JP3656652B2 - 移動流体の複数の運動成分の同時検出方法 - Google Patents

移動流体の複数の運動成分の同時検出方法 Download PDF

Info

Publication number
JP3656652B2
JP3656652B2 JP51809095A JP51809095A JP3656652B2 JP 3656652 B2 JP3656652 B2 JP 3656652B2 JP 51809095 A JP51809095 A JP 51809095A JP 51809095 A JP51809095 A JP 51809095A JP 3656652 B2 JP3656652 B2 JP 3656652B2
Authority
JP
Japan
Prior art keywords
pulse
motion
magnetic field
subject
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51809095A
Other languages
English (en)
Other versions
JPH08507611A (ja
Inventor
ダモーリン,チャールズ・ルシアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPH08507611A publication Critical patent/JPH08507611A/ja
Application granted granted Critical
Publication of JP3656652B2 publication Critical patent/JP3656652B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/716Measuring the time taken to traverse a fixed distance using electron paramagnetic resonance [EPR] or nuclear magnetic resonance [NMR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

1.発明の分野
本発明は磁気共鳴イメージングの分野に関し、更に詳しくは磁気共鳴を用いて移動する物質をイメージングする分野に関する。
2.関連技術の説明
運動(motion)、特に流体の運動は、多数のシステムにおいて重要なパラメータである。速度および加速度の勾配についての情報は、流体流システムの設計および解析で有用である。速度および加速度の勾配は、乱流の起こりやすい領域およびよどみ領域を示す。これらにより、金属パイプの腐食、障害領域等が生じる。また、生体の脈管を通るゆっくりした流れの領域は動脈硬化症の発生で中心的な役割を果たすことが判っている。
インク流線として知られる伝統的な流体流分析法では、流れる流体に造影剤を入れて、造影剤の運動を観察する必要がある。
物質の運動を測定するもう1つの方法では、レーザドップラ法を用いる。この方法では、被測定物質の中に懸濁している粒子からレーザビームを反射させて、短時間の間の各粒子の変位を測定することにより、選定された位置での物質の速度を表示することが必要になる。
上記の方法のどちらも、侵襲的すなわち破壊的であり、被試験物質への直接のアクセスを必要とする。物質が管の内側にあるか生体内の深いところにある場合には、これらの方法は有用でない。更にこれらの方法は、生体内の試験または非侵襲的な用途には適していない。
磁気共鳴を用いて流体の運動を検出し測定するための多数の方法が以前に開示されてきた。これらの方法では、移動する流体のボーラス(bolus)の磁化を変えて追従するボーラス追跡方式を使用するか、もしくは運動符号化(motion encoding)磁界勾配パルスを使用して速度、加速度およびジャークのような所望の運動成分に比例した位相シフトを誘起する方式を使用する。磁気共鳴を用いて運動を検出するための従来の方法は、一度に1つの運動成分しか検出できないので、用途が限られている。
運動のいくつかの成分を非侵襲的に同時に測定する方法を提供することは有用である。
発明の概要
運動の2つ以上の成分から情報を含む画像を取得するために磁気共鳴(MR)パルスシーケンスを使用する方法が開示される。これらのパルスシーケンスには、スライス選択無線周波(RF)パルス、および空間符号化のための従来の読出し勾配パルスが含まれる。少なくとも2つの運動符号化勾配パルスがパルスシーケンスに組み入れられる。運動符号化勾配波形は、速度を画像に位相シフトとして符号化するために双極性(bipolar)とすることができ、また加速度を結画像に位相シフトとして符号化するために三極性(tripolar)とすることができ、もしくは一層高次の運動を符号化するために一層多数のローブを持つことができる。
運動符号化勾配は2つのやり方の内の1つで印加される。第1の運動符号化勾配は選択された振幅で印加されるが、後続の取得の間に極性が変調される。この変調に応動して取得されたデータは、差を計算することにより、第1の運動符号化勾配から生じるデータの成分を抽出するように処理される。振幅を変えて第2の運動符号化勾配パルス(そして存在する場合には、すべての付加的な運動符号化パルス)を印加することにより、画像の位相符号化次元が形成される。この形式で符号化された運動は、変化するパルス振幅に対してフーリエ変換を適用することにより分解される。運動次元は、被検体の中の速度のような運動パラメータの分布を評価する手段を提供する。
発明の目的
本発明の1つの目的は、被検体の中の2つ以上の選択された運動成分を同時に検出して表示するための方法を提供することである。本発明のもう1つの目的は、被検体の中の速度の2つの直交成分を検出して表示するための方法を提供することである。
本発明の更にもう1つの目的は、被検体の中の速度および加速度を検出して表示するための方法を提供することである。
新規と信じられる本発明の特徴は、請求の範囲に明確に記述されている。しかし、本発明の他の目的および利点とともに、本発明の構成および動作方法は、付図を参照した以下の説明により最も良く理解することができる。
【図面の簡単な説明】
図1は、本発明で使用するのに適した磁気共鳴(MR)イメージングシステムの概略ブロック図である。
図2は、図1の磁石集合体の詳細図である。
図3aは、せん断イメージングパルスシーケンスに組み込まれた速度符号化磁界勾配パルスシーケンスの一実施例を示すグラフである。
図3bは、速度符号化磁界勾配パルスシーケンスのもう1つの実施例を示すグラフである。
図4a乃至4cは、双極性磁界勾配パルスが不動のスピン磁化に及ぼす効果を示すベクトル図である。
図4d乃至4fは、双極性磁界勾配パルスが移動するスピン磁化に及ぼす効果を示すベクトル図である。
図5は、2つの速度符号化磁界勾配パルスを組み合わせることによる加速度符号化磁界勾配パルスの形成を示すグラフである。
図6は、本発明の包括的なパルスシーケンスを示す線図である。
図7は、速度の2つの直交成分を測定するために使用することができる本発明の第1の実施例のパルスシーケンスを示す線図である。
発明の詳しい説明
本発明の一実施例では、磁気共鳴イメージングシステムの磁石の中に被検体が配置される。運動成分の画像が希望される領域は、従来のMRイメージングシーケンス等の助けを借りて操作者により定められる。次に、パルスシーケンスが印加され、データが分析される。
図1は、ここで説明する本発明で使用するのに適した磁気共鳴(MR)イメージングシステムの主要構成要素の概略ブロック図である。このシステムは、デイスク記憶装置2aおよびインタフェース装置2bに機能的に結合された汎用ミニコンピュータ2を含む。無線周波(RF)送信器3、信号平均器4ならびに勾配電源5a、5bおよび5cがすべて、インタフェース装置2bを介してコンピュータ2に結合される。勾配電源5a、5bおよび5cは勾配コイル12−1、12−2および12−3を付勢して、イメージング対象の被検体に対してそれぞれX、YおよびZ方向に磁界勾配Gx、GyおよびGzを作成する。RF送信器3は、コンピュータ2からのパルスエンベロープでゲート駆動されることにより、被検体からMR応答信号を励起するために必要な変調を持つRFパルスを発生する。RFパルスは、イメージング方法に応じて100ワットから数キロワットまで変わるレベルにRF電力増幅器6で増幅され、送信コイル14−1に印加される。全身イメージングのようにサンプル体積がより大きい場合、またより大きいNMR周波数帯域幅を励起するために短時間パルスが必要な場合には、より高い電力レベルが必要になる。
MR応答信号は受信コイル14−2によって検知されて、低雑音前置増幅器9で増幅された後、受信器10に送られて、そこで更に増幅され、検出され、フィルタリングされる。次に、信号はディジタル化されて、信号平均器4によって平均され、コンピュータ2で処理される。前置増幅器9および受信器10は、送信の間、能動ゲーティングまたは受動フィルタリングによって、RFパルスから保護される。
コンピュータ2は、MRパルスに対するゲーティングおよびエンベロープ変調、前置増幅器およびRF電力増幅器に対するブランキング、ならびに勾配電源に対する電圧波形を供給する。コンピュータはフーリエ変換、画像再構成、データのフィルタリング、画像の表示および記憶機能のようなデータ処理も行う(これらの機能のすべては従来のものであり、本発明の範囲外にあるものである)。
希望する場合には、送信コイル14−1および受信RFコイル14−2は単一のコイルで構成することができる。このかわりに、電気的に直交する2つの別々のコイルを使用してもよい。後者の構成では、パルス送信の間に受信器に漏れるRFパルスが小さくなるという利点がある。どちらの場合も、コイルは磁石手段11が発生する静磁界B0の方向に直角である。コイルはRF遮蔽室で囲まれることによってシステムの残りの部分から隔離される。
サンプル体積にわたって単調で線形である勾配Gx、GyおよびGzを供給するために磁界勾配コイル12−1、12−2および12−3がそれぞれ必要とされる。多値勾配磁界により、ひどい画像アーチファクトの原因となるエイリアシングとして知られているMR応答信号データの劣化が生じる。非線形勾配により、画像の幾何学的ひずみが生じる。
図2に概略図で示されている磁石集合体11は中心の円筒形の内腔11aを有する。内腔11aは、通常、軸方向すなわちデカルト座標系のZ軸方向に静磁界B0を発生する。図1のコイル12−1、12−2および12−3のような一組のコイル12は、入力接続部12aを介して電気信号を受けて、内腔11aの体積の中に少なくとも1つの勾配磁界を形成する。内腔11aの中には、RFコイル14も配置されている。RFコイル14は少なくとも1つの入力ケーブル14aを介してRFエネルギを受けて、通常X−Y平面の中にRF磁界B1を形成する。
図3aおよび3bは、速度符号化(velocity encoding)磁界勾配パルスシーケンスの2つの実施例を示す。図3aにおいて、磁界勾配は、時点t=0まで、強度がほぼ零である。t=0からt=aまで、第1の磁界勾配パルス300が印加される。t=bからt=cまで、第2の磁界勾配パルス310が印加される。第2の磁界勾配パルスは継続時間および強度が第1の勾配パルスとほぼ同じであるが、極性が逆である。2つの勾配パルスの間の時間間隔はTである。
この速度符号化勾配パルスの代替実施例が図3bに示されている。この実施例は図3aに示された実施例と同様であるが、勾配波形320と330の間に再集束RFパルス340が付加され、第2の波形330の極性が第1の勾配パルス320の極性と同じである点が異なっている。
図3aおよび3bの磁界勾配パルスシーケンスのような磁界勾配パルスシーケンスの印加により、横スピン磁化に位相シフトが生じる。この横スピン磁化の位相シフトは、速度、パルスシーケンスの各ローブの面積Ag、核種の磁気回転比γ、および相次ぐ勾配ローブの間の時間間隔Tに正比例する。この関係は熟練した当業者には周知であり、次式で表すことができる。
Φ=γVTAg [1]
ここで、Φは速度により誘起される位相シフトであり、Vは印加された磁界勾配に平行な核スピンの速度成分である。
速度符号化磁界勾配パルスが不動のスピン磁化の物体に及ぼす効果が図4a乃至4cに示されている。説明の目的で、印加された速度符号化勾配の方向の異なる位置に於ける2つのスピンの横磁化に対応するベクトルだけが示されている。RFパルスによる横スピン磁化の発生後、すべてのスピンは同じ位相を持ち、図4aに示すように時点t=0で単一のベクトル400として表すことができる。しかし、各スピンは、図4bに示すように時点t=aで、磁界勾配に沿ったその位置に正比例する位相シフトを生じる。これらの個々のベクトル410、420は不動のスピンすなわち位置を変えないスピンから生じる。したがって、第2の勾配パルスが印加されたとき、第1の勾配パルスにより生じた位相シフトは第2の勾配パルスによって正確に相殺される。したがって、各スピンの時点t=cにおける位相シフトは同じになり、2つのベクトルは一致して、図4cの単一のベクトル430として表される。時点t=cでの位相シフトは、時点t=0における位相シフトとほぼ同じである。
速度符号化磁界勾配パルスが移動するスピン磁化の物体に及ぼす効果が図4d乃至4fに示されており、これは、図4a乃至4cに示した上記の速度符号化磁界勾配パルスが不動のスピン磁化の物体に及ぼす効果とは異なる。説明のために、図には、同じ速度で移動するが、印加された速度符号化勾配の方向の異なる位置に於ける2つのスピンの横スピン磁化に対応するベクトルだけが示されている。RFパルスによる横スピン磁化の発生後、図4dに示されるようにすべてのスピンは同じ位相を持ち、時点t=0で単一のベクトル450として表すことができる。しかし、時点t=aで、各スピンは、図4eのベクトル460、470で示されるように磁界勾配に沿ったその位置に正比例する位相シフトを生じる。これらの個々のベクトルは、時間とともに位置を変えるスピンから生じるので、第2の勾配パルスが印加されたとき、第1のパルスにより生じた位相シフトは第2の勾配パルスによって完全には相殺されない。したがって、図4fに示されるように時点t=cにおける位相シフトは単一のベクトル480によって表され、時点t=0における位相シフトから量Φだけ異なる。この位相シフトは式[1]の速度Vに正比例する。
図5は、図3に示された速度符号化磁界勾配パルスからどのようにして、より高次の運動符号化磁界勾配パルスを作成できるかを示す。加速度は時間に対する速度の変化と定義されるので、第1の速度符号化勾配パルス510を印加した後、第2の速度符号化勾配パルス520を印加することにより加速度を測定することができる。第2の速度符号化勾配パルス520は、第1の速度符号化パルス510とは逆の極性になっている。したがって、速度が一定のスピン磁化の場合、第1の速度符号化パルス510によって生じる速度誘起位相シフトは、第2の速度符号化パルス520によって生じる速度誘起位相シフトにより相殺される。しかし、検出されるスピン磁化の速度が第1の速度符号化パルスと第2の速度符号化パルスとの間の期間内に変化する場合、位相の相殺は不完全となり、その残留位相シフトが加速度に正比例する。
加速度符号化(acceleration encoding)勾配パルスを発生するために、第1の速度符号化パルス510と第2の速度符号化パルス520が図5の2つの異なるやり方で組み合わされる。速度符号化パルスを組み合わせて勾配波形の振幅を保存するときは、振幅の等しい加速度符号化勾配パルス530が作成される。これと異なり、速度符号化パルスを組み合わせて勾配波形のローブの継続時間を保存するときは、継続時間の等しい加速度符号化勾配パルス540が作成される。振幅が等し加速度符号化勾配パルス530の加速度誘起位相シフトは、継続時間の等しい加速度符号化勾配パルス540の場合の2倍になることに注意すべきである。勾配パルス530の場合に観測される位相シフトΦACC
ΦACC=4γVT2Ag [2]
であり、勾配パルス540の場合に観測される位相シフトΦACC
ΦACC=2γVT2Ag [3]
である。
図6は、どのようにして複数の運動成分のイメージングを同時に行うことができるかを例示する包括的なパルスシーケンスを示す。包括的なパルスシーケンス1000は、ほぼ同時に被検体に印加される無線周波(RF)パルス1010およびスライス選択磁界勾配パルス1020を含む。スライス選択磁界勾配パルス1020およびRFパルス1010によって、被検体の選択された部分の中の核スピンが、当業者には周知の仕方で章動する。スライス選択磁界勾配パルス1020の印加の後、運動符号化磁界勾配パルス1030が印加される。運動符号化磁界勾配パルス1030により、MR応答信号の位相は選択された運動成分に比例する位相シフトを持つことになる。運動符号化磁界勾配パルス1030が印加された後、より高次の位相符号化パルス1040が印加される。より高次の位相符号化パルス1040により、画像の中で、第2の選択された運動成分に比例する量だけMR応答信号が変位する。より高次の位相符号化パルス1040に続いて、画像形成勾配パルス1050が印加される。画像形成勾配パルス1050により、当業者には周知の仕方でMR信号源の位置に比例した位相シフトが生じる。
図7は、図1および図2のMRイメージングシステムで実行することができる本発明の第1の実施例で用いられる無線周波(RF)パルスおよび磁界勾配のパルスシーケンスを示す。パルスシーケンス600では、スライス選択磁界勾配パルス640の存在する状態でRF励起パルス630が印加される。励起パルス630は、被検体の選択された部分内のスピン磁化を章動させる。章動の量は、励起パルス630の継続時間および振幅を選択することによって選ぶことができる。選択される部分の位置および大きさは、RFパルス630の周波数および帯域幅ならびにスライス選択磁界勾配パルス640の振幅を適切に選択することによって調整することができる。
RF励起パルス630およびスライス選択磁界勾配パルス640が印加された後、スライス再集束磁界勾配パルス650が印加される。スライス再集束勾配パルス650は、被検体の選択された部分の中のすべての横スピン磁化がスライス再集束勾配パルス640の印加後にほぼ同相となるように選択された振幅および継続時間を持つ。本実施例では、当業者には周知のように、スライス再集束勾配パルス650の振幅と継続時間との積は、スライス選択勾配パルス640の振幅と継続時間との積のほぼ半分であり、極性が逆である。
RF励起パルス630およびスライス選択磁界勾配パルス640が印加された後、選択された方向に双極性速度符号化磁界勾配パルスが印加される。速度符号化パルスは、第1の速度符号化磁界勾配パルスローブ655aおよび第2の速度符号化磁界勾配パルスローブ655bで構成される。第2の速度符号化パルスローブ650bのパルスの継続時間と振幅との積は、図3について説明したように、第1の速度符号化パルスローブ655aのパルスの継続時間と振幅との積にほぼ等しく、極性が逆である。
横スピン磁化に第1の速度符号化パルスローブ655aおよび第2の速度符号化パルスローブ655bを相次いで印加することにより、速度符号化磁界勾配の方向に平行な磁化の速度成分に比例した位相シフトが横スピン磁化に生じる。この位相シフトを使用することにより、不動の横スピン磁化から移動する横スピン磁化を区別することができる。
RF励起パルス630およびスライス選択勾配パルス640が印加された後、選択された振幅の双極性位相符号化磁界勾配パルスが印加される。この双極性位相符号化パルスは、第1の位相符号化磁界勾配パルスローブ660aおよび第2の位相符号化磁界勾配パルスローブ660bで構成される。位相符号化勾配パルスローブ660a、660bは、速度符号化勾配パルス655a、655bに対してほぼ直角な方向に印加され、また希望する場合にはスライス再集束パルス650と同時に印加することができる。明瞭にするため、図7では、位相符号化パルスローブ660a、660b、速度符号化パルス655a、655b、およびスライス再集束パルス650は同時であるように図示されていないが、これらのパルスの組み合わせを同時に印加することは可能である。
RF励起パルス630およびスライス選択勾配パルス640が印加された後、選択された振幅の読出し位相外し磁界勾配パルス670が印加される。読出し位相外し勾配パルス670は、スライス選択勾配パルス640と位相符号化パルスローブ660a、660bとの両方に対してほぼ垂直な方向に印加される。読出し位相外しパルス670は、希望する場合にはスライス再集束パルス650または位相符号化パルスローブ660a、660bと同時に印加することができる。読出し位相外しパルス670により、相外し磁界勾配の方向に沿った異なる位置の横磁化は読出し方向の位置に比例した位相シフトを生じる。
スライス再集束パルス650、位相符号化パルスローブ660a、660b、および読出し位相外しパルス670の印加に続いて、読出し磁界勾配パルス680が印加される。読出しパルス680は読出し位相外しパルス670と同じ方向に印加されるが、極性は逆になっている。読出しパルス680の間の選択された点で事実上すべての横スピン磁化が同じ位相シフトを持つように、読出しパルス680の振幅および継続時間が選択される。
読出しパルス680とぼぼ同時に、データ取得信号パルス690がイメージングシステムの一部であるデータ取得サブシステムに送られる。データ取得パルス690の間に、MR信号がディジタル化される。被検体の選択された部分の中の横スピン磁化から到来するMR信号は読出し磁界勾配680の間に取得されるので、検出される各MR信号は、上記信号を発生した横スピン磁化の位置に比例する周波数を持つことになる。当業者には周知のやり方で、取得された信号データをフーリエ変換することにより、各信号源の位置を決定することができる。
本発明では、パルスシーケンス600を複数回すなわちN回繰り返すことにより、単一フレームのデータを形成する。この単一フレームのデータは、少なくとも1つの運動成分の測定を行うのに充分な情報を有している。フレームの取得は、複数回すなわちY回繰り返される。各フレーム取得で、位相符号化パルスローブ660a、660bに異なる振幅が与えられる。位相符号化パルスローブ660a、660bによって、検出されるMR信号に位相シフトが生じる。位相シフトは、位相符号化磁界勾配ローブ660a、660bの方向の横スピン磁化の速度に比例する。当業者には周知のやり方で、位相符号化勾配ローブ660a、660bの異なる振幅に応動して取得されたデータをフーリエ変換することにより、横スピン磁化を生じる信号の(位相符号化勾配ローブ660a、660bの方向の)速度を求めることができる。
本発明の第1の実施例では、各フレームはパルスシーケンス660のN=2回の印加で構成される。第1の印加では、速度符号化勾配パルス655a、655bは選択された極性で印加される。これにより、横スピン磁化の位相は速度符号化勾配パルス655a、655bの方向の速度の成分に比例することになる。しかし、横スピン磁化の各部分の位相には、速度以外の要因からの寄与もある。これらの要因には、送信器のオフセット、化学シフト効果および渦電流が含まれ得る。
速度以外のすべての要素からの寄与を除去するために、パルスシーケンス600の第2の印加が行われ、第2のデータセットが取得される。第2の印加におけるRFパルスおよび磁界勾配パルスは、第1の速度符号化パルスローブ655aおよび第2の速度符号化パルスローブ655bを除いて、第1の印加の場合と同じである。第1および第2の速度符号化パルスローブの代わりに、第3の速度符号化パルスローブ655cおよび第4の速度符号化パルスローブ655dが印加される。第3の速度符号化パルスローブ655cおよび第4の速度符号化パルスローブ655dは、極性が逆になっている点を除けば、第1の速度符号化パルスローブ655aおよび第2の速度符号化パルスローブ655bとそれぞれ同じである。次に、第1の印加で収集されたデータを第2の印加で収集されたデータから減算することにより、差データセットが得られる。第3および第4の速度符号化勾配ローブによって誘起される位相シフトは、第1および第2の速度符号化勾配ローブによって誘起される位相シフトに対して逆極性となる。パルスシーケンス600の第1の印加に応動して取得されたデータの位相をパルスシーケンス600の第2の印加に応動して取得されたデータの位相から減算すると、すべての非速度要因からの位相寄与が実質的に相殺され、速度から生じる位相シフトだけが残る。この位相シフトは速度に正比例し、この位相シフトを使用して速度を量的に表すことができる。
当業者には、本発明の上記以外の多数の実施態様が容易に考えられよう。たとえば、前に説明した実施例で使用される速度および加速度の符号化勾配パルスは、ジャークのような高次の運動から位相シフトを誘起する符号化勾配パルスに置き換えることができる。これらの勾配パルスは、図5に示したのと同様なやり方で速度および加速度の符号化勾配の線形組み合わせを行うことにより、構成することができる。付加的な位相符号化勾配パルスを追加して、その結果の画像に付加的な次元を形成することにより、本発明の他の実施態様を作ることができる。これらの次元は、運動の空間、速度、加速度またはより高次の成分とすることができる。
新規なMR運動イメージング方法の好ましい幾つかの実施例について詳細に説明してきたが、多数の変形および変更を行いうることは当業者には明らかであろう。したがって、本発明の趣旨の中に入るこのようなすべての変形および変更を包含するように請求の範囲が記載されていることを理解されたい。

Claims (8)

  1. 被検体の中の物質の運動の複数の成分を同時に検出するための方法に於いて、
    a)上記被検体を磁界の中に配置して核スピンを分極するステップ、
    b)選択された周波数および振幅の無線周波(RF)パルスを印加するステップ、
    c)上記RFパルスの印加と同時に、イメージング対象の所望のスライスに対して直角なスライス選択方向にスライス選択磁界勾配を印加することにより、上記被検体のスライス内の共鳴核すなわち「核スピン」を章動させて、横スピン磁化を生じるステップ、
    d)選択された極性の第1の運動符号化磁界勾配パルスを第1の運動符号化方向に上記被検体に印加することにより、上記横スピン磁化に第1の運動成分に比例した位相シフトを生じさせるステップ、
    e)上記スライス選択方向および上記第1の運動符号化方向とは独立の第2の運動符号化方向の第2の運動成分に比例した位相シフトを誘起するための選択された振幅の磁界勾配パルスである、より高次の位相符号化パルスを印加するステップ、
    f)上記スライス選択方向に対してほぼ直角な読出し方向に読出し磁界勾配パルスを印加するステップ、
    g)上記読出し磁界勾配パルスが存在する状態でMR応答信号を取得するステップ、
    h)上記MR応答信号をフーリエ変換することにより中間データセットを求めるステップ、
    i)上記ステップb乃至hを複数回すなわちY回繰り返すことにより、Y個の中間データセットを求めるステップであって、その際、各々の繰り返し毎に上記高次の位相符号化勾配パルスの振幅を独特の振幅に定めるステップ、
    j)上記高次の位相符号化パルスの振幅に関して上記Y個の中間データセットをフーリエ変換することにより、空間の第1の次元および運動で符号化された第2の次元を持つ複素二次元変換データセットを求めるステップであって、二次元変換データセットが複数の複素エントリを持ち、各複素エントリの位相が第1の運動成分を示し、振幅が上記被検体の中の物質の空間位置および第2の運動成分における核すスピンの数を示すステップを含むことを特徴とする複数の運動成分の同時検出方法。
  2. 被検体の中の物質の運動の複数の成分を同時に検出するための方法に於いて、
    a)上記被検体を磁界の中に配置して核スピンを分極するステップ、
    b)選択された周波数および振幅の無線周波(RF)パルスを印加するステツプ、
    c)上記RFパルスの印加と同時に、イメージング対象の所望のスライスに対して直角なスライス選択方向にスライス選択磁界勾配を印加することにより、上記被検体のスライス内の共鳴核すなわち「核スピン」を章動させて、横スピン磁化を生じるステップ、
    d)選択された極性の第1の運動符号化磁界勾配パルスを第1の運動符号化方向に上記被検体に印加することにより、上記横スピン磁化に第1の運動成分に比例した位相シフトを生じさせるステップ、
    e)上記スライス選択方向および上記第1の運動符号化方向とは独立の第2の運動符号化方向の第2の運動成分に比例した位相シフトを誘起するための選択された振幅の磁界勾配パルスである、より高次の位相符号化パルスを印加するステップ、
    f)上記スライス選択方向に対してほぼ直角な読出し方向に読出し磁界勾配パルスを印加するステップ、
    g)上記読出し磁界勾配パルスが存在する状態でMR応答信号を取得するステップ、
    h)上記ステップb乃至gを繰り返すことにより第2のMR応答信号を取得するステップ、
    i)上記第2のMR応答信号から上記第1のMR応答信号を減算することにより差データセットを求めるステップ、
    j)上記差データセットをフーリエ変換することにより中間データセットを求めるステップ、
    k)上記ステップb乃至jを複数回すなわちY回繰り返すことにより、Y個の中間データセットを求めるステップであって、その際、各々の繰り返し毎に上記高次の位相符号化勾配パルスの振幅を独特の振幅に定めるステップ、
    l)上記高次の位相符号化パルスの振幅に関して上記Y個の中間データセットをフーリエ変換することにより、空間の第1の次元および運動で符号化された第2の次元を持つ複素二次元変換データセットを求めるステップであって、二次元変換データセットが複数の複素エントリを持ち、各複素エントリの位相が第1の運動成分を示し、振幅が上記被検体の中の物質の空間位置および第2の運動成分における核スピンの数を示すステップを含むことを特徴とする複数の運動成分の同時検出方法。
  3. 上記第1の運動符号化勾配が、上記被検体の中の上記物質の速度に比例した位相シフトを横スピン磁化に誘起する磁界パルスである請求項1又は2記載の方法。
  4. 上記第1の運動符号化勾配が、上記被検体の中の上記物質の加速度に比例した位相シフトを横スピン磁化に誘起する磁界パルスである請求項1又は2記載の方法。
  5. 上記第2の運動符号化勾配が、上記被検体の中の上記物質の速度に比例した位相シフトを横スピン磁化に誘起する磁界パルスである請求項1又は2記載の運動の多重成分の同時検出方法。
  6. 上記第2の運動符号化勾配が、上記被検体の中の上記物質の加速度に比例した位相シフトを横スピン磁化に誘起する磁界パルスである請求項1又は2記載の方法。
  7. 上記第1の運動符号化勾配が、上記被検体の中の上記物質の加速度より高次の運動に比例した位相シフトを横スピン磁化に誘起する磁界パルスである請求項1又は2記載の方法。
  8. 上記第2の運動符号化勾配が、上記被検体の中の上記物質の加速度より高次の運動に比例した位相シフトを横スピン磁化に誘起する磁界パルスである請求項1又は2記載の方法。
JP51809095A 1993-12-29 1994-12-16 移動流体の複数の運動成分の同時検出方法 Expired - Fee Related JP3656652B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/175,457 1993-12-29
US08/175,457 US5436562A (en) 1993-12-29 1993-12-29 Methods for the simultaneous detection of multiple components of motion in moving fluids
PCT/US1994/014478 WO1995018386A1 (en) 1993-12-29 1994-12-16 Methods for the simultaneous detection of multiple components of motion in moving fluids

Publications (2)

Publication Number Publication Date
JPH08507611A JPH08507611A (ja) 1996-08-13
JP3656652B2 true JP3656652B2 (ja) 2005-06-08

Family

ID=22640287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51809095A Expired - Fee Related JP3656652B2 (ja) 1993-12-29 1994-12-16 移動流体の複数の運動成分の同時検出方法

Country Status (4)

Country Link
US (1) US5436562A (ja)
JP (1) JP3656652B2 (ja)
DE (2) DE4480403T1 (ja)
WO (1) WO1995018386A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021113A (ja) * 2012-07-16 2014-02-03 Krohne A.G. 核磁気流量計

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19652559B4 (de) * 1995-12-26 2009-10-01 General Electric Co. Verfahren zur Magnet-Resonanz-Angiographie unter Verwendung eines Zustroms mit Quer-Spin-Magnetisierung
JP3569066B2 (ja) * 1996-03-21 2004-09-22 株式会社東芝 傾斜磁場パルスの設定方法および磁気共鳴イメージング装置
US5842989A (en) * 1996-03-21 1998-12-01 Elscint, Ltd. Artifact reduction in magnetic resonance angiographic images
DE19834698C2 (de) 1997-08-19 2001-06-21 Siemens Ag Diffusionserfassung mittels magnetischer Resonanz
DE19811376C1 (de) * 1998-03-16 2000-01-05 Siemens Ag Verfahren zur zeitlich hochaufgelösten Magnetresonanztomographie
DE102005008753B4 (de) * 2005-02-25 2007-09-27 Siemens Ag Verfahren zur Darstellung von Fluss in einem Magnetresonanzbild
US8583213B2 (en) * 2006-09-12 2013-11-12 General Electric Company Combined MR imaging and tracking
JP5280089B2 (ja) * 2008-04-23 2013-09-04 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mri装置
US10186032B2 (en) * 2017-06-15 2019-01-22 Siemens Healthcare Gmbh Simultaneous multi-slice phase pulse wave velocity measurement in a vessel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038784A (en) * 1987-02-11 1991-08-13 General Electric Company Multiple-echo angiography with enhanced signal-to-noise ratio
US4849697A (en) * 1988-06-27 1989-07-18 General Electric Company Three-dimensional magnetic resonance flow-contrast angiography with suppression of stationary material
US5115812A (en) * 1988-11-30 1992-05-26 Hitachi, Ltd. Magnetic resonance imaging method for moving object
US5133357A (en) * 1991-02-07 1992-07-28 General Electric Company Quantitative measurement of blood flow using cylindrically localized fourier velocity encoding
US5233298A (en) * 1992-02-20 1993-08-03 General Electric Company Quantitative measurement of blood flow at multiple positions using comb excitation and fourier velocity encoding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021113A (ja) * 2012-07-16 2014-02-03 Krohne A.G. 核磁気流量計

Also Published As

Publication number Publication date
US5436562A (en) 1995-07-25
JPH08507611A (ja) 1996-08-13
DE4480403B4 (de) 2006-09-28
DE4480403T1 (de) 1996-03-07
WO1995018386A1 (en) 1995-07-06

Similar Documents

Publication Publication Date Title
US5034692A (en) Magnetic resonance imaging method for acquiring flux-compensated, T2 -w
US5652516A (en) Spectroscopic magnetic resonance imaging using spiral trajectories
US4995394A (en) Fast NMR cardiac profile imaging
JP5142979B2 (ja) 緩和パラメータを空間的に分解して決定するための磁気共鳴方法
EP0235758A2 (en) Methods and apparatus for NMR angiography
JPH06121782A (ja) 流体の流れの定量測定方法
US10094898B2 (en) Zero echo time MR imaging with water/fat separation
US20160116560A1 (en) Mr imaging with enhanced susceptibility contrast
JP3656654B2 (ja) 移動流体の速度および加速度分布の同時検出方法
JP3656652B2 (ja) 移動流体の複数の運動成分の同時検出方法
JP3837180B2 (ja) 磁気共鳴で被検体の弾性画像を発生する方法
JPH0616766B2 (ja) Nmrイメージング装置を使用した高速流れ測定方式
US4429277A (en) Nuclear magnetic resonance apparatus utilizing multiple magnetic fields
US5469059A (en) Method for the simultaneous detection of acceleration and velocity distribution in moving fluids
US5309099A (en) Method of determining real-time spatially localized velocity distribution using magnetic resonance measurements
JPH0685768B2 (ja) 核磁気共鳴を用いた検査方法
JP3656653B2 (ja) 移動流体の複数の速度成分の同時検出方法
JPH05133A (ja) Nmr位相コントラスト流れ測定用符号化方式
US5375598A (en) Methods for the imaging of shear rate in moving fluids
JPS5983041A (ja) 核磁気共鳴による検査方法及び検査装置
JPH07148139A (ja) スピン格子緩和時間を測定する方法
JPS6266846A (ja) 化学シフト値を用いたnmr検査装置
JP3112028B2 (ja) 流体イメージング装置
JP3478867B2 (ja) 磁気共鳴イメージング装置
JPH0470013B2 (ja)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees