stacked and pressed to form a laminate. External electrodes 31, 50, 51 are formed on the surface of the laminate by means such as printing, and then fired at a low temperature of 1000 ° C. or lower to obtain a product.
[0012]
Next, a method for controlling the thickness of each of the conductor layers 32 to 43 will be described.
As a method for controlling the thickness of each of the conductor layers 32 to 43, for example, there is a method of changing the content of the conductive component of the conductive paste. That is, when the content of the conductive component of the conductive paste is decreased, the solid content in the conductive paste is decreased and the liquid content is increased. At the time of sintering, the liquid component evaporates, and only the solid component remains to form a conductor layer, so that the conductor layer becomes thinner. By setting the content of the conductive component of the conductive paste from 80 wt% to 10 to 50 wt%, the thickness of the conductor layer can be changed from 6 to 10 μm to 0.8 to 5 μm.
[0013]
As another method, there is a method in which a normal conductive paste is used and the thickness of each of the conductor layers 32 to 43 is controlled by changing printing conditions. For example, as shown in Table 1, the thickness of the conductor layer is changed from 6 to 10 μm to 3 to 6 μm by changing the printing pressure, the squeegee speed, the gap size between the screen plate and the printing surface, and the type of the screen. Can do.
[0014]
[Table 1]
Figure 0003661704
[0015]
Next, Table 2 shows the test results of the multilayer ceramic substrate in which the conductive layers of the conductive paste have different contents and the thicknesses of the conductor layers 32 to 43 are different.
[0016]
[Table 2]
Figure 0003661704
[0017]
In Table 2, “A” displayed in the column of the conductive paste is the wiring conductor layers 32 to 35 of the cavity portion 2, “B” is the bonding conductor layer 36, “C” is the shield ground conductor layer 37, 43, “D” represents the coil conductor layer 38 of the coil section 4, and [E] represents the capacitor conductor layers 39 to 42 of the capacitor section 6. Pass, “x” mark indicates failure, and “Δ” mark indicates failure but minor failure. Table 2 also shows the test results of the conventional multilayer ceramic substrate for comparison. When the conductive component content of the conductive paste is 90 wt%, 80 wt%, 70 wt%, 60 wt%, 50 wt%, 30 wt%, the thickness of the conductor layer formed by each is 8-15 μm, 6-10 μm 5 to 9 μm, 3 to 7 μm, 1 to 5 μm, and 0.8 to 3 μm.
[0018]
Table 2 shows that the amount of deformation of the cavity portion 2 decreases as the thickness of the wiring conductor layers 32 to 35 of the cavity portion 2 decreases. Further, it is shown that the bonding property is improved as the thickness of the bonding conductor layer 36 is increased. Further, it is shown that the electrical characteristics are improved as the thickness of the coil conductor layer 38 of the coil portion 4 is increased.
[0019]
From the above test results, the preferred thicknesses of the respective conductor layers 32 to 43 are shown in Table 3 together with the effects thereof. “A”, “B”, “C”, “D”, and “E” in Table 3 represent the same contents as “A” to “E” in Table 2.
[0020]
[Table 3]
Figure 0003661704
[0021]
By changing the thicknesses of the wiring conductor layers 32 to 35 of the cavity portion 2, the capacitor conductor layers 39 to 42 of the capacitor portion 6, and the shield ground conductor layers 37 and 43 to 0.8 to 5 μm, the deformation of the cavity portion 2 is performed. The amount of warpage of the multilayer ceramic substrate 1 can be reduced. Further, the bonding property is improved by setting the thickness of the bonding conductor layer 36 to 5 to 10 μm. On the other hand, the coil conductor layer 38 of the coil portion 4 has a small occupation area and is not easily subjected to shrinkage stress strain. On the contrary, the coil conductor layer 38 has a thickness of 6 to 15 μm to reduce the resistance value and improve the electrical characteristics. In this way, a multilayer ceramic substrate with little shrinkage stress distortion during firing and without warping or deformation can be obtained.
[0022]
The multilayer ceramic substrate according to the present invention is not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof. In particular, as a method of controlling the thickness of each conductor layer, there is a method of further controlling the viscosity of the conductive paste. In other words, the film thickness of the printed conductive paste is increased when the viscosity of the conductive paste is increased, and the film thickness of the printed conductive paste is decreased when the viscosity is decreased.
[0023]
【The invention's effect】
As is apparent from the above description, according to the present invention, the plurality of conductor layers made of the conductive paste are composed of at least two kinds of conductor layers having different thicknesses, and the thickness of the thinner conductor layer is set. Since the thickness of the thicker conductor layer is set to 0.8 to 5 μm and the thickness of the thicker conductor layer is set to 6 to 15 μm, the conductor layer has a large occupation area and is susceptible to absorption stress strain, or the wiring conductor layer in the cavity portion having a weak structure For example, by using a thinner conductor layer, a multilayer ceramic substrate free from deformation and warpage can be obtained. In addition, by using a thicker conductor layer for a conductor layer that has a small occupation area and is less susceptible to shrinkage stress strain, electrical characteristics and the like can be improved.
[0024]
As a result, it is possible to obtain a multilayer ceramic substrate with few restrictions on the position of the conductor layer and the structure of the cavity portion in the design.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a multilayer ceramic substrate according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Multilayer ceramic substrate 10-22 ... Ceramic sheet 32, 33, 34, 35 ... Cavity part wiring conductor layer 36 ... Bonding conductor layer 37 ... Shield ground conductor layer 38 ... Coil conductor layers 39, 40, 41, 42 ... Conductor conductor layer 43 ... Shield ground conductor layer

