JP3651057B2 - Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device - Google Patents

Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device Download PDF

Info

Publication number
JP3651057B2
JP3651057B2 JP11886495A JP11886495A JP3651057B2 JP 3651057 B2 JP3651057 B2 JP 3651057B2 JP 11886495 A JP11886495 A JP 11886495A JP 11886495 A JP11886495 A JP 11886495A JP 3651057 B2 JP3651057 B2 JP 3651057B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
component
semiconductor device
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11886495A
Other languages
Japanese (ja)
Other versions
JPH08311170A (en
Inventor
倫一 尾田
達男 河田
博樹 幸島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP11886495A priority Critical patent/JP3651057B2/en
Publication of JPH08311170A publication Critical patent/JPH08311170A/en
Application granted granted Critical
Publication of JP3651057B2 publication Critical patent/JP3651057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、はんだ耐熱性、耐湿性に優れた、半導体封止用エポキシ樹脂組成物及びその樹脂組成物で封止した半導体装置に関する。
【0002】
【従来の技術】
IC、LSI等の半導体素子は素子の集積度の向上と共に、素子サイズの大型化、樹脂封止型半導体装置の小型化、薄型化が進んでいる。同時に半導体装置の基板への取り付けを行う時に、半導体装置自体が短時間のうちに200℃以上の高温にさらされるようになってきた。この時、樹脂封止材中に含有される水分が気化し、ここで発生する蒸気圧が樹脂と素子、リードフレーム等のインサートとの界面において、剥離応力として働き、樹脂インサートの間で剥離が発生し、特に薄型の樹脂封止型半導体装置においては、半導体装置のフクレやクラックに至ってしまうことになる。以上の様な剥離やクラックにより半導体装置の耐湿信頼性の劣化を生じることになる。このような剥離やクラックを生じる防止策として、タブ裏面と封止用樹脂との間の接着力を向上させるため、タブ裏面のディンプル加工、スリット加工等の手法が取られているが、リードフレームの高コスト化、効果不十分等の問題があり、封止用樹脂での改善が望まれる。このため、吸湿の影響が少なく、半導体装置が基板への取り付けの際に高温にさらされても、剥離やクラックが発生せず、耐湿信頼性の劣化の少ない封止用樹脂の開発が強く要求されている。
【0003】
【発明が解決しようとする課題】
本発明は、このような要求に対し、樹脂封止に用いる封止用樹脂組成物において、その吸湿を低下することにより、半導体装置の封止樹脂とインサートとの間の剥離及びクラックの発生を抑制し、耐湿性に優れた封止用樹脂組成物を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、すなわち下記一般式(I)で示されるジグリシジルエーテルヒドロキノン型エポキシ樹脂(A成分)、一般式(II)で示されるアラルキル基フェノール樹脂及び一般式(III) で示されるクレゾールノボラック型フェノール樹脂から選ばれる少なくとも一種以上の硬化剤(B成分)、一般式(IV)で示される硬化促進剤(C成分)、無機質充填材(D成分)を必須成分とし、樹脂組成物に対して前記無機質充填材を60〜95vol%含有することを特徴とする半導体封止用エポキシ樹脂組成物に関する。
【0005】
【化1】

