JP3651442B2 - 血流計及び血流計のセンサ部 - Google Patents

血流計及び血流計のセンサ部 Download PDF

Info

Publication number
JP3651442B2
JP3651442B2 JP2002025303A JP2002025303A JP3651442B2 JP 3651442 B2 JP3651442 B2 JP 3651442B2 JP 2002025303 A JP2002025303 A JP 2002025303A JP 2002025303 A JP2002025303 A JP 2002025303A JP 3651442 B2 JP3651442 B2 JP 3651442B2
Authority
JP
Japan
Prior art keywords
light
blood flow
emitting element
receiving element
flow meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002025303A
Other languages
English (en)
Other versions
JP2002330936A (ja
Inventor
栄治 日暮
廉士 澤田
高廣 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002025303A priority Critical patent/JP3651442B2/ja
Publication of JP2002330936A publication Critical patent/JP2002330936A/ja
Application granted granted Critical
Publication of JP3651442B2 publication Critical patent/JP3651442B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は生体組織からの散乱光を利用して対象生体組織の血流量、血液量、血流速度、脈拍を測定する血流計に関するものである。
【0002】
【従来の技術】
高齢化社会を迎え、成人病と関連の深い血液循環を計測できる血流計への関心が高まっている。特にレーザ血流計は、他の方式である超音波血流計に比較して格段に分解能が高いため、超音波では困難であった末梢組織の毛細血管における血流も無侵襲で計測できる点が注目されている。従来の血流計について記載されている文献としては、Dennis Watkins and G. Allen Holloway,Jr., An Instrument to measure cutaneous blood flow using the Doppler shift of laser light, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, Vol.BME-25, No.1, January 28-33(1978)が挙げられる。
【0003】
図1は、上記文献に記載されている従来の血流計を示すブロック図である。図に示すように、光源のヘリウムネオンレーザ1の近傍にレンズ2が設けられ、レンズ2の近傍に投光用の光ファイバ3の一方端部が設けられ、光ファイバ3の他方端部が保持具4により保持され、保持具4により受光用の光ファイバ5の一方端部が保持され、光ファイバ5の他方端部の近傍にフォトダイオード6が設けられ、フォトダイオード6にプリアンプ7(40Hz〜40kHz)が接続され、増幅器8を介して信号が出力される構成をとる。フォトダイオード6、プリアンプ7は生体組織からの散乱光を受光して生体組織内の血流速度を求める測定手段の一部である。
【0004】
図1に示した血流計の測定原理は、静止した生体組織からの散乱光と生体組織の毛細血管中を移動している赤血球(散乱粒子)からの散乱光すなわち血流速度に応じてドップラーシフト△fを受けた散乱光との干渉光を検出(ヘテロダイン検波)することにより、対象生体組織の血流速度を計測するものである。
【0005】
しかしながら、このような従来の血流計においては、光ファイバ3、5を用いているので、大型化するとともに、光ファイバ3、5の取り回しのため、長時間生体に取り付けておいたり、血流計を生体に取り付けながら移動したりすることは困難であった。また、ヘリウムネオンレーザ1と測定対象部位との間に光ファイバ3、5を介しているので、光ファイバ3、5がわずかでも振動すると測定結果に影響を及ぼすなど、環境変化の影響を受けやすい。また、ヘリウムネオンレーザ1、光ファイバ3、5、フォトダイオード6などの個別光学部品を三次元的に組み立てて作製するため、光軸合わせや調整が必要であり、製造コストが高価であった。