Claims (2)

複数のセラミック層と複数の導体層を交互に積層し、焼成してなる多層セラミック基板において、
記複数の導体層が、厚さが異なる少なくとも2種類の導体層にて構成され、かつ、薄い方の導体層の厚さが0.8μm〜5μmの範囲内であり、厚い方の導体層の厚さが6μm〜15μmの範囲であるとともに、占有面積が広く、収縮応力歪を受け易い導体層を前記薄い方の導体層で構成したことを特徴とする多層セラミック基板。
In a multilayer ceramic substrate formed by alternately laminating and firing a plurality of ceramic layers and a plurality of conductor layers,
The plurality of conductor layers are composed of at least two kinds of conductor layers having different thicknesses, and the thickness of the thinner conductor layer is in the range of 0.8 μm to 5 μm. A multilayer ceramic substrate characterized in that a conductor layer having a thickness in a range of 6 μm to 15 μm, a large occupation area, and subject to shrinkage stress strain is constituted by the thinner conductor layer .
キャビティ部の配線用導体層を、厚さ0.8μm〜5μmの範囲内の導体層としたことを特徴とする請求項1記載の多層セラミック基板。  2. The multilayer ceramic substrate according to claim 1, wherein the wiring conductor layer in the cavity is a conductor layer having a thickness in the range of 0.8 to 5 [mu] m.
JP07995292A 1992-04-01 1992-04-01 Multilayer ceramic substrate Expired - Lifetime JP3661704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07995292A JP3661704B2 (en) 1992-04-01 1992-04-01 Multilayer ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07995292A JP3661704B2 (en) 1992-04-01 1992-04-01 Multilayer ceramic substrate

Publications (2)

Publication Number Publication Date
JPH05283863A JPH05283863A (en) 1993-10-29
JP3661704B2 true JP3661704B2 (en) 2005-06-22

Family

ID=13704649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07995292A Expired - Lifetime JP3661704B2 (en) 1992-04-01 1992-04-01 Multilayer ceramic substrate

Country Status (1)

Country Link
JP (1) JP3661704B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308872B1 (en) * 2000-02-23 2001-11-03 이상헌 Multi-Layered Multi-chip Module
US6744129B2 (en) 2002-01-11 2004-06-01 Microtune (San Diego), Inc. Integrated ground shield
JP2005210044A (en) * 2003-12-26 2005-08-04 Tdk Corp Inductor element containing circuit board and power amplifier module
CN101053287A (en) * 2004-10-08 2007-10-10 松下电器产业株式会社 Laminated ceramic component and method for manufacturing the same
JP2009081306A (en) * 2007-09-26 2009-04-16 Tdk Corp High-frequency electronic component
JP2022014982A (en) * 2020-07-08 2022-01-21 太陽誘電株式会社 Ceramic electronic component
CN117118373B (en) * 2023-10-19 2024-03-22 西南应用磁学研究所(中国电子科技集团公司第九研究所) High-power radio frequency circuit based on three-dimensional matching circuit and design method

Also Published As

Publication number Publication date
JPH05283863A (en) 1993-10-29

Similar Documents

Publication Publication Date Title
JP7567146B2 (en) Multilayer ceramic electronic components and their mounting substrates
CN103854851B (en) Multilayered ceramic capacitor and mounting structure of circuit board having multilayered ceramic capacitor mounted thereon
JP4428852B2 (en) Multilayer electronic component and manufacturing method thereof
JP4573956B2 (en) Multilayer electronic component and manufacturing method thereof
JP3661704B2 (en) Multilayer ceramic substrate
JPH09266130A (en) Multilayer capacitor
JPH08107039A (en) Ceramic electronic component
JP2857552B2 (en) Multilayer electronic component and method of manufacturing the same
JPH09260192A (en) Multilayer capacitor
JPH06140277A (en) Laminated ceramic capacitor
JPH053135A (en) Laminated ceramic capacitor
JPH10149945A (en) Multilayered ceramic chip parts and its manufacture
JPH0155594B2 (en)
JPS6092697A (en) Composite laminated ceramic part
JPH06124850A (en) Laminated composite electronic component
JPS6089995A (en) Composite laminated ceramic part
JP3934910B2 (en) Circuit board
JPH09120930A (en) Multilayered ceramic capacitor
JP2775936B2 (en) Manufacturing method of ceramic electronic components
JPH0845768A (en) Manufacture of multilayered ceramic capacitor
JP3250166B2 (en) Multilayer composite electronic components
JPH07201637A (en) Multilayer ceramic electronic device
JPS63169798A (en) Multilayer ceramic board with built-in electronic parts
JP2000058375A (en) Laminated ceramic electronic component and manufacture thereof
JPH0515292B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

EXPY Cancellation because of completion of term