Figure 0003651057
(式中、R1 ,R2 ,R3 ,R4 は、H基、CH3 基もしくはC(CH3 3 基を示し、nは0〜3の整数を示す。)
【0006】
【化2】
Figure 0003651057
(式中、mは0〜30の整数を示す。)
【0007】
【化3】
Figure 0003651057
(式中、lは0以上の整数を示す。)
【0008】
【化4】
Figure 0003651057
【0009】
更に、上記A成分のエポキシ樹脂には通常の半導体封止用エポキシ樹脂組成物に用いられるエポキシ樹脂を併用することができる。この併用されるエポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であれば特に制限するものではないが、従来から半導体装置用の封止樹脂として用いられているオルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等が好適である。
【0010】
本発明に用いる上記の一般式(II)で示されるアラルキル基フェノール樹脂及び一般式(III) のクレゾールノボラック型フェノール樹脂には、通常の半導体封止用エポキシ樹脂組成物に用いられるフェノール樹脂を併用することができる。この併用されるフェノール樹脂は1分子中に2個以上の水酸基を有するフェノール樹脂であれば特に限定するものではないが、従来から半導体の封止樹脂として用いられているノボラック型フェノール樹脂、フェノール類とジメトキシパラキシレンから合成されるキシリレン基を有するフェノール・アラルキル樹脂、分子内にジシクロペンタジエン骨格構造を有するフェノール樹脂等があり、2種類以上併用しても良い。
また、(A)のエポキシ樹脂と(B)の硬化剤の当量比(Bの水酸基数/エポキシ樹脂基数)は、特に限定はされないが、それぞれの未反応分を少なく抑えるために0.7〜1.3の範囲に設定することが好ましい。
【0011】
C成分の硬化促進剤として、従来使用していたアミン類及びその誘導体又はそれらの塩類、1,8−ジアザビシクロ(5,4,0)ウンデンセン−7及びその誘導体又はそれらの塩類、各種オニウム化合物、イミダゾール等の硬化促進剤から一般式(IV)で示される潜在性のある(活性化エネルギーに変曲点があり、低温で反応が遅く、高温で反応が早い)硬化促進剤を用いる。一般式(IV)はトリフェニルホスフィンとキノンとの付加物を表す。C成分の硬化促進剤を必須成分として用いる一つの理由としては、上記1,8−ジアザビシクロ(5,4,0)ウンデンセン−7を使用すると、成形する前に吸湿した場合、硬化性が著しく低下してしまう為である。硬化促進剤の配合割合は、好ましくはエポキシ樹脂100重量部に対して、0.1〜10重量部である。
【0012】
本発明に用いるD成分の無機質充填剤は結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、又はこれらを球形化したビーズ等が挙げられ、1種以上用いることができる。充填剤の配合量としては、成形性、熱膨張係数の低減、高温強度向上の観点から60〜95vol%以上が好ましい。
【0013】
その他の添加剤として高級脂肪酸、高級脂肪金属塩、エステル系ワックス、ポリエチレン系ワックス等の離型剤、カーボンブラック等の着色剤、エポキシシラン、アミノシラン、ウレイドシランビニルシラン、アルキルシラン、有機チタネート、アルミニウムアルコレート等のカップリング剤及び難燃剤等を用いることができる。
以上のような原材料を用いて樹脂組成物を作製する一般的な方法としては、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、押出機等によって混練し、冷却、粉砕することによって封止用樹脂組成物を得ることができる。
【0014】
本発明で得られる樹脂組成物を用いて電子部品を封止する方法としては、低圧トランスファー成形法が最も一般的であるが、インジェクション成形法、圧縮成形法によっても可能である。
【0015】
【効果】
前記した樹脂組成物を用いて封止した半導体装置は、含有する水分が少なく、更にインサートとの密着性が高くなり、はんだ付け時のクラックが発生することなく、耐熱信頼性に優れた樹脂封止型半導体装置を提供することができる。
【0016】
【実施例】
以下実施例及び比較例によって具体的に本発明を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
まず、表1に示す重量部で配合し予備混合(ドライブレンド)した後、10インチ径の二軸加熱ロールを使用して、混練温度80〜90℃、混練時間7〜10分の条件で混練し、冷却後、粉砕後微粒化して得た封止用樹脂組成物を用いた。
【0017】
実施例1〜3、比較例1〜3
この封止用樹脂組成物を用い、トランスファー成形機で、金型温度180℃、成形圧力70kgf/cm2 、硬化時間90秒の条件で成形した。スパイラルフロー(SF)は、EMMI1−66に準じて測定した。吸湿後の硬化性については、封止用樹脂組成物を25℃、50%RH雰囲気中に24時間放置後、上記と同様にスパイラルフロー測定時カル部の硬化状態を見た。表2において、○印は、吸湿後の硬化性が良好、×印は不良であることを示す。A1ピール接着力は、厚み約0.03mmのアルミホイル上に幅10mmの成形品を上記の条件で成形し、更に175℃、5時間後硬化を行ったものについて、アルミ箔と成形品の密着力を測定した。吸湿率はφ50×3mmの円板を上記の条件で成形し、更に後硬化を行ったものについてPCT(121℃、2atm)20時間後の重量変化から測定した。また、封止用樹脂組成物を用いて、半導体素子をトランスファー成形機で同様の条件で成形し、後硬化(175℃/5時間)後はんだ付け時の耐熱性と耐熱信頼性を測定した。
はんだ付け時の耐熱性に用いた半導体装置QFP80ピンは、外形寸法が20×14×2(mm)のフラットパッケージであり、8×14×0.4(mm)の素子を搭載した80ピン、42アロイリードのものである。試験条件は、85℃/85%RHで所定時間加湿した後、215℃のベーパーフェーズリフロー炉において90秒加熱する。評価は外観を顕微鏡にて観察し、パッケージクラックの有無を判定することにより行った。
耐湿信頼性に用いた半導体装置DIP16ピンは、外形寸法が6.3×19.5×3.8(mm)であり、リードフレームは42アロイ材で7.2×3.9(mm)のチップサイズを有するものである。(チップのデザインはA115μm幅、ギャップ5μm、パッシベーションなし)
このようにして得られた半導体装置について、125℃、24時間ベーキング後85℃/85%RHで72時間加熱させた後、215℃のベーパーフェーズリフロー炉において、90秒加熱処理を行い、PCT(121℃、2atm)の条件化で放置した時の半導体装置のA1配線の腐食断線を導通試験を行うことにより求めた。
上記の各試験結果をまとめて表2に示す。
表2より、実施例の成形品は、高接着性、低吸湿率であり、半導体装置は、はんだ付け時の耐熱性、耐湿信頼性が良好であることが明白である。
【0018】
【表1】
Figure 0003651057
【0019】
【表2】
Figure 0003651057
【0020】
【発明の効果】
本発明の半導体封止用エポキシ樹脂組成物は、はんだ付け時の耐熱性、耐湿信頼性に優れたものであり、従って該封止用樹脂封止組成物で封止した半導体装置もはんだ付け時の耐熱性、耐湿信頼性に優れたものとなる。[0001]
[Industrial application fields]
The present invention relates to an epoxy resin composition for semiconductor encapsulation excellent in solder heat resistance and moisture resistance, and a semiconductor device encapsulated with the resin composition.
[0002]
[Prior art]
Semiconductor elements such as ICs and LSIs have been improved in the degree of integration of elements, and the element size has been increased, and resin-encapsulated semiconductor devices have been reduced in size and thickness. At the same time, when the semiconductor device is attached to the substrate, the semiconductor device itself has been exposed to a high temperature of 200 ° C. or more in a short time. At this time, moisture contained in the resin sealing material is vaporized, and the vapor pressure generated here acts as a peeling stress at the interface between the resin and the insert of the element, lead frame, etc., and peeling occurs between the resin inserts. In particular, in a thin resin-encapsulated semiconductor device, a blister or a crack of the semiconductor device is reached. The peeling and cracking as described above causes deterioration of moisture resistance reliability of the semiconductor device. As measures to prevent such peeling and cracking, techniques such as dimple processing and slit processing on the back surface of the tab have been taken to improve the adhesion between the back surface of the tab and the sealing resin. There are problems such as high cost and insufficient effect, and improvement with a sealing resin is desired. For this reason, there is a strong demand for the development of a sealing resin that is less affected by moisture absorption and does not cause peeling or cracking even when the semiconductor device is exposed to a high temperature when mounted on a substrate, and has little deterioration in moisture resistance reliability. Has been.
[0003]
[Problems to be solved by the invention]
In response to such demands, the present invention reduces the moisture absorption in a sealing resin composition used for resin sealing, thereby preventing peeling and cracking between the sealing resin and the insert of the semiconductor device. It aims at providing the resin composition for sealing which suppressed and was excellent in moisture resistance.
[0004]
[Means for Solving the Problems]
That is, the present invention relates to a diglycidyl ether hydroquinone type epoxy resin (component A) represented by the following general formula (I), an aralkyl group phenol resin represented by the general formula (II), and a cresol novolak type represented by the general formula (III). At least one curing agent (component B) selected from phenol resins, a curing accelerator (component C) represented by the general formula (IV), and an inorganic filler (component D) are essential components, and the resin composition The present invention relates to an epoxy resin composition for semiconductor encapsulation, comprising 60 to 95 vol% of the inorganic filler.
[0005]
[Chemical 1]
Figure 0003651057
(In the formula, R 1 , R 2 , R 3 and R 4 represent an H group, a CH 3 group or a C (CH 3 ) 3 group, and n represents an integer of 0 to 3. )
[0006]
[Chemical formula 2]
Figure 0003651057
(In the formula, m represents an integer of 0 to 30.)
[0007]
[Chemical 3]
Figure 0003651057
(In the formula, l represents an integer of 0 or more.)
[0008]
[Formula 4]
Figure 0003651057
[0009]
Furthermore, the epoxy resin used for the normal epoxy resin composition for semiconductor sealing can be used together with the said epoxy resin of A component. The epoxy resin used in combination is not particularly limited as long as it is an epoxy resin having two or more epoxy groups in one molecule, but orthocresol novolak conventionally used as a sealing resin for semiconductor devices. Type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin and the like are suitable.
[0010]
The aralkyl group phenol resin represented by the above general formula (II) and the cresol novolak type phenol resin represented by the general formula (III) used in the present invention are used in combination with a phenol resin used in an ordinary epoxy resin composition for semiconductor encapsulation. can do. The phenol resin used in combination is not particularly limited as long as it is a phenol resin having two or more hydroxyl groups in one molecule, but novolak type phenol resins and phenols conventionally used as a semiconductor sealing resin. And a phenol / aralkyl resin having a xylylene group synthesized from dimethoxyparaxylene and a phenol resin having a dicyclopentadiene skeleton structure in the molecule, and two or more kinds may be used in combination.
The equivalent ratio of the epoxy resin (A) to the curing agent (B) (number of hydroxyl groups of B / number of epoxy resin groups) is not particularly limited, but is 0.7 to It is preferable to set in the range of 1.3.
[0011]
As the curing accelerator for component C, conventionally used amines and derivatives thereof or salts thereof, 1,8-diazabicyclo (5,4,0) undencene-7 and derivatives or salts thereof, various onium compounds, A latent curing accelerator represented by the general formula (IV) is used from a curing accelerator such as imidazole (the activation energy has an inflection point, the reaction is slow at low temperatures, and the reaction is fast at high temperatures). General formula (IV) represents an adduct of triphenylphosphine and quinone. One reason for using the C component curing accelerator as an essential component is that when 1,8-diazabicyclo (5,4,0) undensen-7 is used, if the moisture is absorbed before molding, the curability is significantly reduced. It is because it will do. The blending ratio of the curing accelerator is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin.
[0012]
Examples of the inorganic filler of component D used in the present invention include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, or beads formed by spheroidizing these, and one or more kinds can be used. As a compounding quantity of a filler, 60-95 vol% or more is preferable from a viewpoint of a moldability, reduction of a thermal expansion coefficient, and a high temperature strength improvement.
[0013]
Other additives include higher fatty acids, higher fatty metal salts, release agents such as ester wax and polyethylene wax, colorants such as carbon black, epoxy silane, amino silane, ureido silane vinyl silane, alkyl silane, organic titanate, aluminum alcohol A coupling agent such as a rate and a flame retardant can be used.
As a general method for producing a resin composition using the raw materials as described above, a predetermined amount of raw materials are sufficiently mixed with a mixer or the like, and then kneaded with a mixing roll or an extruder, cooled and pulverized. Thus, a sealing resin composition can be obtained.
[0014]
As a method for sealing an electronic component using the resin composition obtained in the present invention, the low-pressure transfer molding method is the most common, but it can also be performed by an injection molding method or a compression molding method.
[0015]
【effect】
The semiconductor device encapsulated with the resin composition described above has a low moisture content, further increases the adhesion to the insert, does not generate cracks during soldering, and has excellent heat resistance reliability. A stationary semiconductor device can be provided.
[0016]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the scope of the present invention is not limited to these examples.
First, after blending in parts by weight shown in Table 1 and pre-mixing (dry blending), using a 10-inch diameter biaxial heating roll, kneading at a kneading temperature of 80 to 90 ° C. and a kneading time of 7 to 10 minutes. Then, the resin composition for sealing obtained by cooling, pulverizing and atomizing was used.
[0017]
Examples 1-3, Comparative Examples 1-3
Using this sealing resin composition, it was molded by a transfer molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 70 kgf / cm 2 , and a curing time of 90 seconds. Spiral flow (SF) was measured according to EMMI1-66. Regarding the curability after moisture absorption, the sealing resin composition was allowed to stand in an atmosphere of 25 ° C. and 50% RH for 24 hours, and the cured state of the cull portion was observed during spiral flow measurement as described above. In Table 2, the ◯ mark indicates that the curability after moisture absorption is good, and the X mark is poor. The A1 peel adhesive strength was obtained by forming a molded product having a width of 10 mm on an aluminum foil having a thickness of about 0.03 mm under the above-mentioned conditions, followed by post-curing at 175 ° C. for 5 hours. The force was measured. The moisture absorption was measured from a change in weight after 20 hours of PCT (121 ° C., 2 atm) for a plate obtained by molding a disk of φ50 × 3 mm under the above conditions and further performing post-curing. Moreover, the semiconductor element was shape | molded on the same conditions with the transfer molding machine using the resin composition for sealing, and the heat resistance at the time of soldering after a postcure (175 degreeC / 5 hours) and heat-resistant reliability were measured.
The semiconductor device QFP 80 pin used for heat resistance during soldering is a flat package having an outer dimension of 20 × 14 × 2 (mm), and 80 pins mounted with an element of 8 × 14 × 0.4 (mm), 42 alloy lead. As test conditions, humidification is performed for a predetermined time at 85 ° C./85% RH, and then heating is performed for 90 seconds in a vapor phase reflow furnace at 215 ° C. The evaluation was performed by observing the appearance with a microscope and determining the presence or absence of package cracks.
The semiconductor device DIP16 pin used for moisture resistance reliability has an outer dimension of 6.3 × 19.5 × 3.8 (mm), and the lead frame is made of 42 alloy and 7.2 × 3.9 (mm). It has a chip size. (Chip design is A115μm wide, gap 5μm, no passivation)
The semiconductor device thus obtained was baked at 125 ° C. for 24 hours and then heated at 85 ° C./85% RH for 72 hours, and then subjected to a heat treatment for 90 seconds in a vapor phase reflow furnace at 215 ° C. Corrosion disconnection of the A1 wiring of the semiconductor device when left under conditions of 121 ° C. and 2 atm) was obtained by conducting a continuity test.
The test results are summarized in Table 2.
From Table 2, it is clear that the molded articles of the examples have high adhesion and low moisture absorption, and the semiconductor device has good heat resistance and moisture resistance reliability during soldering.
[0018]
[Table 1]
Figure 0003651057
[0019]
[Table 2]
Figure 0003651057
[0020]
【The invention's effect】
The epoxy resin composition for semiconductor encapsulation of the present invention is excellent in heat resistance and moisture resistance reliability during soldering. Therefore, a semiconductor device encapsulated with the resin encapsulation composition for encapsulation is also soldered. It has excellent heat resistance and moisture resistance reliability.

Claims (3)

一般式(I)で示されるジグリシジルエーテルヒドロキノン型エポキシ樹脂(A成分)、下記一般式(II)で示されるアラルキル型フェノール樹脂及び一般式(III) で示されるクレゾールノボラック型フェノール樹脂から選ばれる少なくとも一種以上の硬化剤(B成分)、下記一般式( IV )で示される硬化促進剤(C成分)、を含むことを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 0003651057
(式中、R1 ,R2 ,R3 ,R4 は、H基、CH3 基もしくはC(CH33 基を示し、nは0〜3の整数を示す。)
Figure 0003651057
(式中、mは0〜30の整数を示す。)
Figure 0003651057
(式中、lは0以上の整数を示す。)
Figure 0003651057
Selected from diglycidyl ether hydroquinone type epoxy resin (component A) represented by general formula (I), aralkyl type phenol resin represented by general formula (II) below and cresol novolac type phenol resin represented by general formula (III) An epoxy resin composition for semiconductor encapsulation, comprising at least one curing agent (component B ) and a curing accelerator (component C ) represented by the following general formula ( IV ) .
Figure 0003651057
(In the formula, R 1 , R 2 , R 3 and R 4 represent an H group, a CH 3 group or a C (CH 3 ) 3 group, and n represents an integer of 0 to 3. )
Figure 0003651057
(In the formula, m represents an integer of 0 to 30.)
Figure 0003651057
(In the formula, l represents an integer of 0 or more.)
Figure 0003651057
請求項1に記載のエポキシ樹脂(A成分)、硬化剤(B成分)、硬化促進剤(C成分)において無機質充填材(D成分)を、樹脂組成物に対して60〜95vol%含有してなる半導体封止用エポキシ樹脂組成物。In the epoxy resin (A component), the curing agent (B component), and the curing accelerator (C component) according to claim 1, the inorganic filler (D component) is contained in an amount of 60 to 95 vol% with respect to the resin composition. An epoxy resin composition for semiconductor encapsulation. 請求項1又は2に記載の半導体封止用エポキシ樹脂組成物で封止した半導体装置。A semiconductor device encapsulated with the epoxy resin composition for encapsulating a semiconductor according to claim 1.
JP11886495A 1995-05-18 1995-05-18 Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device Expired - Fee Related JP3651057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11886495A JP3651057B2 (en) 1995-05-18 1995-05-18 Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11886495A JP3651057B2 (en) 1995-05-18 1995-05-18 Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001374591A Division JP2002220438A (en) 2001-12-07 2001-12-07 Epoxy resin composition for sealing semiconductor and resin-sealed semiconductor device

Publications (2)

Publication Number Publication Date
JPH08311170A JPH08311170A (en) 1996-11-26
JP3651057B2 true JP3651057B2 (en) 2005-05-25

Family

ID=14747023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11886495A Expired - Fee Related JP3651057B2 (en) 1995-05-18 1995-05-18 Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device

Country Status (1)

Country Link
JP (1) JP3651057B2 (en)

Also Published As

Publication number Publication date
JPH08311170A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
JP5008222B2 (en) Epoxy resin composition and semiconductor device
JP4411760B2 (en) Epoxy resin composition and semiconductor device
JP2002012742A (en) Epoxy resin composition and semiconductor device
JP3651057B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JPH07273251A (en) Resin sealed type semiconductor device
JP2000281751A (en) Epoxy resin composition and semiconductor device
JP2000044774A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
KR100201708B1 (en) Epoxy resin composition for encapsulation of semiconductor
JPH08311169A (en) Epoxy resin composition for sealing semiconductor and resin-sealed type semiconductor device
JP3740988B2 (en) Resin composition for sealing and semiconductor device
JP2002241581A (en) Epoxy resin composition and semiconductor device
KR19980030543A (en) Epoxy resin composition for sealing semiconductor devices with high thermal conductivity and low thermal expansion coefficient
JP2002220438A (en) Epoxy resin composition for sealing semiconductor and resin-sealed semiconductor device
JP4040370B2 (en) Epoxy resin composition and semiconductor device
JPH0977850A (en) Epoxy resin composition and resin-sealed semiconductor device
JPH1112442A (en) Sealing resin composition and sealed semiconductor device
JP2000273285A (en) Epoxy resin composition and semiconductor device
JP3883730B2 (en) Discrete semiconductor sealing resin composition and discrete semiconductor sealing device
JP4379972B2 (en) Epoxy resin composition and semiconductor device
JP3093051B2 (en) Epoxy resin composition
JP2687764B2 (en) Resin composition for semiconductor encapsulation
JP4379977B2 (en) Epoxy resin composition and semiconductor device
JP4524837B2 (en) Epoxy resin composition and semiconductor device
JP3649893B2 (en) Resin composition for sealing and semiconductor sealing device
JP2000103839A (en) Sealing resin composition and semiconductor device sealed therewith

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Effective date: 20040430

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050201

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050214

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090304

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100304

LAPS Cancellation because of no payment of annual fees