【0006】
また、従来の技術として、特開平1−160531号公報「血流速検出器」(日立製作所)、特開平10−94527号公報(特許第3150911号)「血流量計」(バイオメディカルサイエンス)に開示された技術がある。しかし、これらに開示した技術では、小型化の程度、計測の精度が十分でないという問題がある。
【0007】
【発明が解決しようとする課題】
本発明は上述の課題を解決するためになされたもので、小型で環境変化の影響を受けにくく、製造コストが安価であり、計測精度の高い血流計を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するために本発明は次のように構成することができる。
【0009】
本発明は、発光素子から出射した光を外部の生体組織に向かって出射し、生体組織からの散乱光を受光素子で受光して生体組織内の血流に関する値を測定する血流計におけるセンサ部であって、前記発光素子と前記受光素子とを同一半導体基板上に集積化して備え、更に、前記発光素子から前記受光素子に直接光が入射するのを遮る第1の遮光構造と、前記受光素子の前面に位置する所定の空隙を有する第2の遮光構造と、前記発光素子から出射した光を収束光または平行光にして外部の生体組織に向かって出射するための光導波路と、を前記半導体基板上に備えたことを特徴とするセンサ部である。
【0010】
本発明によれば、光ファイバを用いないので血流計を小型化することができ、光ファイバなどの振動による測定結果への影響がなく高精度な血流速度測定が実現できる。更に、光学部品を三次元的に組み立てる必要がないので、製造コストが安価となる。また、本発明により、計測に適した光を出射することが可能となり、計測精度を高めることが可能となる。また、生体組織内の移動している毛細血管中の赤血球からの散乱光(ドップラーシフトした光)を効率よく検出し、より正確な出力を得ることができる。更に、受光素子における受光領域面積を最適化し、不要散乱光を遮蔽するので、精度の高い計測が可能となる。また、発光素子及び受光素子とを同一半導体基板上にモノリシックに集積化することもできる。これにより更に小型化することができる。
【0017】
前記受光素子として端面入射屈折型フォトダイオードを用いることができ、これにより、光軸の上下方向のずれ許容度を大きくできる。また、受光部領域を最適化することにより、上記の遮光板を用いて不要散乱光を遮蔽するのと同様の効果を得ることができる。
【0018】
また、上記構成において、発光素子として、波長約1.3μmの光を発するDFBレーザダイオードを用いてもよい。これにより、光を皮下組織の奥まで透過させS/N比良く脈波を検出することができる。
【0019】
更に、前記光導波路をフッ素化ポリイミドを用いて形成してもよい。フッ素化ポリイミドは、耐熱性、耐薬品性が高いので、センサ部の集積化工程に適している。
【0020】
また、上記の目的を達成するために本発明は次のように構成することもできる。
【0021】
本発明は、発光素子から出射した光を外部の生体組織に向かって出射し、生体組織からの散乱光を受光素子で受光して生体組織内の血流に関する値を測定する血流計であって、前記発光素子と前記受光素子とを同一半導体基板上に集積化して備えたセンサ部を有し、前記センサ部は更に、前記発光素子から前記受光素子に直接光が入射するのを遮る第1の遮光構造と、前記受光素子の前面に位置する所定の空隙を有する第2の遮光構造と、前記発光素子から出射した光を収束光または平行光にして外部の生体組織に向かって出射するための光導波路と、を前記半導体基板上に備えたことを特徴とする血流計である
【0022】
上記の構成において、前記発光素子を駆動する回路と、前記センサ部から受信した信号を処理して前記血流に関する値を計算するデジタル信号プロセッサとを備えた集積回路を更に備えるようにしてもよい。
【0023】
本発明によれば、血流計の全体の大きさを小型化でき、ウェアラブルな血流計を提供することが可能となる。
【0024】
また、上記の構成において、前記発光素子を駆動する回路と、前記センサ部からの信号を無線送信する回路とを更に備えた構成としてもよい。
【0025】
本発明によれば、無線送信された信号をセンタで処理することにより、例えば多数の人の血流量等を一度に把握することが可能となる。
【0026】
【発明の実施の形態】
本発明の血流計では、発光素子、受光素子などの構成要素を半導体基板上に集積化して小型化したセンサチップを用いる。このような構成とすることにより、三次元位置決め、組立を廃して製造コストを下げることができ、光ファイバを構成から除くことが可能となるので環境変化の影響を受け難くなる。
【0027】
図2は、本発明の血流計の一実施形態に係る構成を示す図である。同図に示すように、本発明の血流計は、生体組織に光を当てることにより反射した散乱光を受光する上記センサチップ11、受光した光を増幅する増幅器12、発光素子(LD)を駆動させ、散乱光を解析することにより血流を求める駆動/演算装置13、求めた血流等を表示する出力部14を有する。後に詳述するように、センサチップ11は半導体基板上に集積化されて形成されており、2mm×3mm程度の大きさとすることができる。
【0028】
また、駆動/演算装置13は、A/D変換器15、LDドライバ16、受信信号から血流を求めるための演算を行うデジタル信号プロセッサ(DSP)17、電源供給部18、インターフェース19を有し、小型液晶ディスプレイ等の出力部14に接続される。駆動/演算装置13は、全体をLSIとして構成することが可能であり、センサチップ及び増幅器とあわせて一体として構成でき、人体等に容易に装着できる形状に構成することが可能である。
【0029】
図3は本発明の第1の実施の形態に係る血流計の一部(前述のセンサチップ)を示す図で、(a)は平面図、(b)はA−A´断面図である。図に示すように、第1の実施の形態に係るセンサチップは、シリコンからなる半導体基板21上に電極22が形成され、電極22上にはんだ膜23を介して発光素子である半導体レーザ24が形成され、電極22上にはんだ膜25を介してオートパワーコントロール用のフォトダイオード26が形成され、半導体基板21上に電極27が形成され、電極27上にはんだ膜28を介して受光素子であるフォトダイオード29が形成される。フォトダイオード29は生体組織からの散乱光を受光して生体組織内の血流量、血液量、血流速度、脈拍を求める測定手段の一部である。これら半導体レーザと受光素子は半導体基板上に高精度にボンディングされて構成されている。高精度にボンディングする技術として、例えば特開平9−55393号公報に開示された技術を用いることができる。この半導体基板の大きさは縦2mm×横3mm程度である。なお、他の実施の形態の半導体基板の大きさも同様である。
【0030】
このセンサチップにおいては、半導体レーザ24に電流を注入するとレーザが発振する。この場合、半導体レーザ24の片端面に設けたフォトダイオード26で半導体レーザ24の出力をモニターし、フィードバック回路で半導体レーザ24の注入電流を制御することにより、半導体レーザ24のレーザ発振のパワーが常に一定になるようにする。そして、半導体レーザ24から出射した光は図3の破線で示した水平方向および垂直方向に広がりながら空間を伝播する。この半導体レーザ24を皮膚などの生体組織に近づけた場合、光散乱が生じ、散乱光がフォトダイオード29に入射する。この散乱光には、静止した生体組織からの散乱光と、生体組織の毛細血管中を移動している赤血球からの散乱光すなわち血流速度に応じてドップラーシフト△fを受けた散乱光との干渉成分が含まれる。そのため、この信号を周波数解析することにより、血流速度等を求めることができる。なお。このドップラーシフトを利用した測定原理自体は従来から知られているものである。
【0031】
流体に微粒子を分散させた溶液を用いて、流体速度とドップラーシフト周波数との間に直線関係が成立することを確認した。また、散乱光の強度は移動している血液量に相当しており、血流速度と血液量との積で血流量が求められる。さらに、散乱信号波形には、脈拍による変調成分もあり、脈拍の検出も可能である。
【0032】
なお、半導体レーザ、フォトダイオードなどの光素子は、GaAs基板、InP基板上にモノリシックに形成することもできる。
【0033】
このようなセンサチップを用いた血流計においては、光ファイバを用いていないから、小型にすることができ、また光ファイバの取り回しを行なう必要がないので、長時間生体に取り付けておいたり、血流計を生体に取り付けながら移動したりすることが容易であり、また環境変化の影響を受けにくく、高精度に血流速度を測定することができる。さらに、半導体基板21上に半導体レーザ24、フォトダイオード26、フォトダイオード29を形成しているから、光学部品を二次元的に組み立てればよく、光学部品を三次元的に組み立てる必要がなく、また光軸合わせや調整が不要であるので、製造コストが安価である。
【0034】
図4は本発明の第2の実施の形態に係るセンサチップの例を示す図で、(a)は平面図、(b)はA−A´断面図である。図に示すように、第2の実施の形態に係るセンサチップは、シリコンからなる半導体基板31上に電極32が形成され、電極32上にはんだ膜33を介して発光素子である半導体レーザ34が形成され、半導体基板31上に半導体レーザ34の端面に結合した光導波路35が形成される。また、光導波路35はフッ素化ポリイミドからなり、光導波路35は下部クラッド、コア、上部クラッドの三層から形成され、半導体レーザ34の活性層の高さと光導波路35のコアの中心高さがほぼ一致するように半導体レーザ34はボンディングされている。そして、光導波路35は半導体レーザ34から出射した光を先端形状により収束光または平行光にして外部の生体組織に向かって出射する。また、半導体基板31上に電極36が形成され、電極36上にはんだ膜37を介して受光素子であるフォトダイオード38が形成される。フォトダイオード38は生体組織からの散乱光を受光して生体組織内の血流量、血液量、血流速度、脈拍を求める測定手段の一部である。
【0035】
つぎに、光導波路35の作製方法について説明する。まず、半導体基板31上にポリアミド酸溶液をスピンコートで所望の膜厚に塗布し、ベークしてイミド化し、このポリイミド膜上にシリコーン系のレジストを塗布し、レジストをフォトリソグラフィで所望の形状にパターニングし、レジストをエッチングマスクとして酸素ガス雰囲気中で反応性イオンエッチングによりポリイミド膜を選択的にエッチングする。
【0036】
このような血流計においては、光導波路35は半導体レーザ34から出射した光を垂直方向には閉じ込めながら伝播させ、水平方向には光導波路35の先端形状により収束光あるいは平行光に変換するから、収束光、平行光の状態で外部の生体組織へ光を照射することができるので、生体組織に向かって適切な光を照射することができる。また、光導波路35はフッ素化ポリイミドからなるので、光導波路35の耐熱性、耐薬品性が高いので、センサチップの集積化加工に適している。
【0037】
また、第1の実施の形態と同様に、オートパワーコントロール用のフォトダイオードを配置して半導体レーザを一定パワーで発振させることも可能である。動作の原理は、第1の実施の形態と同じである。
【0038】
図5は本発明の第3の実施の形態に係るセンサチップを示す図で、(a)は平面図、(b)はA−A´断面図である。図に示すように、第3の実施の形態に係るセンサチップは、シリコンからなる半導体基板41上に電極42が形成され、電極42上にはんだ膜43を介して発光素子である半導体レーザ44が形成され、半導体基板41上に半導体レーザ44の端面に結合した光導波路45が形成される。光導波路45はフッ素化ポリイミドからなり、光導波路45は下部クラッド、コア、上部クラッドの三層から形成され、半導体レーザ44の活性層の高さと光導波路45のコアの中心高さがほぼ一致するように半導体レーザ44はボンディングされている。
【0039】
また、半導体基板41上に電極46が形成され、電極46上にはんだ膜47を介して受光素子であるフォトダイオード48が形成される。フォトダイオード48は生体組織からの散乱光を受光して生体組織内の血流量、血液量、血流速度、脈拍を求める測定手段の一部である。
【0040】
また、半導体基板41上の半導体レーザ44とフォトダイオード48との間に電極49が形成され、電極49にはんだ膜50を介して半導体レーザ44からフォトダイオード48に直接光が入射するのを遮る第1の遮光板51が形成されている。また、半導体基板41上のフォトダイオード48と半導体基板41の端部との間に電極52が形成され、電極52にはんだ膜53を介して不要散乱光を遮る2枚の第2の遮光板54が形成される。2枚の遮光板54の間隔を約65μmとすることによりS/N比(信号対雑音比)の良い信号が得られる。
【0041】
このような血流計においては、遮光板51により半導体レーザ44からフォトダイオード48に直接光が入射するのを防止することができる。また、遮光板54により不要散乱光がフォトダイオード48に入射するのを防止することができるので、生体組織内を移動している毛細血管中の赤血球からの散乱光すなわちドップラーシフト△fを受けた散乱光成分の強度が微弱であっても、確実に血流速度を検出することができる。
【0042】
この遮光板は、半導体基板上に高精度にボンディングして形成することもできるし、予めシリコン基板上にKOHなどによるウェットエッチングやDeep Reactive ion etching装置などによるドライエッチングで加工しておくことも可能である。また、スリット、ピンホールを前もって形成した板をボンディングすることにより遮光板54として用いることも可能である。
【0043】
図6は、第3の実施の形態に係るセンサチップの作成方法を説明するための斜視図である。なお、図6には遮光板54は図示していない。同図に示すように、電極、はんだ膜がパターニングされたシリコン半導体基板上に、発光素子である半導体レーザ(DFB−LD)と受光素子(フォトダイオード)が高精度にボンディングされる。このようなセンサチップにより、静止した生体組織からの散乱光と生体組織の毛細血管中の移動している赤血球からの散乱光(ドップラーシフトした光)の干渉成分をフォトダイオードで検出して血流速度等を求める。図7は、上記方法で作成した本センサチップの顕微鏡写真である。
【0044】
図8は、遮光板の他の例を示す図である。(a)は上から見た透視図、(b)はAの方向から見た正面図、(c)はBの方向から見た側面図である。この例では、不要散乱光を遮蔽するため、発光素子(LD)、受光素子(PD)のそれぞれを被い囲む形に遮蔽ブロックを形成し、基板に接着して用いる。このように被い囲む形に遮蔽ブロックを形成することにより、遮光効果が更に大きくなる。なお、遮蔽ブロックにおけるフォトダイオードの前面部分に、上述した第2の遮光板に相当するスリット付きの遮光板を設けることができる。
【0045】
図9は本発明に係る血流計におけるセンサチップの受光素子として使用されるフォトダイオードの前面図、図10は図9に示したフォトダイオードの側面図である。なお、このフォトダイオードは、端面入射屈折型フォトダイオードである。
【0046】
図に示すように、InPからなる基板61の側面に逆メサ構造の光入射端面を有する受光部62が形成され、受光部62の幅bは約65μm、高さhは15μmである。また、基板61上にn型のInGaAsPからなる半導体膜63が形成され、半導体膜63上にInGaAsからなる光吸収層64が形成され、光吸収層64上にp型のInGaAsP、p型のInP、p+型のInGaAsを積層した積層層65が形成され、積層層65上にp型の電極66が形成され、半導体膜63上にn型の電極67が形成されている。
【0047】
なお、このようなフォトダイオードに関する文献としては、H. Fukano, Y. Matsuoka, A Low-Cost Edge-Illuminated Refracting-Facet Photodiode Module with Large Bandwidth and High Responsivity, J. Lightwave Technology, Vol.18, No.1, 79-83(2000)を挙げることができる。
【0048】
このようなフォトダイオードを有するセンサチップにおいては、図10に一点鎖線で示した光が受光部62の横方向から入射すると、光は受光部62の入射端面で屈折し、上層の光吸収層64で吸収され、電気信号に変換される。従って、フォトダイオードの光軸の上下方向のずれ許容度が大きく、また吸収効率が大きい。また、フォトダイオードの受光領域が制限されているから、受光部62の位置を最適化することにより、不要散乱光がフォトダイオードに入射するのを防止することができるので、生体組織内を移動している毛細血管中の赤血球からの散乱光すなわちドップラーシフト△fを受けた散乱光成分の強度が微弱であっても、確実に血流速度を検出することができる。また、受光領域を絞ることにより、生体組織の変化を明確にとらえることが可能となるので、計測精度を向上させることが可能となる。
【0049】
なお、上述実施の形態においては、シリコンからなる半導体基板21、31、41を用いたが、GaAs、InP等からなる半導体基板を用いてもよい。また、上述実施の形態においては、フッ素化ポリイミドから光導波路35、45を用いたが、光導波路はポリイミド等の有機系に限定されるものではなく、石英系光導波路等を用いることができる。また、図3に示した実施の形態において、オートパワーコントロール用のフォトダイオード26を形成したが、図4、図5に示した実施の形態においてもオートパワーコントロール用のフォトダイオードを形成してもよい。
【0050】
上記の実施の形態において、発光素子(半導体レーザ)としては、波長980nmのファブリペローレーザ、波長850nmのDBRレーザ、波長1.3μmのDFBレーザ、波長1.3μmのファブリペローレーザなどを用いることができる。特に、波長1.3μmの光は、従来の市販品で多く使われている波長780nmの光に比べ、皮膚組織の透過率が高く、皮下深くの血流を検出でき、そのためよりS/N比の良い血流波形を計測できる。また、DFBレーザは安定性がよく、冷却のためのペルチェ素子は不要である。
【0051】
また、発光素子、受光素子、第1、第2の遮光板および半導体基板上に合わせマークを付与し、合わせマークを使用して発光素子、受光素子、第1、第2の遮光板を半導体基板上にボンディングすれば、発光素子、受光素子、第1、第2の遮光板を半導体基板上に精密よくボンディングすることができる。なお、発光素子、受光素子を半導体基板上に高精度にボンディングする技術に関する文献としては前述した特開平9−55393号公報を挙げることができる。
【0052】
なお、本発明のセンサチップを有する血流計の全体構成は、図2に示した構成の他にも種々の構成をとることができる。例えば、図11に示すように、PD71、LD72、光導波路73、LD/PDドライバIC74、ADコンバータ/無線送信機75、電源バッテリ76を同一基板上に搭載して小型化し、計測データ信号を無線でセンタに送信する構成とすることができる。センタではこの信号に基づき血流計装着者の血流速度等を把握することが可能となる。このような構成とすることにより、超小型・軽量で、ユーザに装着感を感じさせないウェアラブルな生体センサを実現することが可能となる。
【0053】
図12は、従来の市販血流計と、本発明の血流計との出力波形を比較した図である。(a)が従来の市販血流計(オー・エイ・エス株式会社 (OAS Corporation)の Cyber Med CDF-1000)の出力波形を示し、(b)が本発明の血流計の出力波形を示す。これらの出力波形は、同一人物の同一部位における血流を同様の時刻に測定した結果である。横軸は時間を示し、縦軸は血流速度を示す。
【0054】
腕の根元の血管を圧迫して血流が減った後、圧迫を解除して血流が回復しているおおまかな変化の様子はどちらの血流計も同じであるが、グラフの一部を拡大して表示した波形の表す脈波形は、本発明の血流計の方が、実際に近い整った波形を検出することができることが確認できる。
【0055】
これは本発明で用いた1.3μm波長の光の方が皮膚透過率が高く、皮下組織の奥まで達するため、血流から、より多くの散乱光(ドップラーシフトした光)を受光できるからである。
【0056】
本発明は、上記の実施例に限定されることなく、特許請求の範囲内で種々変更・応用が可能である。
【0057】
【発明の効果】
上述したように、本発明に係る血流計においては、光ファイバを用いず、同一半導体基板上に発光素子、受光素子等を集積化したので、小型にすることができる。また、小型、軽量なため長時間取り付けておくことが可能となり、光ファイバなどの振動による測定結果への影響がなく高精度な血流速度測定が実現できる。更に、光学部品を三次元的に組み立てる必要がないので、製造コストが安価である。
【0058】
また、遮光板をフォトダイオードと同一基板上に備えることにより、フォトダイオードの受光領域面積を最適化し、不要散乱光を遮蔽するので、精度の高い計測が可能となる。更に、発光素子からの漏れ光が直接フォトダイオードに入射するのを遮光板により防ぐことが可能である。この結果、生体組織内の移動している毛細血管中の赤血球からの散乱光(ドップラーシフトした光)を効率よく検出し、より正確な出力を得ることができる。
【0059】
また、光源の半導体レーザに、従来製品より長い波長の、波長1.3μm、あるいは980nm、850nmのレーザを用いることにより、光を皮下組織の奥まで透過させ整った波形を検出することができる。
【図面の簡単な説明】
【図1】従来の血流計を示すブロック図である。
【図2】本発明の一実施形態における血流計のブロック図である。
【図3】本発明の第1の実施の形態におけるセンサチップのブロック図である。
【図4】本発明の第2の実施の形態におけるセンサチップのブロック図である。
【図5】本発明の第3の実施の形態におけるセンサチップのブロック図である。
【図6】第3の実施の形態に係るセンサチップの作成方法を説明するための斜視図である。
【図7】上記方法で作成した本センサチップの顕微鏡写真である。
【図8】遮光板の他の例を示す図である。
【図9】本発明に係る血流計の受光素子として使用されるフォトダイオードを示す図である。
【図10】図9に示したフォトダイオードの側面図である。
【図11】本発明の血流計の他の例の構成を示すブロック図である。
【図12】従来の市販血流計と、本発明の血流計との出力波形を比較した図である。
【符号の説明】
11 センサチップ
12 増幅器
13 駆動/演算装置
14 出力部
21 半導体基板
24 半導体レーザ
29 フォトダイオード
31 半導体基板
34 半導体レーザ
35 光導波路
38 フォトダイオード
41 半導体基板
44 半導体レーザ
45 光導波路
48 フォトダイオード
51 第1の遮光板
54 第2の遮光板
61 基板
62 受光部
71 PD
72 LD
73 光導波路
74 LD/PDドライバIC
75 ADコンバータ/無線送信機
76 電源バッテリ

Claims (21)

  1. 発光素子から出射した光を外部の生体組織に向かって出射し、生体組織からの散乱光を受光素子で受光して生体組織内の血流に関する値を測定する血流計におけるセンサ部であって、
    前記発光素子と前記受光素子とを同一半導体基板上に集積化して備え、更に、
    前記発光素子から前記受光素子に直接光が入射するのを遮る第1の遮光構造と、前記受光素子の前面に位置する所定の空隙を有する第2の遮光構造と、前記発光素子から出射した光を収束光または平行光にして外部の生体組織に向かって出射するための光導波路と、を前記半導体基板上に備えたことを特徴とするセンサ部。
  2. 発光素子から出射した光を外部の生体組織に向かって出射し、生体組織からの散乱光を受光素子で受光して生体組織内の血流に関する値を測定する血流計におけるセンサ部であって、
    前記発光素子と前記受光素子とを同一半導体基板上に集積化して備え、更に、
    前記発光素子から前記受光素子に直接光が入射するのを遮る第1の遮光構造と、前記受光素子の前面に位置し、不要散乱光を遮ることにより受信光の信号対雑音比を改善するための所定の空隙を有する第2の遮光構造と、前記発光素子から出射した光を収束光または平行光にして外部の生体組織に向かって出射するための光導波路と、を前記半導体基板上に備えたことを特徴とするセンサ部
  3. 前記発光素子及び前記受光素子とを前記半導体基板上にモノリシックに集積化したことを特徴とする請求項1又は2に記載のセンサ部。
  4. 前記第2の遮光構造における前記所定の空隙の大きさは約65μmである請求項1ないし3のうちいずれか1項に記載のセンサ部
  5. 前記第2の遮光構造における前記所定の空隙の大きさの、前記発光素子の中心と前記受光素子の中心との間隔に対する比率は約5%である請求項4に記載のセンサ部
  6. 前記受光素子として端面入射屈折型フォトダイオードを用いたことを特徴とする請求項ないしのうちいずれか1項に記載のセンサ部。
  7. 前記発光素子として、波長約1.3μmの光を発するレーザダイオードを用いたことを特徴とする請求項ないしのうちいずれか1項に記載のセンサ部。
  8. 前記レーザダイオードは、DFBレーザダイオードであることを特徴とする請求項に記載のセンサ部。
  9. 前記光導波路をフッ素化ポリイミドを用いて形成したことを特徴とする請求項ないしのうちいずれか1項に記載のセンサ部。
  10. 前記血流に関する値は、血流量、血液量、又は、血流速度であることを特徴とする請求項ないしのうちいずれか1項に記載のセンサ部。
  11. 前記血流計は、前記散乱光に含まれるドップラーシフトを用いて前記血流に関する値を算出する請求項1ないし10のうちいずれか1項に記載のセンサ部
  12. 発光素子から出射した光を外部の生体組織に向かって出射し、生体組織からの散乱光を受光素子で受光して生体組織内の血流に関する値を測定する血流計であって、
    前記発光素子と前記受光素子とを同一半導体基板上に集積化して備えたセンサ部を有し、
    前記センサ部は更に、前記発光素子から前記受光素子に直接光が入射するのを遮る第1の遮光構造と、前記受光素子の前面に位置する所定の空隙を有する第2の遮光構造と、前記発光素子から出射した光を収束光または平行光にして外部の生体組織に向かって出射するための光導波路と、を前記半導体基板上に備えたことを特徴とする血流計。
  13. 発光素子から出射した光を外部の生体組織に向かって出射し、生体組織からの散乱光を受光素子で受光して生体組織内の血流に関する値を測定する血流計であって、
    前記発光素子と前記受光素子とを同一半導体基板上に集積化して備えたセンサ部を有し
    前記センサ部は更に、前記発光素子から前記受光素子に直接光が入射するのを遮る第1の遮光構造と、前記受光素子の前面に位置し、不要散乱光を遮ることにより受信光の信号対雑音比を改善するための所定の空隙を有する第2の遮光構造と、前記発光素子から出射した光を収束光または平行光にして外部の生体組織に向かって出射するための光導波路と、を前記半導体基板上に備えたことを特徴とする血流計
  14. 前記第2の遮光構造における前記所定の空隙の大きさは約65μmである請求項12又は13に記載の血流計
  15. 前記第2の遮光構造における前記所定の空隙の大きさの、前記発光素子の中心と前記受光素子の中心との間隔に対する比率は約5%である請求項14に記載の血流計
  16. 前記受光素子として端面入射屈折型フォトダイオードを用いたことを特徴とする請求項12ないし15のうちいずれか1項に記載の血流計
  17. 前記発光素子として、波長約1.3μmの光を発するレーザダイオードを用いたことを特徴とする請求項12ないし16のうちいずれか1項に記載の血流計
  18. 前記レーザダイオードは、DFBレーザダイオードであることを特徴とする請求項17に記載の血流計
  19. 前記血流計は、前記散乱光に含まれるドップラーシフトを用いて前記血流に関する値を算出する請求項12ないし18のうちいずれか1項に記載の血流計
  20. 前記発光素子を駆動する回路と、前記センサ部から受信した信号を処理して前記血流に関する値を計算するデジタル信号プロセッサとを備えた集積回路を更に備えた請求項12ないし19のうちいずれか1項に記載の血流計。
  21. 前記発光素子を駆動する回路と、前記センサ部からの信号を無線送信する回路とを更に備えた請求項12ないし19のうちいずれか1項に記載の血流計。
JP2002025303A 2001-02-02 2002-02-01 血流計及び血流計のセンサ部 Expired - Fee Related JP3651442B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002025303A JP3651442B2 (ja) 2001-02-02 2002-02-01 血流計及び血流計のセンサ部

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001026401 2001-02-02
JP2001-26401 2001-02-02
JP2002025303A JP3651442B2 (ja) 2001-02-02 2002-02-01 血流計及び血流計のセンサ部

Publications (2)

Publication Number Publication Date
JP2002330936A JP2002330936A (ja) 2002-11-19
JP3651442B2 true JP3651442B2 (ja) 2005-05-25

Family

ID=26608826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025303A Expired - Fee Related JP3651442B2 (ja) 2001-02-02 2002-02-01 血流計及び血流計のセンサ部

Country Status (1)

Country Link
JP (1) JP3651442B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034742A1 (ja) * 2003-10-09 2005-04-21 Nippon Telegraph And Telephone Corporation 生体情報検出装置及び血圧計
JP4476665B2 (ja) * 2004-03-26 2010-06-09 セイコーインスツル株式会社 生体情報計測装置
JP4061409B2 (ja) 2004-11-09 2008-03-19 国立大学法人九州大学 センサ部及び生体センサ
JP4714017B2 (ja) * 2005-12-22 2011-06-29 日本電信電話株式会社 生体センサ
JP4718324B2 (ja) * 2005-12-28 2011-07-06 日本電信電話株式会社 光学センサ及びそのセンサ部
JP4724559B2 (ja) * 2005-12-28 2011-07-13 日本電信電話株式会社 光学センサ及びそのセンサ部
JP4685705B2 (ja) * 2006-05-18 2011-05-18 日本電信電話株式会社 携帯型生体情報モニタ
US8800967B2 (en) 2009-03-23 2014-08-12 Southwire Company, Llc Integrated systems facilitating wire and cable installations
JP4714179B2 (ja) * 2007-04-24 2011-06-29 日本電信電話株式会社 生体情報測定装置及び生体情報測定装置の制御方法
KR101414927B1 (ko) * 2007-08-27 2014-07-07 삼성전자주식회사 생체정보 측정용 센서 및 이를 구비한 이어폰
JP4393568B2 (ja) * 2008-09-26 2010-01-06 日本電信電話株式会社 脈波測定器
JP6179065B2 (ja) * 2012-01-27 2017-08-16 セイコーエプソン株式会社 脈波測定装置及び検出装置
JP5860711B2 (ja) 2012-02-03 2016-02-16 Kyb株式会社 流体圧制御装置
JP2016134532A (ja) * 2015-01-20 2016-07-25 新日本無線株式会社 反射型センサ装置及びその製造方法
JP6614608B2 (ja) * 2015-12-24 2019-12-04 パイオニア株式会社 流体評価装置及び方法、コンピュータプログラム並びに記録媒体

Also Published As

Publication number Publication date
JP2002330936A (ja) 2002-11-19

Similar Documents

Publication Publication Date Title
JP3882756B2 (ja) 血流計のセンサ部及び血流計
JP3651442B2 (ja) 血流計及び血流計のセンサ部
JP4061409B2 (ja) センサ部及び生体センサ
Higurashi et al. An integrated laser blood flowmeter
US11696707B2 (en) Tunable hybrid III-V/IV laser sensor system-on-a chip for real-time monitoring of a blood constituent concentration level
JP4724559B2 (ja) 光学センサ及びそのセンサ部
US20110260176A1 (en) Light-emitting sensor device and method for manufacturing the same
US20100056887A1 (en) Emission sensor device and bioinformation detecting method
US20170251963A1 (en) Measurement apparatus and detection device
JP4718324B2 (ja) 光学センサ及びそのセンサ部
US7128716B2 (en) Blood flowmeter and sensor part of the blood flowmeter
Omori et al. Integrated Blood Flowmeter Using Micromachining Technology
JP2008010832A (ja) 光学センサ、センサチップ及び生体情報測定装置
CN103385711B (zh) 基于mems的人体生理参数检测装置
JP2008272085A (ja) 血流センサ
JP5031896B2 (ja) 自発光型センサ装置
JP4460566B2 (ja) 光学センサ及び生体情報測定装置
JP4440704B2 (ja) 導波路型光センサ
JP5301618B2 (ja) 光学センサ及びセンサチップ
JP4714179B2 (ja) 生体情報測定装置及び生体情報測定装置の制御方法
Kimura et al. Low-power consumption integrated laser Doppler blood flowmeter with a built-in silicon microlens
JP2001296244A (ja) 生体信号検出装置
JP4714017B2 (ja) 生体センサ
JP4668234B2 (ja) 血流測定装置
JP2018175707A (ja) 検出装置、生体情報測定装置および検出方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3651442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees