JP3649280B2 - 筒内噴射型内燃機関の燃料噴射制御装置 - Google Patents

筒内噴射型内燃機関の燃料噴射制御装置 Download PDF

Info

Publication number
JP3649280B2
JP3649280B2 JP2001004984A JP2001004984A JP3649280B2 JP 3649280 B2 JP3649280 B2 JP 3649280B2 JP 2001004984 A JP2001004984 A JP 2001004984A JP 2001004984 A JP2001004984 A JP 2001004984A JP 3649280 B2 JP3649280 B2 JP 3649280B2
Authority
JP
Japan
Prior art keywords
injection control
control mode
internal combustion
combustion engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001004984A
Other languages
English (en)
Other versions
JP2001221088A (ja
Inventor
和正 飯田
保樹 田村
祥吾 大森
勝彦 宮本
正人 吉田
裕一 殿村
淳 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2001004984A priority Critical patent/JP3649280B2/ja
Publication of JP2001221088A publication Critical patent/JP2001221088A/ja
Application granted granted Critical
Publication of JP3649280B2 publication Critical patent/JP3649280B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/44

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、車両用として好適した筒内噴射型内燃機関及びその燃料噴射制御装置に関する。
【0002】
【従来の技術】
近年、車両用内燃機関として筒内噴射型内燃機関の開発が進められている。この種の筒内噴射型内燃機関では、燃焼室、即ち、その気筒内に燃料が直接噴射されるため、理論空燃比に近い空燃比を有する燃料と空気の混合気を、点火プラグの周辺のみに形成する工夫が色々と採用されている。それ故、筒内噴射型内燃機関にあっては、気筒内の全体の混合気がたとえリーンであっても、つまり、平均空燃比が理論空燃比よりも大きくても燃料への着火が可能となり、燃料を良好に燃焼させることができる。この結果、内燃機関からの排ガス中に含まれる一酸化炭素(CO)やハイドロカーボン(HC)が減少され、また、内燃機関のアイドル運転時や、その内燃機関を搭載した車両の定常走行時にあっては燃料の消費量を大幅に低減させることができる。更に、吸気通路内に燃料を噴射する通常のタイプの内燃機関は、吸気通路内にて混合気が生成されるため、その混合気が気筒内に実際に流入するまでに遅れが生じるが、筒内噴射型内燃機関の場合にはその遅れがなく、内燃機関の加速及び減速の応答性にも優れたものとなる。
【0003】
しかしながら、上述した筒内噴射型内燃機関の利点は、内燃機関が比較的低負荷にて運転されている状況のみにて得られるに過ぎない。即ち、内燃機関の負荷の増加に伴い、燃料の噴射量が増加すると、点火プラグの周辺に形成される混合気は過度にリッチとなって、燃料の着火が不能になり、失火現象が発生する。つまり、筒内噴射型内燃機関の場合、その運転領域の全域に亘り、点火プラグの周辺のみに最適な空燃比を有する混合気を形成することは困難である。
【0004】
上述の欠点を解消するため、特開平5-79370号公報に開示された筒内噴射型内燃機関は、燃料の噴射モードに燃料の噴射を吸気行程にて行う前期噴射モードと燃料の噴射を圧縮行程にて行う後期噴射モードとを有しており、噴射モードは内燃機関の負荷に応じて、前期噴射モード又は後期噴射モードに切り換え制御される。後期噴射モードの場合、燃料の噴射は、点火プラグの周辺のみに理論空燃比に近い空燃比を有した混合気を形成する。それ故、気筒内の全体の混合気がたとえリーンであっても燃料の着火が可能となって排ガス中のCOやHCを減少させることができ、また、内燃機関のアイドル運転時や車両の定常走行時にあっては、燃料の消費量を大きく削減することができる。これに対し、前期噴射モードの場合、燃料は吸気行程中に噴射され、気筒内に均一な濃度の混合気を形成することができる。この結果、空気利用率が高いので、燃料の噴射量を増加させることができ、内燃機関の出力を十分に高めることができる。
【0005】
【発明が解決しようとする課題】
上述したように公知の筒内噴射型内燃機関の場合にあっては、その燃料の噴射モードが定常的な運転状態に応じて、後期噴射モード及び前期噴射モードの一方に切り換えられるものの、車両の発進や停止などの非定常走行状態、また、内燃機関の加速、減速及び冷態時などの運転過渡状態については何等考慮されていない。それ故、車両が発進や停止状態、また、内燃機関が運転過渡状態にあるとき、燃料の噴射モードや気筒内での平均空燃比が適切に設定されないこともあり、車両用の内燃機関としてはその性能を十分に確保できないことになる。
【0006】
この発明は、上述の事情に基づいてなされたもので、その目的とするところは、車両が非定常走行状態または内燃機関が運転過渡状態にあっても、その状態に応じて燃料の噴射モードや平均空燃比を最適に制御できる筒内噴射型内燃機関の燃料噴射制御装置を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、この発明の筒内噴射型内燃機関の燃料噴射制御装置(請求項1)は、内燃機関の運転状態を検出する運転状態検出手段と、前記運転状態検出手段により検出された検出結果に応じて、燃料の噴射を吸気行程で行う前期噴射制御モード、或いは、燃料の噴射を圧縮行程で行う後期噴射制御モードの何れかに設定する第1噴射制御モード設定手段と、前記内燃機関の運転過渡状態を検出する過渡状態検出手段と、前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたとき、前記運転過渡状態に応じて前記前期噴射制御モード、或いは前記後期噴射制御モードの何れかに設定する第2噴射制御モード設定手段と、前記第1噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する一方、前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたときには、前記第1噴射制御モード設定手段により設定された噴射制御モードに優先し、前記第2噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する燃料噴射制御手段とを備えており、そして、前記過渡状態検出手段は前記内燃機関のスロットルバルブの開度変化、又は、前記内燃機関が搭載された車両のアクセルペダルの踏み込み量変化を検出する開度情報検出手段と、前記内燃機関が搭載された車両の車速を検出する車速検出手段とを含み、前記第2噴射制御モード設定手段は、前記開度情報検出手段及び車速検出手段を用いて前記内燃機関を搭載した車両が発進しようとする際の発進移行状態を検出したとき、前記噴射制御モードを所定期間に亘り前記前期噴射制御モードに設定するものとなっている。
【0008】
上述の請求項1の燃料噴射制御装置によれば、車両が発進しようとする際の発進移行状態にあるとき、燃料は前期噴射制御モードにて噴射される。それ故、内燃機関は十分なトルクを発生することができ、車両の発進がスムーズに行われる。
この際、空燃比が理論空燃比に制御されれば、排ガス中の有害成分は三元触媒により効果的に浄化される。
【0009】
また、上記目的を達成する燃料噴射制御装置(請求項2)は、内燃機関の運転状態を検出する運転状態検出手段と、前記運転状態検出手段により検出された検出結果に応じて、燃料の噴射を吸気行程で行う前期噴射制御モード、或いは、燃料の噴射を圧縮行程で行う後期噴射制御モードの何れかに設定する第1噴射制御モード設定手段と、前記内燃機関の運転過渡状態を検出する過渡状態検出手段と、前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたとき、前記運転過渡状態に応じて前記前期噴射制御モード、或いは前記後期噴射制御モードの何れかに設定する第2噴射制御モード設定手段と、前記第1噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する一方、前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたときには、前記第1噴射制御モード設定手段により設定された噴射制御モードに優先し、前記第2噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する燃料噴射制御手段とを備えており、そして、前記過渡状態検出手段は、前記内燃機関のスロットルバルブの開度変化、又は、前記内燃機関が搭載された車両のアクセルペダルの踏み込み量変化を検出する開度情報検出手段と、前記内燃機関が搭載された車両の車速を検出する車速検出手段とを含んでおり、前記第2噴射制御モード設定手段は、前記開度情報検出手段及び車速検出手段を用いて前記車両の停止状態が検出されたとき、前記噴射制御モードを後期噴射制御モードに設定するものとなっている。
【0010】
上述の請求項2の燃料噴射制御装置によれば、車両が停止状態にあるとき、燃料は後期噴射制御モードにて噴射される。従って、車両の停止中、排ガス中の有害成分を増加させることなく、気筒内にて生成される混合気のリーン化が可能となり、燃料消費量の低減が可能となる。
請求項1又は2の燃料噴射制御装置の場合、前記開度情報検出手段は前記内燃機関のアイドル運転状態を検出するアイドル検出手段を含んでいるのが好ましい(請求項3)。アイドル検出手段は、車両が発進しようとする際の発進移行状態又は車両の停止状態を正確に検出する上で役立つ。
【0011】
また、請求項1又は2の燃料噴射制御装置の場合、前記燃料噴射制御手段は、前記過渡状態検出手段を用い、前記車両の車速に基づいて前記車両が発進を完了したと判定したとき、前記発進移行状態、或いは前記停止状態に応じた燃料の噴射制御モードに優先し、前記第1制御モード設定手段によって設定された噴射制御モードに基づき燃料の噴射を制御するものであるのが好ましい(請求項4)。
【0012】
請求項4の燃料噴射制御装置によれば、車両の発進が完了すると、燃料の噴射制御モードは第1噴射制御モード設定手段により内燃機関の運転状態に応じて前期噴射制御モード又は後期噴射制御モードに設定されるので、車両の走行中の燃料噴射を最適に制御可能となる。
上記目的を達成するため、この発明の燃料噴射制御装置(請求項5)は、内燃機関の運転状態を検出する運転状態検出手段と、前記運転状態検出手段により検出された検出結果に応じて、燃料の噴射を吸気行程で行う前期噴射制御モード、或いは、燃料の噴射を圧縮行程で行う後期噴射制御モードの何れかに設定する第1噴射制御モード設定手段と、前記内燃機関の運転過渡状態を検出する過渡状態検出手段と、前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたとき、前記運転過渡状態に応じて前記前期噴射制御モード、或いは前記後期噴射制御モードの何れかに設定する第2噴射制御モード設定手段と、前記第1噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する一方、前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたときには、前記第1噴射制御モード設定手段により設定された噴射制御モードに優先し、前記第2噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する燃料噴射制御手段とを備えており、そして、前記内燃機関は、この内燃機関に2段折れねじり特性を有するクラッチを介して連結された手動変速機を備えた車両に搭載されるものであって、前記過渡状態検出手段は、前記手動変速機の温度を検出する変速機温度検出手段を含むことで、検出すべき運転過渡状態の1つとして、前記変速機温度検出手段により前記手動変速機の温度が所定の温度よりも低い変速温度移行状態を検出し、前記第2噴射制御モード設定手段は、前記過渡状態検出手段によって前記変速温度移行状態が検出されたとき、前記噴射制御モードに前期噴射制御モードを設定するものとなっている。
【0013】
請求項5の燃料噴射制御装置によれば、手動変速機の温度が所定の温度よりも低い変速温度移行状態にあるとき、燃料は前期噴射制御モード、つまり、吸気行程にて噴射される。この場合、内燃機関にあっては、その回転速度の変動が小さく抑えられるので、内燃機関からクラックを介して手動変速機に伝達される振動も小さくなり、手動変速機からのがた打ち音が発生することはない。
【0014】
請求項5の燃料噴射制御装置の場合、前記過渡状態検出手段は、前記内燃機関のアイドル運転状態を検出するアイドル検出手段を含み、そして、前記変速機温度検出手段によって前記手動変速機の温度が所定の温度範囲内にあることを検出し且つ前記アイドル検出手段によってアイドル運転状態であることを検出したとき、前記変速温度移行状態にあると判定するものであるのが望ましい(請求項6)。
【0015】
請求項6の燃料噴射制御装置における過渡状態検出手段によれば、手動変速機の温度が所定の温度範囲内、つまり、手動変速機が冷態状態にあり且つ内燃機関がアイドル運転状態にあるとき、運転過渡状態が変速温度移行状態にあると判定し、燃料の噴射が前期噴射制御モードにて実施される。
また、請求項5又は6の燃料噴射制御装置の場合、前記変速機温度検出手段は、前記手動変速機の潤滑油の温度を検出するものであるのが好ましい(請求項7)。この場合、変速機温度検出手段は、変速機の温度を正確に検出する。
【0016】
上記目的を達成するため、この発明の燃料噴射制御装置(請求項8)は、内燃機関の運転状態を検出する運転状態検出手段と、前記運転状態検出手段により検出された検出結果に応じて、燃料の噴射を吸気行程で行う前期噴射制御モード、或いは、燃料の噴射を圧縮行程で行う後期噴射制御モードの何れかに設定する第1噴射制御モード設定手段と、前記内燃機関の運転過渡状態を検出する過渡状態検出手段と、前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたとき、前記運転過渡状態に応じて前記前期噴射制御モード、或いは前記後期噴射制御モードの何れかに設定する第2噴射制御モード設定手段と、前記第1噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する一方、前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたときには、前記第1噴射制御モード設定手段により設定された噴射制御モードに優先し、前記第2噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する燃料噴射制御手段とを備えており、そして、前記第2噴射制御モード設定手段は、前記過渡状態検出手段によって、前記内燃機関が減速状態から加速状態に移行する際の第1加速移行状態、或いは、前記内燃機関が定速又は加速状態から減速状態に移行する際の減速移行状態を検出したとき、前記噴射制御モードを前記後期噴射制御モードに設定するものとなっている。
【0017】
請求項8の燃料噴射制御装置によれば、内燃機関が前記第1加速移行状態又は減速移行状態にあるとき、燃料は後期噴射制御モードにて噴射される。このように後期噴射制御モードにて燃料が噴射されると、内燃機関の出力が抑制される結果、内燃機関の加速ショックや減速ショックが低減される。
請求項8の燃料噴射制御装置の場合、前記第2噴射制御モード設定手段は、前記過渡状態検出手段によって、前記内燃機関が減速状態以外から上記第1加速移行状態よりも緩やかな加速の加速状態に移行する際の第2加速移行状態を検出したとき、前記噴射制御モードを所定期間に亘り前記前期噴射制御モードに設定するものであるのが望ましい(請求項9)。
【0018】
請求項9の燃料噴射制御装置によれば、内燃機関が前記第2加速移行状態にあるとき、燃料は所定期間に亘り前期噴射制御モードにて噴射され、内燃機関の加速が達成される。
請求項8又は9の燃料噴射制御装置の場合、前記過渡状態検出手段は、前記内燃機関のスロットルバルブの開度変化、又は、前記内燃機関が搭載された車両のアクセルペダルの踏み込み量変化を検出する開度情報検出手段と、前記開度情報検出手段にて検出された開度情報に基づき、前記内燃機関が前記第1加速移行状態、前記減速移行状態、又は前記第2加速移行状態の何れの過渡状態にあるか判定する判定手段とを含んでいる(請求項10)。
【0019】
このような請求項10の過渡状態検出手段によれば、内燃機関の第1加速移行状態、減速移行状態及び第2加速移行状態が正確に検出される。
更に、請求項9の燃料噴射型制御装置にあっては、前記所定期間が、前記内燃機関の行程数として設定されるのが望ましい(請求項11)。この場合、内燃機関の回転速度に応じて、前期噴射制御モードの維持期間を設定可能となる
【0020】
【発明の実施の形態】
:システム構成:
図1を参照すると、車両のエンジンシステムは筒内噴射型の直列4気筒−4サイクルガソリンエンジン1(以下、単にエンジンと称する)を備え、このエンジン1は図2に拡大して示されている。エンジン1は、シリンダヘッド2、シリンダブロック及びオイルパンを有し、このシリンダブロックに4つのシリンダボア6が形成されている。各シリンダボア6にはピストン7がそれぞれ嵌合されており、各ピストン7はコネクティングロッドを介してクランクシャフトに連結されている。シリンダヘッド2には、各シリンダボア6毎に、点火プラグ3、電磁弁式のフューエルインジェクタ4並びに一対ずつの吸気弁9及び排気弁10がそれぞれ取り付けられている。点火プラグ3は点火コイル19(図1参照)に電気的に接続されており、この点火コイル19は点火プラグ3に高電圧を供給することができる。
【0021】
各フューエルインジェクタ4は、対応するシリンダボア6内にてピストン7の頂面とシリンダヘッド2との間に形成される燃焼室5に燃料を直接に噴霧する。より詳しくは、各ピストン7の頂面にはフューエルインジェクタ4側に位置して半球状のキャビティ8が形成されている。それ故、ピストン7が上死点近傍に到達したとき、フューエルインジェクタ4から燃料が噴霧されると、霧状の燃料はキャビティ8に受け取られる。
【0022】
吸気通路内に燃料を噴射する通常のタイプのエンジンに比べ、筒内噴射型のエンジン1は高い圧縮比を有しており、その圧縮比は例えば12程度に設定されている。これにより、エンジン1は、通常のタイプのエンジンに比べて、高い出力を発生することができる。
エンジン1は、ダブルオーバヘッドカム(DOHC)方式の動弁機構を備えており、この動弁機構は、各気筒の吸気弁9及び排気弁10をそれぞれ駆動するために、吸気弁9側の吸気カムシャフト11及び排気弁10側の排気カムシャフト12を有しており、これらカムシャフト11,12はシリンダヘッド2に回転自在に支持されている。
【0023】
シリンダヘッド2には、各気筒の吸気弁9及び排気弁10に対応して吸気通路13及び排気通路14がそれぞれ形成されており、各吸気通路13はカムシャフト11,12間をシリンダボア6の軸線方向に沿って真っ直ぐに延びている。より詳しくは、図2から明らかなように各吸気通路13はシリンダボア6の軸線に対して所定の角度を存して傾斜されている。各吸気通路13の一端は燃焼室5に開口し、吸気弁9により開閉される吸気ポートを形成しており、その他端は吸気マニホールド21に接続されている。従って、各気筒の燃焼室5には一対の吸気ポートが開口しており、これら吸気ポートの間にフューエルインジェクタ4のノズル部が配置されている。上述したように各吸気通路13がシリンダボア6の軸線に沿って真っ直ぐに延びていると、各吸気通路13を通じて気筒内に流入する吸気は、ピストン7のキャビティ8と協働して気筒内に逆タンブル(tumble)流を形成するとともに、気筒内に導入される吸気の慣性効果を高めることができ、エンジンの出力向上に好適したものとなる。
【0024】
シリンダブロック内にはウォータジャケットが形成されており、このウォータジャケット内を通じて冷却水が循環されるようになっている。シリンダブロックには冷却水の温度を検出する水温センサ16が取り付けられている。
クランクケース内には、各気筒毎のクランク角を検出する電磁式のクランク角センサ17がそれぞれ配置されている。この実施例の場合、各クランク角センサ17は、気筒のクランク角が第1角位置及び第2角位置にあるとき、クランク角信号SGTをそれぞれ出力する。この実施例では、第1及び第2角位置は、クランクシャフトの回転角でみて、ピストン7が上死点(TDC)に到達する75°前(75°TDC)及び5°前(5°TDC)にそれぞれ設定されている。
【0025】
更に、吸気側カムシャフト11及び排気側カムシャフト12の一方、例えば吸気側カムシャフト11には、気筒判別センサが取り付けられており、この気筒判別センサはカムシャフト11の回転角でみて、基準回転角毎に気筒判別信号SGCを出力する。
各排気通路14は吸気通路13とは異なり、シリンダボア6の軸線と直交する方向に延びている。各排気通路14の一端は燃焼室5に開口して、排気弁10により開閉される排気ポートをそれぞれ形成しており、その他端は排気マニホールド41に接続されている。排気マニホールド41にはO2センサ40が取り付けられている。
【0026】
図1に示されているように吸気マニホールド21にはサージタンク20を介してスロットルボディ23が接続されており、このスロットルボディ23から吸気管路25が延びている。吸気管路25の先端にはエアクリーナ22が接続されている。このエアクリーナ22内にはエアフィルタ63、吸気量を検出するエアフローセンサ64及び吸気の温度を検出する吸気温センサ65が内蔵されている。スロットルボディ23はサージタンク20と吸気管路25とを連通させる弁通路を有し、この弁通路内にバタフライ式のスロットルバルブ28が配置されている。このスロットルバブル28はアクセルペダル(図示しない)の踏み込みに応じて、弁通路を開くことができる。スロットルボディ23内には弁通路とは別に、スロットルバルブ28をバイパスする分岐通路が形成されており、この分岐通路には、第1エアバイバスバルブ24が配置されている。この第1エアバイパスバルブ24はステッピングモータ(図示しない)により駆動される。更に、スロットルボディ23内には、スロットルバルブ28の開度、即ち、スロットル開度θTHを検出するスロットルセンサ29、スロットルバルブ28の全閉状態を検出するアイドルスイッチ30が配置されている。
【0027】
吸気管路25には、スロットルボディ23よりも上流側の部位からバイパス管路26が分岐されており、このバイパス管路26はスロットルボディ23の下流側の端部にて、スロットルボディ23の弁通路に連通している。バイパス管路26は吸気管路25の流路断面積と同程度の流路断面積を有しており、バイパス管路26の途中には第2エアバイパスバルブ27が介挿されている。第2エアバイパスバルブ27はリニアソレノイドバルブである。
【0028】
排気マニホールド41からは排気管路43が延びており、この排気管路43の先端にはマフラ(図示しない)が接続されている。排気管路43の途中には、三元触媒を内蔵した排ガス浄化装置42が介挿されている。
更に、シリンダヘッド2内において、各気筒の一対の排気通路14からはEGR通路15が分岐されている。これらEGR通路15はマニホールド(図示しない)を介してEGR管路44の一端に接続されており、EGR管路44の他端は、サージタンク20の上流側端部に接続されている。EGR管路44の途中には、EGRバルブ45が介挿されており、このEGRバルブ45は、ステッピングモータ(図示しない)により駆動される。
【0029】
エンジンシステムは燃料タンク50を備えており、この燃料タンク50は図示しない車体の後部に配置されている。燃料タンク50には、電動式の低圧ポンプ51が取付けられており、低圧ポンプ51は低圧パイプ52を介して高圧ポンプ55に接続されている。低圧パイプ52からはリターンパイプ53が分岐されており、このリターンパイプ53は燃料タンク50に接続されている。従って、低圧ポンプ51が駆動されると、低圧ポンプ51は燃料タンク50内の燃料を吸い上げ、この燃料を高圧ポンプ55に向けて供給することができる。リターンパイプ53には低圧レギュレータ54が介挿されており、この低圧レギュレータ54は、低圧ポンプ51から高圧ポンプ55に供給される燃料の圧力、即ち、低圧パイプ52内の燃料圧を一定の低圧値(例えば、3.35kg/mm2)に調整することができる。
【0030】
高圧ポンプ55は斜板アキシャルピストンポンプからなり、そのポンプ軸は排気側カムシャフト12に連結されている。高圧ポンプ55からは高圧パイプ56が延びており、この高圧パイプ56は分配パイプ57に接続されている。分配パイプ57からは4本のデリバリパイプ62が分岐されており、各デリバリパイプ62は対応するフューエルインジェクタ4にそれぞれ接続されている。高圧ポンプ55がエンジン1、即ち、排気側カムシャフト12の回転によって駆動されると、高圧ポンプ55は燃料タンク50から低圧ポンプ51及び低圧パイプ52を介して燃料を吸い上げ、そして、吸い上げた燃料を高圧パイプ56、分配パイプ57及びデリバリパイプ62を通じて各フューエルインジェクタ4に供給することができる。ここで、エンジン1がアイドル運転状態にあるときでも、高圧ポンプ55は、50kg/mm2以上の高圧の燃料を吐出するだけの能力を有しており、高圧ポンプ55からの燃料の吐出圧はエンジン1の回転速度が増加するに連れて上昇する。分配パイプ57からはリターンパイプ58が延びており、このリターンパイプ58は、燃料タンク50と低圧レギュレータ54との間のリターンパイプ53の部位に接続されている。リターンパイプ58には、高圧レギュレータ59が介挿されており、この高圧レギュレータ59は高圧ポンプ55から各フューエルインジェクタ4に供給される燃料の圧力、即ち、高圧パイプ56から分配パイプ57を通じてデリバリパイプ62に至る燃料通路内の燃料の圧力を50kg/mm2程度の高圧値に調整することができる。更に、高圧レギュレータ59には電磁式の燃料圧切換え弁60が備えられており、この燃料圧切換え弁60は高圧レギュレータ59内のバイパス通路(図示しない)を開閉することができる。燃料圧切換え弁60がオン操作されると、高圧レギュレータ59内のバイパス通路が開かれる結果、前記燃料通路内の燃料の圧力は所定値、例えば前記低圧値(3.35kg/mm2)までしか上昇することかできない。
【0031】
図1に示されているように高圧ポンプ55からはリターンパイプ61が延びており、リターンパイプ61は燃料タンク50と低圧レギュレータ54との間のリターンパイプ53の部位に接続されている。高圧ポンプ55に供給された燃料の一部は、高圧ポンプ55の潤滑及び冷却に使用された後、リターンパイプ61,53を通じて燃料タンク50に戻される。
【0032】
前述した電気的な各種のセンサ、スイッチ及び機器は、電子制御ユニット(ECU)70に電気的に接続されており、このECU70はセンサ及びスイッチからの信号を受け取り、そして、これら信号に基づき機器の作動を制御することができる。また、図1に示されているようにECU70には、手動変速機66内の潤滑油の温度を検出する油温センサ67が電気的に接続されている。
【0033】
手動変速機66はエンジン1にクラッチ71を介して接続可能となっており、そのクラッチ71は回転方向緩衝機構としてのトーションばね付きクラッチディスク(図示しない)を含んでいる。クラッチディスクのトーションばねは、図3中に実線で示す2段折れねじり特性を有しており、図3中の破線は通常のタイプのガソリンエンジンに使用されるクラッチ、即ち、そのクラッチディスクにおけるトーションばねの2段折れねじり特性を示している。ここで、通常のタイプのガソリンエンジンとは、この実施例の筒内噴射型のエンジン1とは異なり、吸気通路内に燃料が噴射されるタイプのエンジンを示している。この筒内噴射型のエンジン1は、アイドル運転では後期噴射を行うため(図5参照)、アイドル運転時でのエンジン1の回転速度変動が通常のエンジンに比べて増加し易く、このため、エンジン1の回転速度変動を手動変速機66に伝達しないように、クラッチ71の場合、図3から明らかなようにトーションばねは、通常のクラッチのトーションばねに比べ、そのクラッチディスクの回転角が小さい領域ではねじりトルク、つまり、そのばね定数が小さく設定されている。
【0034】
図4を参照すると、ECU70に電気的に接続されているセンサ、スイッチ及び機器が纏めて示されている。ECU70はいわゆるマイクロコンピュータであって、マイクロプロセッサ(MPU)72、リードオンリメモリ73( ROM )、ランダムアクセスメモリ74(RAM)、バックアップメモリ75(BURAM)、入力インタフェース7及び出力インタフェース7等の基本的な回路を備えている。入力インタフェース7には前述した水温センサ16、クランク角センサ17、スロットルセンサ29、アイドルスイッチ30、O2センサ40、エアフローセンサ64、吸気温センサ65、油温センサ67、負圧スイッチ及び気筒判別センサに加えて、イグニッションキーなどが電気的に接続されており、出力インタフェース78には前述したフューエルインジェクタ4、第1エアバイパスバブル24、第2エアバイパスバルブ27、EGRバルブ45、低圧ポンプ51、燃料圧切換え弁60及び点火コイル19に加えて、各種の警告灯(図示しない)などが電気的に接続されている。
【0035】
ECU70のROM73には、前述したエンジンシステムの作動を制御する制御プログラムや、この制御プログラムの実行に利用される制御マップが予め記憶されている。ECU70は入力インタフェース76を介してセンサやスイッチからの入力信号を受け取ると、これらの入力信号、制御プログラム及び制御マップに基づき、空燃比制御を含む燃料の噴射制御モードを決定した後、フューエルインジェクタ4、点火コイル19及びEGRバルブ45、低圧ポンプ51及び燃料圧切換え弁60などの機器に出力インタフェース78を介して制御信号を出力し、燃料の噴射時期、燃料の噴射量、点火時期及び吸気側に戻すべき排ガスの量などを制御する。
【0036】
ここで、燃料の噴射制御モードには、エンジン1の吸気行程中に燃料を噴射する前期噴射制御モード及びエンジン1の圧縮行程中に燃料を噴射する後期噴射制御モードがある。また、後期噴射制御モード内での空燃比の制御には、気筒内の平均空燃比を理論空燃比よりも大きい空燃比(20〜40)で制御するリーン制御、エンジン1の冷態低負荷時に実施する気筒内の平均空燃比を理論空燃比の近傍で制御する冷態低負荷制御がある。また、前期噴射制御モード内の空燃比の制御には、気筒内の平均空燃比を理論空燃比よりも大きい空燃比(20〜25前後)で制御するリーン制御、平均空燃比を理論空燃比で制御するストイキオ(stoichiometric)フィードバック制御及び平均空燃比を理論空燃比よりも低い要求空燃比で制御するオープンループ制御がある。
【0037】
次に、ECU70によって実行されるエンジン制御の概要について説明する。
:エンジン制御の概要:
−エンジンのクランキング中−
エンジン1のイグニッションキーが運転者によってオン操作されると、ECU70は燃料圧切換え弁60をオン作動させる同時に低圧ポンプ51を駆動し、そして、第2エアバイパスバルブ27を閉じる。燃料圧切換弁60のオン作動は高圧レギュレータ59内のバイパス通路を開くことから、高圧ポンプ55からフューエルインジェクタ4のデリバリパイプ62に至る燃料通路内の圧力は前記低圧値まで低下される。また、低圧ポンプ51から高圧ポンプ55に向けて吐出された燃料の圧力もまた低圧レギュレータ54により低圧値に調整されるので、低圧ポンプ51から高圧ポンプ55を経てフューエルインジェクタ4に至る燃料供給通路内の燃料の圧力は低圧値に保持される。
【0038】
この後、イグニッションキーが運転者によりスタート位置まで操作されると、エンジン1はセルモータ(図示しない)よりクランキング運転され、同時に、ECU70は燃料の噴射制御を開始する。この場合、フューエルインジェクタ4から対応する気筒内に直接噴射される燃料の量は、燃料供給通路内の圧力、フューエルインジェクタ4の開弁時間及び気筒内への吸気量に基づいて決定される。ここで、エンジン1がクランキング運転中にあるとき、各気筒への吸気量は、スロットルボディ23の弁通路とスロットルバルブ28との間の隙間を流れる空気量及び第1エアバイパスバルブ24を通じてスロットルボディ23内の分岐通路内を流れる空気量によって決定される。なお、第1エアバイパスバブル24の開度もまたECU70によって制御される。
【0039】
エンジン1のクランキングは高圧ポンプ55を駆動し、これにより、高圧ポンプ55は低圧ポンプ51側から供給される燃料を加圧してフューエルインジェクタ4側に吐出する。しかしながら、エンジン1のクランキング運転中、高圧ポンプ55から吐出される燃料の圧力は不安定であるため、燃料の噴射制御に高圧ポンプ55の吐出圧を使用することはできない。それ故、エンジン1のクランキング中にあっては、低圧ポンプ51から吐出される燃料の圧力を調整して得られる低圧の燃料が使用される。
【0040】
―始動時−
エンジン1が始動状態にあるとき、ECU70は、噴射制御モードに前期噴射制御モードを選択し、この前期噴射制御モードでは前述したオープンループ制御が採用される。従って、このような状況では、吸気行程にて各気筒内に燃料が直接噴射され、そして、燃料の噴射量は気筒内の平均空燃比が理論空燃比よりも比較的小さくなるように制御される。つまり、気筒内に供給された空気と燃料との混合気は比較的リッチな状態にある。それ故、エンジン1の始動時には気筒内での燃料の気化率がたとえ低くても、吸気行程中に噴射された燃料は膨張行程に至るまでの間にて十分に気化される。しかも、気筒内の混合気は比較的リッチな状態にあるから、膨張行程にて燃料は確実に着火され、その燃焼が良好に行われる。この結果、気筒内での失火を原因とした未燃燃料(ハイドロカーボン(HC))の発生が抑制される。
【0041】
なお、筒内噴射型のエンジン1にあっては、通常のタイプのエンジンとは異なり、吸気通路13の内壁面に噴射された燃料が付着するようなこともなく、燃料の噴射量制御に関して、その応答性及び精度の向上を容易に図ることができる。
−冷態始動後のアイドル運転(暖機中)−
エンジン1のクランキング運転が完了し、エンジン1の運転状態がアイドル運転状態に移行すると、つまり、イグニッションキーがスタート位置からオン位置に戻されると、ECU70は燃料圧切換弁60をオフ作動させ、第1及び第2エアバイパスバルブ24,27はアイドル開度に維持される。このとき、エンジン1は高圧ポンプ55を安定して駆動し、高圧ポンプ55からフューエルインジェクタ4に至る燃料通路内の燃料圧が増加し、そして、高圧レギュレータ59の働きにより燃料圧が前述した高圧値に維持される結果、高圧ポンプ55は高圧の燃料をフューエルインジェクタ4に向けて吐出する。
【0042】
エンジン1の暖機が完了するまでのアイドル運転中、即ち、エンジン1の冷却水温TWTが所定値(例えば50℃)に達するまでの間にあっては、 ECU70は、冷態始動時での場合と同様に、噴射制御モードに前期噴射制御モードを選択するが、このときの各気筒内への燃料の噴射量は、前述した燃料通路内の高い燃料圧と、フューエルインジェクタ4の開弁時間とによって決定されることになる。
【0043】
なお、車両の補機類、例えばエアコンディショナ(図示しない)の駆動がオン又はオフされ、これに伴い、エンジン1の負荷が増減すると、ECU70は第1エアバイパスバルブ24の開度、つまり、各気筒への吸気量及び燃料の噴射量を制御することで、エンジン1のアイドル回転数を一定に維持する。
また、暖機運転中、O2センサ40の温度が活性化温度まで上昇すると、ECU70は、その前期噴射制御モード中の空燃比制御をストイキオフィードバック制御に切り換え、O2センサ40からの出力信号に基づき気筒内の平均空燃比を理論空燃比に一致させるべく燃料の噴射量を制御する。この結果、排ガス浄化装置42の三元触媒は、排ガス中の有害成分を効果的に浄化可能となる。
【0044】
−エンジンの暖機完了後−
エンジン1の暖機が完了すると、ECU70は、図5の制御マップからエンジン回転速度NE及びエンジン1の負荷相関情報としての目標平均有効圧PEに基づき、空燃比制御や燃料噴射時期制御を含む噴射制御モードを決定し、また、決定された噴射制御モードに従い第2エアバイパスバルブ27及びEGRバルブ45の開閉を制御する。この実施例の場合、ECU70は、スロットルセンサ29から出力されるスロットル開度θTH及びエンジン回転速度NE等に基づいてエンジン1の目標平均有効圧PEを算出し、また、クランク角センサ17から出力されるクランク角信号からエンジン回転速度NEを算出する。
【0045】
以下、エンジン1の定常的な運転状態に応じた噴射制御モードについて説明する。
−エンジンのアイドル運転時(低負荷・低回転)−
エンジン1がアイドル運転状態(低負荷及び低回転)にあるとき、つまり、エンジン回転速度NE及び目標平均有効圧PEが共に低いとき、ECU70は、図5の制御マップから明らかなように燃料の噴射制御モードを後期噴射制御モード(リーン制御)に切り換える。このとき、ECU70は、第2エアバイパスバルブ27及びEGRバルブ45をそれぞれ全開させる。第2エアバイパスバルブ27が開かれると、スロットルバルブ28の開度に拘わらず、バイパス管路26からサージタンク20に吸気が導かれるで、各気筒内に多量の吸気を供給することができる。また、EGRバルブ45も開かれているので、排ガスの一部がサージタンク20に導入される。従って、各気筒内には排ガスを含んだ吸気が供給されることになる。この場合、各気筒に供給される排ガスの量は、吸気量の30〜60%に設定されている。このとき、フューエルインジェクタ4からの燃料の噴射量は、気筒内の平均空燃比が20〜40程度の値となるように制御される。
【0046】
このように平均空燃比が大きくても、噴射制御モードが後期噴射モードに切り換えられている結果、圧縮行程にてフューエルインジェクタ4から気筒内に燃料が噴射されると、噴射された燃料は、点火時期の直前にて、点火プラグ3の周辺に理論空燃比近傍の空燃比を有する混合気を形成する。より詳しくは、前述したようにピストン7の頂面に半球状のキャビティ8が形成されていることから、圧縮行程時におけるピストン7の押し上げは、図6に示されているように気筒内の吸気に矢印80で示す逆タンブル流を生起させ、しかも、フューエルインジェクタ4はピストン7のキャビティ8に向けて燃料を噴射する。それ故、燃料噴霧の大部分がキャビティ8内、即ち、点火プラグ3の周辺に留められるので、たとえ気筒内の平均空燃比が大きくても、点火プラグ3の周辺に理論空燃比近傍の空燃比を有した混合気を形成することができ、燃料噴霧は点火プラグ3により確実に着火される。この結果、エンジン1のリーンバーン運転が可能となり、排ガス中のCOやHCを低減することができるとともに、燃料の消費量が低減される。更に、この場合、気筒内に供給される吸気には多量の排ガスが含まれているので、排ガス中の窒素酸化物(NOX)もまた大幅に減少される。
【0047】
燃料の噴射制御モードに後期噴射制御モードが選択されている場合、各気筒内にはスロットルバルブ2をバイパスして吸気が導かれるので、スロットルバルブ2による弁通路の絞り損失やポンピングロスが低減される。
なお、エンジン1がアイドル運転状態にあるとき、エンジン負荷の増減に応じて、各気筒内への燃料の噴射量が増減されることは言うまでもない。これにより、エンジン1のアイドル回転数は一定に制御され、この制御の応答性は非常に良好となる。
【0048】
−車両の低・中速走行時−
ECU70は図5の制御マップから、目標平均有効圧PE及びエンジン回転速度NEに基づき、前期噴射制御モード(リーン制御)、前期/後期噴射制御モード(ストイキオフィードバック制御)、前期噴射制御モード(オープンループ制御)の何れかの制御域を決定する。より詳しくは、前期噴射制御モード(リーン制御)では、ECU70は、吸気行程にて燃料を噴射させ、そして、気筒内の平均空燃比が20〜23程度となるように燃料の噴射量を制御する。更に、この場合、ECU70は、第1及び第2エアバイパスバルブ24,27及びEGRバルブ45の開度もまたそれぞれ制御する。
【0049】
−急加速・高速走行時−
車両の急加速状態または高速走行状態では目標平均有効圧PE及びエンジン回転速度NEの何れかが高く、ECU70は噴射制御モードを前期噴射制御モード(オープンループ制御)に切り換える。この場合、吸気行程にて燃料が噴射され、その燃料の噴射量は、気筒内の平均空燃比が理論空燃比よりも比較的小さくなるようにオープンループ制御される。
【0050】
前期噴射制御モード(オープンループ制御)でも、ECU70は、第1及び第2エアバイバスバルブ24,27及びEGRバルブ45の開度を制御する。
−燃料カット域−
車両の中・高速走行中、アクセルペダルの踏み込みが解除されると、車両は減速し始め、このとき、ECU70は気筒内への燃料噴射を停止する(燃料カット)。従って、燃料の消費量及び排ガス中の有害成分は共に減少される。エンジン回転速度NEが復帰回転速度よりも低下するか、又は、アクセルペダルが再び踏み込まれると、ECU70は燃料カットを直ちに中止し、前述した制御域の何れを選択する。
【0051】
次に、エンジン1の運転過渡状態における燃料の噴射制御モードの選択手順に関して、以下に説明する。具体的には、エンジン1が運転過渡状態にあるとき、燃料の噴射制御モードは図7のメインルーチンに従って選択され、このメインルーチンは所定のサイクル毎、例えばエンジン1の半回転、即ち、1行程毎に繰り返して実行される。
【0052】
−メインルーチン−
ステップS1にて、 ECU70は、前述した各種のセンサ及びスイッチからの出力信号に基づきエンジンシステムの運転情報を読み込む。詳しくは、ECU70は各種センサの出力信号から冷却水温TWT、スロットル開度θTH、吸気温TAIR、手動変速機66の油温TTM、エンジン回転速度NEを求める。また、ECU70は、読み込んだ情報からエンジン負荷情報としての目標平均有効圧PE、スロットル開速度(スロット開度の微分値)ΔθTH及び車速Vなどを算出する。なお、ステップS1の実行に先立ち、ECU70は初期化処理を実行し、後述する各種のフラグ及び減算タイマにそれぞれ負の値をセットする。
【0053】
次のステップS2にて、ECU70はエンジン1の冷却水温TWTが所定の温度TWTC(例えば50℃)よりも低いか否かを判別する。ステップS2の判別結果が偽(No)の場合、つまり、エンジン1の暖機が完了している場合、ECU70は、後述するステップS3〜ステップS9の発進制御ルーチン、加速ショック制御ルーチン、加速応答制御ルーチン、減速ショック制御ルーチン、燃料カットからの復帰制御ルーチン、噴射制御モードの決定ルーチン及び噴射終了時期制御ルーチンを経て、そして、ステップ S10にて、制御対象となる機器の駆動制御ルーチンを順次実行する。この駆動制御ルーチンでは、先のステップにて決定された制御情報に基づき、フューエルインジェクタ4、第1及び第2エアバイパスバルブ24,27、EGRバルブ45及び点火コイル19等の各種の機器の駆動が制御される。
【0054】
一方、ステップS2の判別結果が真(Yes)となり、エンジン1の暖機が完了していない場合、ECU70はステップS11からステップS8以降を順次実行する。
次に、各ステップの詳細を順次説明する。
−発進制御ルーチン−
図8に示されているように発進制御ルーチン(ステップS3)では、先ず、ステップS30にて、走行フラグFRUNに1がセットされているか否かが判別される。エンジン1の始動後、ステップS30が最初に実行される際には、走行フラグFRUNには負の値がセットされているから、ここでの判別結果は偽となり、次に、車速Vが第1車速VH(例えば5km/h)よりも低いか否かが判別される(ステップS31)。ステップS31の判別結果が真であると、スロットル開度θTHがスロットル閾値θTHL(例えば5%の開度)よりも小さいか否かが判別される(ステップS32)。ここでの判別結果もまた真であれば、車両が停車中で且つ運転者に発進の意志がないと判断でき、発進フラグFSTに0がセットされる(ステップS33)。
【0055】
一方、アクセルペダルの踏み込みに伴い、スロットル開度θTHが増加し、ステップS32の判別結果が偽になると、運転者に発進の意志があり、エンジン1が発進移行状態にあると判断できる。この場合にはステップS34にて、発進フラグFSTに1がセットされる。そして、車両が発進し、その車速Vが上昇すると、ステップS31の判別結果もまた偽となり、この場合、走行フラグFRUNに1がセットされ(ステップS35)。
【0056】
この後、車両が発進し、走行フラグFRUNに1がセットされると、ステップS30の判別結果は真となる。従って、ステップS30からステップS36が実行され、ここでは、車速Vが第1車速VHよりも低い第2車速VL(例えば2km/h)よりも低下したか否かが判別される。ここでの判別結果が偽の場合、つまり、発進が完了し、車両が走行状態にある場合には、ステップS35が繰り返して実行され、走行フラグFRUNの値は1に維持される。
【0057】
一方、車両が減速し、車両がほぼ停止状態となって、ステップS36の判別結果が真になると、走行フラグFRUNは0にセットされる(ステップS37)。即ち、走行フラグFRUNは車速Vに応じて1又は0にセットされる。第2車速V2は第1車速V1よりも低い値に設定されているので、車両の微速走行時、走行フラグFRUNのセットにハンチングが発生することはない。
【0058】
発進フラグFSTに1がセットされていると、ECU70は、後述する噴射制御モードの決定ルーチンにて、噴射制御モードに前期噴射制御モード(ストイキオフィードバック制御)を選択することができる。
これに対し、発進フラグFSTが0にリセットされていると、ECU70は、決定ルーチンにて、噴射制御モードを目標平均有効圧PE及びエンジン回転速度NEからマップに基づいて選択する。
【0059】
−加速ショック制御ルーチン−
図9に示されているように加速ショック制御ルーチンでは、ステップ S40にて、目標平均有効圧PEが所定圧−PEL(例えば−1kgf/cm2)よりも高いか否か判別され、ここでの判別結果が真の場合、つまり、車両が減速状態にある場合には、ステップS41にて、減算タイマタイマtASは0にセットされ、そして、加速フラグFDAに1がセットされる。ステップS41からは次のステップS5の加速応答制御ルーチンをバイパスし、ステップS6の減速ショック制御ルーチンが実行される。
【0060】
この後、アクセルペダルが運転者によって踏み込まれ、目標平均有効圧PEが上昇し、ステップS40の判別結果が真になると、スロットル開速度ΔθTHが加速判定値αTHHよりも大きいか否かが判別される(ステップS42)。ここでの判別結果が真となると、運転者に車両を加速する意思があると推測され、次のステップS43にて、加速フラグFDAに1がセットされているか否かが判別される。車両が減速状態から加速状態に移行するようなエンジン1の第1加速移行状態にあっては、加速フラグFDAは既に1にセットされているので、ステップS43の判別結果は真となる。次のステップS44では、加速フラグFDAはその値が0にセットされ、そして、減算タイマtASに所定値t1(例えば0.1sec)がセットされ、この時点から減算タイマtASの作動が開始される。
【0061】
ここで、減算タイマtASの作動中、後述するようにECU70は噴射制御モードに後期噴射制御モード(リーン制御)を選択する。
加速ショック制御ルーチンにおいて、加速ショックには、クラッチ71のトーションばねが減速側から加速側にねじられ、且つ、最もねじられ部分において生じる、いわゆるがた詰めショックが含まれる。このがた詰めショックはエンジン1の出力が大きい程、大きくなる傾向にあるため、がた詰めショックが生じ易い状態では、所定期間に亘って後期噴射制御モード(リーン制御)を選択する。
【0062】
−加速応答制御ルーチン−
図10に示されているように加速応答制御ルーチンでは、ステップS51にて、スロットル開速度ΔθTHが前述した加速判定値αTHHよりも小さい加速判定値αTHLよりも大きいか否かが判別される。ここでの判別結果が真の場合には、前述した減算タイマtASの値が0であるか否かが判別される(ステップS52)。ステップS52での判別結果が偽の場合には、先の加速ショック制御ルーチンにて、減算タイマtASに所定値t1がセットされ、その減算タイマtASが作動中にあることを意味しており、この場合、次のステップS53はバイパスされる。
【0063】
しかしながら、ステップS52の判別結果が真の場合には、減算タイマtARに所定値t2(例えば1sec)がセットされ、減算タイマtARの作動が開始される。即ち、車両が減速状態にない状況や、又は、減算タイマtASの作動が終了した後に、アクセル開速度ΔθTHが加速判定値αTHLよりも大くなるようなエンジン1の第2加速移行状態において、減算タイマtARの作動が開始される。
【0064】
ここで、減算タイマtARの作動中、後述するようにECU70は、後期噴射制御モードを禁止する。
−減速ショック制御ルーチン−
図11に示されているように減速ショック制御ルーチンでは、ステップS60にて、スロットル開速度ΔθTHが所定値−βTHよりも小さいか否か、つまり、アクセルペダルの踏み込みが戻され、車両が減速しようとするか否かが判別される。ここでの判別結果が偽の場合には、減速フラグFADに1がセットされる(ステップS61)。つまり、アクセルペダルの踏み込みが一定の速度以上で戻されない限り、減速フラグFADには1がセットされる。
【0065】
しかしながら、ステップS60の判別結果が真となると、次に、減速フラグFADの値が1である否かが判別される(ステップS62)。ここでの判別結果が真になると、車両が定速又は加速状態から減速状態に移行しようとするエンジン1の減速移行状態を示しており、この場合には、次のステップS63にて、減速フラグFADが0にリセットされるとともに、減算タイマtDSに所定値t3(例えば0.5sec)がセットされ、この時点から減算タイマtDSの作動が開始される。
【0066】
ここで、減算タイマtDSの作動中、後述するようにECU70は噴射制御モードを後期噴射制御モード(リーン制御)を強制的に選択する。
−燃料カットからの復帰制御ルーチン−
図12に示されているように燃料カットからの復帰制御ルーチンでは、ステップS71にて、目標平均有効圧PE及びエンジン回転速度NEに基づき、エンジン1の制御域が燃料カット域にあり、且つ、前述の減算タイマtDSの値が0であるか否かが判別される。ここでの判別結果が正の場合、つまり、車両が減速状態にあって、先の減速ショック制御ルーチンにて設定された減算タイマtDSの作動が完了し、且つ、エンジン1の制御域が燃料カット域であるとき、復帰フラグFCRに1がセットされる(ステップS71)。
【0067】
この後、エンジン1の回転速度NEが復帰回転速度まで低下するか、又は、運転者によりアクセルペダルが踏み込まれ、エンジン1の制御域が燃料カット域から外れると、復帰フラグFCRに1がセットされているか否かが判別され、この判別結果が真の場合、つまり、エンジン1が燃料カットからの復帰移行状態にあるときには、減算タイマtCRに所定値t4(例えば0.5sec)がセットされ、そして、復帰フラグFCRは0にセットされる(ステップS73)。
【0068】
ここで、減算タイマtCRの作動中、後述するようにECU70は噴射制御モードを後期噴射噴射モードに強制的に選択する。この場合の後期噴射制御モードにおいて、空燃比は、目標平均有効圧PE及びエンジン回転速度NEに基づいて制御される。これにより、燃料カットからの復帰時の回転アンダシュートが防止できるので、燃料カットからの復帰回転速度を低回転に設定でき、燃費の向上が図られるとととにも、エンジン1のエンストを防止することができる。
【0069】
−スモーク制御ルーチン−
図13に示されているようにスモーク制御ルーチンでは、ステップS110にて、目標平均有効圧P E が所定圧−PESMK(例えば-0.1kg/cm2)よりも低いか否かが判別され、ここでの判別結果が真の場合、エンジン回転速度NEが所定速度NELよりも速いか否かが判別される(ステップS111)。ステップS110,S111の何れかの判別結果が偽の場合には、スモークフラグFSMに1がセットされ(ステップS112)、これらステップS110,S111の判別結果が共に真の場合、つまり、吸気行程時、気筒内に強力な負圧が発生し、且つ、エンジン1の回転速度NEが比較的高いときには、スモークフラグFSMに0がセットされる。
【0070】
ここで、スモークフラグFSMに0がセットされていると、エンジン1が第1冷態移行状態にあることを示しており、この場合、後述するようにECU70は噴射制御モードを後期噴射制御モード(例えば冷態低負荷制御)に強制的に選択することができる。
−噴射制御モードの決定ルーチン−
図14に示されるように決定ルーチンでは、前述した各ルーチンにて設定されたフラグ及び減算タイマの値に従い、燃料の噴射制御モードが決定される。
【0071】
第1に、ステップS82では、スモークフラグFSMが1であるか否かが判別される。ここでの判別結果が偽の場合、つまり、スモークフラグFSMが0である場合には、ステップS80にて、燃料の噴射モードは後期噴射制御モード(冷態低負荷制御)に強制的に設定される。ここで、前述のスモーク制御ルーチンから明らかなように、スモークフラグFSMが0の場合には、負荷相関値である目標平均有効圧PEが比較的低く且つエンジン回転数NEが比較的高い状況、つまり、エンジン1の暖機運転中にあってエンジン1がレーシング、つまり、後の回転降下時のような減速域で運転された状況にある。このような状況にて、燃料が前期噴射制御モードで噴射されると、気筒内の液相の燃料が気筒の内壁の油膜を洗い流してしまい易く、ピストンリングのシール性を阻害する。この結果、気筒内の強い負圧及びピストンリングのシール性の悪化は、クランクケースから気筒内にブローバイガスを流入させ、排ガス中のスモークの増加や点火プラグ3の汚損を招き、また、気筒内からクランクケース内に燃料滴を漏れ出させてしまう。しかしながら、上述したように燃料が後期噴射制御モードにて噴射されると、液相の燃料は気筒内壁のオイルを洗い流す前に燃焼されるので、上述した前期噴射制御モードに起因した不具合が発生することはない。
【0072】
第2に、ステップS82での判別結果が真となり、ここでも燃料の噴射制御モードが設定されない場合には、次のステップS83にて、冷却水温TWTが吸気温TAIRをパラメータとして決定される所定温度f( TAIR )よりも高いか否かが判別される。所定温度f( TAIR )は例えば以下のように設定される。
AIR >20℃の場合、f( TAIR )=TWTL(例えば70℃)
AIR <0℃の場合、f( TAIR )=TWTH (例えば77℃)
ステップS83の判別結果が偽の場合、つまり、エンジン1の冷却水温TWTが所定温度f( TAIR )よりも低い場合には、ステップS801にて後期噴射制御モードが禁止され、燃料は前期噴射制御モード(オープンループ制御)で噴射される。即ち、ステップS83の判別結果が偽となる状況とはエンジン1が第2冷態移行状態にあることを示している。このような第2冷態移行状態にあっても、エンジン1の吸気行程にて噴射された燃料は次の圧縮行程までに十分に新たな空気と混合することができ、燃料は良好に燃焼される。この結果、エンジン1の冷却水温TWTが速やかに上昇することから、エンジン1の冷却水を利用する車両の暖房システムを有効に働かせることができるとともに排ガス温度が上昇してO 2 センサ及び触媒を早期に活性化することかでき、更に、エンジン1の暖機運転に要する時間が長くなることはない。
【0073】
また、所定温度f( TAIR )、即ち、 TWTL, TWTHは、吸気温TAIR に応じて異なる温度にそれぞれ設定されているので、冷却水温TWTが低くても、吸気温TAIR が比較的高ければ、ステップS801が実行されることはなく、燃料の噴射制御モードには後期噴射制御モード(リーン)を選択することができる。この場合、燃料が圧縮行程にて噴射されても、燃料は吸気温TAIR が比較的高いので、十分に気化することができる。
【0074】
第3に、ステップS83の判別結果が真となり、ここでも燃料の噴射制御モードが決定されない場合、次のステップS84では、手動変速機66の潤滑油の温度、即ち、油温TTMが下式の範囲内にあるか否かが判別される。
TML(例えば5℃)<TTM<TTMH(例えば40℃)
ここでの判別結果が真、即ち、油圧TTMが上式の範囲にあって、手動変速機66が冷態状態、つまり、その潤滑油の粘度が比較的低い状況にあっては、次のステップS85で、アイドルスイッチ30からのスイッチ信号SWIDがオンであるか否かが判別される。ここでの判別結果もまた真の場合、つまり、エンジン1がアイドル運転時にあるときには、ステップS801が実行される結果、燃料の後期噴射が禁止され、燃料は前期噴射制御モード(ストイキオフードバック制御又はオープンループ制御)にて噴射される。
【0075】
燃料の噴射制御モードが後期噴射制御モードにあると、前期噴射制御モードに比べてエンジン1における出力トルクの変動が比較的大きくなり、その出力トルク変動はエンジン1のアイドル運転時に最も大きなものとなる。このため、エンジン1と手動変速機66との間を繋ぐクラッチ71には前述したように2段折れねじり特性のトーションばねが採用されており、その1段目のばね定数は比較的小さく設定されている。エンジン1のアイドル運転時、潤滑油の温度がTTMHよりも低い場合、潤滑油の粘度が大きくなり、ねじり角度がトーションばねの1段目のばね定数を越えて2段目のばね定数部分まで増加することとなる。この場合、エンジン1の回転速度変動が手動変速機66の内部に増幅して伝達され、手動変速機66からがた付き音が発生していしまう。一方、潤滑油の温度がTTMLよりも更に低くなると、手動変速機66内でのがた付きは発生するものの、そのがた付き部分での潤滑油の粘度もまた増大しているので、潤滑油自体によりがた付き音の発生を防止することができる。
【0076】
この点、手動変速機66が冷態状態にあって、且つ、エンジン1がアイドル運転状態にあるときには前述したように燃料の噴射制御モードに後期噴射制御モードの選択を禁止し、燃料の噴射を前期噴射制御モードで行うようにすると、エンジン1の出力トルク変動を小さい抑えることができ、この結果、手動変速機66からのがた付き音の発生を低減することができる。
【0077】
油温TTMが上記の範囲から外れている場合、特に、手動変速機66内の各部に潤滑油が十分に供給されているような油温TTMがTTMH以上の状況にあっては、アイドル運転時におけるエンジン1の回転速度の変動はトーションばねの1段目のばね定数の部分で吸収されることになり、手動変速機66からのがた付き音は発生しない。それ故、このような状況にあっては、燃料の噴射制御モードに後期噴射制御モードを選択することができる。なお、油温TTMがTTML以下にある状況では後期噴射制御モードの選択を許可しているけれども、この場合、手動変速機66内にてがた付きが発生する条件を満たしているため、後期噴射制御モードを禁止するようにしてもよい。
【0078】
第4に、ステップS84,S85の一方の判別結果が偽となり、ここでも燃料の噴射制御モードが決定されない場合には、次のステップS86にて、発進フラグFSTが1であるか否かが判別される。ここでの判別結果が真の場合、即ち、今、運転者がエンジン1のアイドル運転状態から車両を発進させようとするときには、ステップS801が実行される。即ち、車両の発進時にあっては、燃料の後期噴射が禁止され、燃料は前期噴射制御モード(ストイキオフィードバック制御又はオープンループ制御)で噴射され、この場合、第2エアバイパスバルブ27はそのままに維持され、EGRバルブ45は制御モードにより決定される開度に制御される。従って、気筒内には吸気及び燃料が共に十分に供給されるので、エンジン1の出力は瞬時に増大し、車両はスムーズに発進可能となる。また、このとき、エンジン1からの排ガスは排ガス浄化装置42の三元触媒により効果的に浄化される。
【0079】
第5に、ステップS86の判別結果が偽であり、ここでも燃料の噴射制御モードが決定されない場合には、次のステップS87にて、減算タイマtARの値が0であるか否かが判別される。ここで判別結果が偽の場合、つまり、減算タイマtARの作動中にある状況とは、前述した加速応答制御ルーチンでの説明から明らかなように車両が減速状態にない状態から加速されようとしていることを示している。このような状況にあっては、減算タイマタイマtARの値が0となるまで、ステップS801が繰り返して実行される結果、燃料の後期噴射が禁止され、燃料は前期噴射制御モードで噴射される。
【0080】
第6に、ステップS87の判別結果が真となり、ここでも燃料の噴射制御モードが決定されない場合には、次のステップS88にて減算タイマtCRが0であるか否かが判別される。ここでの判別結果がの場合、つまり、減算タイマtCRが作動中にある状況とは、前述した燃料カットからの復帰制御ルーチン及び減速ショック制御ルーチンでの説明から明らかなように減算タイマtDSが作動中にないことを条件として、燃料の噴射制御モードが燃料のカット域から外れたことを示している。このような状況にあっては、ステップS802が実行され、燃料は後期噴射制御モードで強制的に噴射される。従って、減算タイマt CR の作動中、燃料は後期噴射制御モードで強制的に噴射されるから、エンジン1の出力が急激に増加することはなく、エンジン1のロール、即ち、車体の振動を抑制することができる。
【0081】
第7に、ステップS88の判別結果が真となり、ここでも燃料の噴射制御モードが決定されない場合には、次のステップS89にて、減算タイマtASの値が0、且つ、減算タイマtDSの値が0であるか否か、つまり、減算タイマtAS, tDSの何れかが作動中にあるか否かが判別される。ここでの判別結果が偽とは、前述した加速ショック制御ルーチン及び減速ショック制御ルーチンでの説明から明らかなように車両が減速状態から加速しようとする状況にあるか、又は、車両が定速又は加速状態から減速しようとする状況にある。従って、このような状況にあっては、ステップS802が繰り返して実行される結果、燃料は後期噴射制御モード(リーン制御)で強制的に噴射される。従って、運転者によるアクセルペダルの踏み込み、つまり、吸気量に拘わらず、エンジン1の出力が急激に変化することはなく、車両の加速ショックや減速ショックを低減でき、車両を適度に加速又は減速させることができる。
【0082】
第8に、ステップS89の判別結果が真であると、ステップS80が実行され、このステップでは前述した図5のマップに従い、燃料の噴射制御モードが決定される。
以上説明したように噴射制御モードの決定ルーチンでは、燃料の噴射制御モードを決定するにあたり、スモークフラグFSM、冷却水温TWT、手動トランスミッション66の油温TTM、発進フラグFST、加速応答のための減算タイマtAR、燃料カットからの復帰のための減算タイマtCR、加速又は減速ショックのための減算タイマtAS,tDSの順序で、それらの値を判別し、その判別結果に応じて燃料の噴射制御モードを優先的に決定するようにしてあるから、エンジン1の始動、ブレーキ力の確保、スモークの低減、暖機の早期完了、手動トランスミッション66内からのがた付き音の低減、発進の円滑化、加速の応答性、燃料カットからの復帰応答性、加速又は減速ショックの低減の優先順序で、燃料の噴射モードが決定される。つまり、車両が走行中にあるときの加速及び減速のショック低減性能などよりも、エンジン1の始動性能、制動性能及び発進性能が優先して考慮されているから、車両のドライバビリティをより向上することができる。
【0083】
−噴射終了時期の制御ルーチン−
図15に示されているように噴射終了時期の制御ルーチンは先ず、ステップS90,S91,S92での判別が順次実行されるが、これらステップS90,S91,S92での判別は、メインルーチンのステップS2(図7)、また、スモーク制御ルーチンのS110,S111(図13)での判別とそれぞれ同様である。それ故、これらステップS90,S91,S92に関する説明は省略する。
【0084】
ステップS90,S91,S92の判別結果が全て真の場合、即ち、エンジン1が冷態状態にあってエンジン負荷が小さく、且つ、エンジン回転速度NEが比較的高いとき、ステップS93にて、燃料の噴射終了時期INJEはピストン7の上死点(TDC)前、例えば120°(BTDC)に設定される。この場合、前述したスモーク制御ルーチン及び噴射制御モードの決定ルーチンでの説明から明らかなようにスモークフラグFSMには0がセットされているから、燃料の噴射制御モードには後期噴射制御モード(例えば冷態低負荷制御)が強制的に選択される。このような状況にて、燃料の噴射終了時期INJEが120°BTDCに設定されていると、噴射された燃料の量が比較的に多くても、燃料の気化は十分に促進され、燃料を良好に燃焼させることができる。この結果、前述したスモーク制御ルーチンの働きに加えて、燃料の噴射を圧縮行程の初期にて終了させることで、排ガス中のスモークを大幅に低減することができる。
【0085】
一方、ステップS90の判別結果が偽の場合には、ステップS94にて、冷却水温TWTが所定の温度TWTH(例えば80℃)よりも高いか否かが判別される。ここでの判別結果が偽とは、エンジン1が暖機運転中にあることを意味しており、この場合、燃料の噴射終了時期INJEは、目標平均有効圧PE及びエンジン回転速度NEから決定されるエンジン1の運転制御域(図5のマップ参照)に応じ、300°〜180°TDCの範囲で設定される。つまり、所定温度以上でのエンジン1の暖機運転中においては、エンジン1が冷態低負荷時にある場合とは異なり、スモークの発生などの問題が生じないため、エンジン1の暖機を促進させ且つ燃焼の安定性を確保する上で、前述したように燃料の噴射制御モードに前期噴射制御モードが選択される。
【0086】
また、ステップS91,S92の判別結果が偽の場合、つまり、エンジン1が冷態状態にあっても、吸気負圧PINが比較的高い場合や、エンジン回転速度NEが比較的低い場合にあっても、ステップS95が実行され、燃料の噴射制御モードに前期噴射制御モードが選択される。前期噴射制御モードが選択されると、エンジン1の吸気負圧が高いため、ピストンリングの隙間を通じて気筒内に吸い込まれるブローバイガスの量が少なくなり、このブローバイガスがスモークの原因となることはない。また、エンジン1の低回転域では、冷態時での燃料の燃焼が悪化し易いので、このことからも、混合気の形成に有利となる前期噴射制御モードが選択される。
【0087】
ステップS94の判別結果が真の場合、つまり、エンジン1の暖機が完了している場合には、次のステップS96にて、燃料の噴射制御モードが後期噴射制御モードにあり、且つ、空燃比制御がリーン制御にあるか否かが判別される。ここでの判別結果が真の場合、エンジン1は暖機完了後のアイドル運転中にあるから、燃料の噴射終了時期INJEは例えば60°BTDCに設定される。この場合、噴射終了時期INJEが圧縮行程の終期にあっても、エンジン1はその暖機が既に完了しており、しかも、気筒内に噴射される燃料は少ないので、燃料は良好に気化して燃焼し、排ガス中のスモークが増加することはない。
【0088】
この発明は前述した一実施例に制約されるものではなく、種々の変形が可能である。例えば、図16には、燃料カットからの復帰制御ルーチンの変形例が示されている。この変形例の復帰制御ルーチンでは、前述したステップS70の判別結果が真の場合、次のステップS74にて、エンジン1の行程数n(nは整数)が読み込まれる。具体的には、行程数nは図17のマップからエンジン回転速度NEに応じて読み込まれる。図17のマップから明らかなように行程数nは、エンジン回転速度NEが増加するに連れて大きな値となる特性を有している。
【0089】
この後、次のステップS71にて、復帰フラグFCRに1がセットされる。即ち、燃料の噴射制御モードが燃料カット域にあり且つ減算タイマtDSの値が0に維持されている限り、行程数nが図17のマップから繰り返して読み込まれ、そして、復帰フラグFCRの値は1に維持される。
一方、ステップS70の判別結果が偽の場合には、ステップS72にて、復帰フラグFCRの値が1である否かが判別される。ここでの判別結果が真の場合、つまり、燃料の噴射制御モードが燃料カット域から外れたような状況にあっては、次のステップS75にて、行程数nが0であるか否かが判別される。この時点でのステップS75の判別結果は偽となるから、行程数nは1だけ減少される(ステップS76)。次のステップS77では、燃料の噴射量Qfが判定値Qαよりも多いか否かが判別される。ここで、燃料の噴射量Qfは、図5のマップから選択された制御域の空燃比制御に基づいて決定される。また、判定値Qαは気筒内の平均空燃比を理論空燃比よりも比較的大きな空燃比(例えば20)に維持するための燃料の噴射量であって、目標有効圧PEとエンジン回転速度NEとに基づいて決定される。
【0090】
ステップS77の判別結果が偽の場合には燃料の噴射量Qfがそのまま維持されるが、その判別結果が真の場合、燃料の噴射量Qfは判定値Qαに置換され(ステップS78)、そして、次のステップS701にて、復帰開始フラグFCRSに1がセットされる。
ステップS76が繰り返して実行され、ステップS75の判別結果が真になると、次のステップS79にて、復帰フラグFCR及び復帰開始フラグFCRSは共に0にセットされる。この結果、この後の制御サイクルでは、ステップS72の判別結果が偽となり、ステップS75以降のステップはバイパスされる。
【0091】
図12の復帰制御ルーチンではなく、上述した図16の復帰制御ルーチンが実行される場合、図14の決定ルーチンのステップS88は、図18のステップS804,S805に置き換えられる。先ず、これらステップS804,S805では、復帰開始フラグFCRSが1であるか否か、そして、行程数nが0であるか否かが順次判別される。ステップS804の判別結果が真となり、且つ、ステップS805の判別結果が偽となる状況とは、エンジン1の制御域が燃料カット域から外れたことを示している。このような状況にあっては、行程数nが0になるまで、前述したステップS802が繰り返して実行され、燃料の噴射制御モードに後期噴射制御モードが強制的に設定される。
【0092】
この結果、上述した変形例の復帰制御ルーチン及び決定ルーチンの場合にあっても、エンジン1の制御域が燃料カット域から外れると、行程数nが0になるまでの期間、燃料の噴射制御モードに後期噴射制御モードが強制的に設定されるから、エンジン1の出力が急激に増加することはなく、車両の加速ショック及び車体の振動を低減することができる。しかも、アクセルペダルが大きく踏み込まれてエンジン1の制御域が燃料カット域から外れ、この結果、燃料の噴射制御モードに前期噴射制御モード(ストイキオフィードバック又はオープンループ制御)が選択され、そして、燃料の噴射量が急激に増加するような状況にあっても、燃料の噴射量Qfは判定値Qαに制限されるから、エンジン1の出力が急減に増加することはない。
【0093】
更に、行程数nは、エンジン回転速度NEが上昇するればするほど大きな値に設定されるから、エンジン回転速度NEが高い状態にて、エンジン1の制御域が燃料カット域から外れた場合、制御サイクル数nは大きな値に設定される。このような状況にあっては、復帰制御ルーチンの実質的な実行時間が長くなり、エンジン1の出力トルクの変動を抑えることができる。
【0094】
図19を参照すると、エンジン1の制御域がスロットル開度θTHを全開にして、燃料カット域から復帰する際のエンジン回転速度NE、エンジンのロールRE及びエンジンの出力トルクTEの計測結果がそれぞれ実線で示されており、図19中の破線は復帰制御ルーチン及び決定ルーチンのステップS804,S805を実行しない場合を示している。図19から明らかなように復帰制御ルーチン及び決定ルーチンのステップS804,S805が実行されれば、破線の計測結果に比べて、エンジン1の出力トルクTEが激しく変動することはなく、エンジン1のロールREは大幅に減少される。しかも、この場合、エンジン回転速度NEの変化は殆どない。
【0095】
この発明は、前述の実施例に制約されるものではなく、種々の変形が可能である。例えば、この発明は直列4気筒のエンジンに限らず、単気筒又はV形6気筒のエンジン等の気筒数及び気筒の配列が異なる種々の筒内噴射型エンジンに適用することができる。また、燃料としてはガソリンに限らず、メタノールを使用することもできる。車両の発進の検出にはスロットル開度θTHに代えて、スロットル開速度ΔθTHを使用でき、また、エンジン1のアイドル運転状態の検出にはアイドルスイッチ30からの出力信号を使用することができる。
【0096】
エアフローセンサ64に代えて、サージタンク内の吸気圧を検出するためのブーストセンサを使用してもよいし、また、エアバイパスバルブ24,27に代えて1個のエアバイパスバルブを使用してもよい。更に、スロットルバルブがモータにより駆動される場合には、スロットルバルブの開度を制御することにより、スロットルバルブ自体にエアバイパスバルブの機能を発揮させることも可能である。この場合、スロットル開度センサに代えて、アクセルペダルの踏み込み量を検出するセンサが使用される。
【0097】
図16の復帰制御ルーチンでは、減算タイマの代わりに行程数nを使用するようにしているが、行程数nは他の制御ルーチンにおいても、その減算タイマの代わりに使用することができ、また、各制御ルーチンの減算タイマに設定される初期値をエンジン回転速度NEに応じて変化させるようにしても良い。
更にまた、前述した各種の所定値は、エンジンを含むシステム全体の仕様に応じて適宜設定されるものであり、例示した値に制約されるものではない。
【0098】
【発明の効果】
以上説明したように、請求項1の筒内噴射型内燃機関の燃料噴射制御装置によれば、車両が発進しようとする際、燃料は前期噴射制御モードにて噴射されるので、内燃機関は十分なトルクを発生し、車両のスムーズな発進が可能となる。
請求項2の燃料噴射制御装置によれば、車両の停止中、燃料は後期噴射制御モードにて噴射されるので、排ガス中の有害成分を増加させることなく、燃費の向上を図ることができる。
【0099】
請求項3の燃料噴射制御装置によれば、内燃機関のアイドル運転を検出することで、車両の発進移行状態又は停止状態を検出できる。
請求項4の燃料噴射制御装置によれば、車両の発進が完了した後にあっては、燃料は第1噴射制御モード設定手段により内燃機関の運転状態に応じて前期又は後期噴射制御モードの何れかにて噴射されるので、走行中の燃料噴射を最適に制御することができる。
【0100】
請求項5の燃料噴射制御装置によれば、手動変速機が冷態状態にあるとき、燃料は前期噴射制御モードにて噴射されるので、内燃機関から手動変速機に伝達される振動の低減が可能となり、手動変速機からのがた打ち音の発生を防止できる。
請求項6の燃料噴射制御装置によれば、手動変速機が冷態状態にあり、且つ、内燃機関がアイドル運転状態にあるとき、手動変速機からのがた打ち音の発生を防止する。
【0101】
請求項7の燃料噴射制御装置によれば、手動変速機の冷態状態を正確に検出できる。
請求項8の燃料噴射制御装置によれば、内燃機関が減速からの加速する第1加速移行状態、又は減速移行状態にあるとき、燃料が後期噴射制御モードにて噴射されるので、加速ショック及び減速ショックの低減が可能となる。
【0102】
請求項9の燃料噴射制御装置によれば、定速又は加速状態から緩やかな加速に移行する際の第2加速移行状態にあるとき、燃料は所定期間に亘り前期噴射制御モードにて噴射されるので、内燃機関は確実に加速される。
請求項9の燃料噴射制御装置によれば、内燃機関の第1加速移行状態、減速移行状態及び第2加速移行状態を正確に検出することができる。
【0103】
請求項11の燃料噴射制御装置によれば、第2加速移行状態の検出を受け、燃料が前期噴射制御モードにて噴射される際、その前期噴射制御モードの維持期間を内燃機関の回転速度に応じて設定可能である
【図面の簡単な説明】
【図1】エンジンシステムの概略的な構成図である。
【図2】図1のエンジン周辺を拡大して示した図である。
【図3】クラッチにおけるトーションばねの特性を示したグラフである。
【図4】ECUに接続される各種センサ、スイッチ及び制御機器を纏めて示したブロック図である。
【図5】エンジンの暖機完了後において、その運転状態に応じて区分される燃料の噴射制御モードを示したグラフである。
【図6】圧縮行程での燃料の噴射を示した図である。
【図7】エンジンの運転過渡状態における燃料の噴射制御に関し、そのメインルーチンを示したフローチャートである。
【図8】発進制御ルーチンの詳細を示したフローチャートである。
【図9】加速ショック制御ルーチンの詳細を示したフローチャートである。
【図10】加速応答制御ルーチンの詳細を示したフローチャートである。
【図11】減速ショック制御ルーチンの詳細を示したフローチャートである。
【図12】燃料カットからの復帰制御ルーチンの詳細を示したフローチャートである。
【図13】スモーク制御ルーチンの詳細を示したフローチャートである。
【図14】噴射制御モードの決定ルーチンの詳細を示したフローチャートである。
【図15】噴射終了時期制御ルーチンの詳細を示したフローチャートである。
【図16】図13の復帰制御ルーチンの変形例を示したフローチャートである。
【図17】エンジン回転速度と行程数との関係を示したグラフである。
【図18】図17の復帰制御ルーチンが実行される場合、図15の決定ルーチンの変更部分を示した図である。
【図19】エンジンが燃料カットから復帰する際、その運転状態を計測結果を示したグラフである。
【符号の説明】
1 エンジン(内燃機関)
8 フューエルインジェクタ
17 クランク角センサ
29 スロットルセンサ
66 手動変速機
67 油温センサ
70 ECU(電子制御ユニット)
71 クラッチ

Claims (11)

  1. 内燃機関の運転状態を検出する運転状態検出手段と、
    前記運転状態検出手段により検出された検出結果に応じて、燃料の噴射を吸気行程で行う前期噴射制御モード、或いは、燃料の噴射を圧縮行程で行う後期噴射制御モードの何れかに設定する第1噴射制御モード設定手段と、
    前記内燃機関の運転過渡状態を検出する過渡状態検出手段と、
    前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたとき、前記運転過渡状態に応じて前記前期噴射制御モード、或いは前記後期噴射制御モードの何れかに設定する第2噴射制御モード設定手段と、
    前記第1噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する一方、前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたときには前記第1噴射制御モード設定手段により設定された噴射制御モードに優先し、前記第2噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する燃料噴射制御手段とを備え、
    前記過渡状態検出手段が、前記内燃機関のスロットルバルブの開度変化、又は、前記内燃機関が搭載された車両のアクセルペダルの踏み込み量変化を検出する開度情報検出手段と、
    前記内燃機関が搭載された車両の車速を検出する車速検出手段とを含み、
    前記第2噴射制御モード設定手段は、前記開度情報検出手段及び車速検出手段を用いて前記内燃機関を搭載した車両が発進しようとする際の発進移行状態を検出したとき、前記噴射制御モードを所定期間に亘り前記前期噴射制御モードに設定することを特徴とする筒内噴射型内燃機関の燃料噴射制御装置。
  2. 内燃機関の運転状態を検出する運転状態検出手段と、
    前記運転状態検出手段により検出された検出結果に応じて、燃料の噴射を吸気行程で行う前期噴射制御モード、或いは、燃料の噴射を圧縮行程で行う後期噴射制御モードの何れかに設定する第1噴射制御モード設定手段と、
    前記内燃機関の運転過渡状態を検出する過渡状態検出手段と、
    前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたとき、前記運転過渡状態に応じて前記前期噴射制御モード、或いは前記後期噴射制御モードの何れかに設定する第2噴射制御モード設定手段と、
    前記第1噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する一方、前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたときには、前記第1噴射制御モード設定手段により設定された噴射制御モードに優先し、前記第2噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する燃料噴射制御手段とを備え、
    前記過渡状態検出手段が、前記内燃機関のスロットルバルブの開度変化、又は、前記内燃機関が搭載された車両のアクセルペダルの踏み込み量変化を検出する開度情報検出手段と、
    前記内燃機関が搭載された車両の車速を検出する車速検出手段とを含み、
    前記第2噴射制御モード設定手段は、前記開度情報検出手段及び車速検出手段を用いて前記車両の停止状態が検出されたとき、前記噴射制御モードを後期噴射制御モードに設定することを特徴とする筒内噴射型内燃機関の燃料噴射制御装置。
  3. 前記開度情報検出手段は、前記内燃機関のアイドル運転状態を検出するアイドル検出手段を含むことを特徴とする請求項1又は2に記載の筒内噴射型内燃機関の燃料噴射制御装置。
  4. 前記燃料噴射制御手段は、
    前記過渡状態検出手段を用い、前記車両の車速に基づいて前記車両が発進を完了したと判定したときには、前記発進移行状態、或いは前記停止状態に応じた燃料の噴射制御モードに優先し、前記第1制御モード設定手段によって設定された噴射制御モードに基づき燃料の噴射を制御することを特徴とする請求項1又は2に記載の筒内噴射型内燃機関の燃料噴射制御装置。
  5. 内燃機関の運転状態を検出する運転状態検出手段と、
    前記運転状態検出手段により検出された検出結果に応じて、燃料の噴射を吸気行程で行う前期噴射制御モード、或いは、燃料の噴射を圧縮行程で行う後期噴射制御モードの何れかに設定する第1噴射制御モード設定手段と、
    前記内燃機関の運転過渡状態を検出する過渡状態検出手段と、
    前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたとき、前記運転過渡状態に応じて前記前期噴射制御モード、或いは前記後期噴射制御モードの何れかに設定する第2噴射制御モード設定手段と、
    前記第1噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する一方、前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたときには、前記第1噴射制御モード設定手段により設定された噴射制御モードに優先し、前記第2噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する燃料噴射制御手段とを備え、
    前記内燃機関は、この内燃機関に2段折れねじり特性を有するクラッチを介して連結された手動変速機を備えた車両に搭載されており、
    前記過渡状態検出手段は、前記手動変速機の温度を検出する変速機温度検出手段を含み、
    前記過渡状態検出手段は、検出すべき運転過渡状態の1つとして前記変速機温度検出手段により前記手動変速機の温度が所定の温度よりも低い変速温度移行状態を検出し、
    前記第2噴射制御モード設定手段は、前記過渡状態検出手段によって前記変速温度移行状態が検出されたとき、前記噴射制御モードに前期噴射制御モードを設定することを特徴とする筒内噴射型内燃機関の燃料噴射制御装置。
  6. 前記過渡状態検出手段は、前記内燃機関のアイドル運転状態を検出するアイドル検出手段を含み、
    前記過渡状態検出手段は、前記変速機温度検出手段によって前記手動変速機の温度が所定の温度範囲内にあることを検出し且つ前記アイドル検出手段によってアイドル運転状態であることを検出したとき、前記変速温度移行状態にあると判定することを特徴とする請求項5に記載の筒内噴射型内燃機関の燃料噴射制御装置。
  7. 前記変速機温度検出手段は、前記手動変速機の潤滑油の温度を検出することを特徴とする請求項5又は6に記載の筒内噴射型内燃機関の燃料噴射制御装置。
  8. 内燃機関の運転状態を検出する運転状態検出手段と、
    前記運転状態検出手段により検出された検出結果に応じて、燃料の噴射を吸気行程で行う前期噴射制御モード、或いは、燃料の噴射を圧縮行程で行う後期噴射制御モードの何れかに設定する第1噴射制御モード設定手段と、
    前記内燃機関の運転過渡状態を検出する過渡状態検出手段と、
    前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたとき、前記運転過渡状態に応じて前記前期噴射制御モード、或いは前記後期噴射制御モードの何れかに設定する第2噴射制御モード設定手段と、
    前記第1噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する一方、前記過渡状態検出手段によって前記内燃機関の運転過渡状態が検出されたときには、前記第1噴射制御モード設定手段により設定された噴射制御モードに優先し、前記第2噴射制御モード設定手段により設定された噴射制御モードに基づき燃料の噴射を制御する燃料噴射制御手段とを備え、
    前記第2噴射制御モード設定手段は、前記過渡状態検出手段によって、前記内燃機関が減速状態から加速状態に移行する際の第1加速移行状態、或いは、前記内燃機関が定速又は加速状態から減速状態に移行する際の減速移行状態を検出したとき、前記噴射制御モードを前記後期噴射制御モードに設定することを特徴する筒内噴射型内燃機関の燃料噴射制御装置。
  9. 前記第2噴射制御モード設定手段は、前記過渡状態検出手段によって、前記内燃機関が減速状態以外から上記第1加速移行状態よりも緩やかな加速の加速状態に移行する際の第2加速移行状態を検出したとき、前記噴射制御モードを所定期間に亘り前記前期噴射制御モードに設定することを特徴とする請求項8に記載の筒内噴射型内燃機関の燃料噴射制御装置。
  10. 前記過渡状態検出手段は、前記内燃機関のスロットルバルブの開度変化、又は、前記内燃機関が搭載された車両のアクセルペダルの踏み込み量変化を検出する開度情報検出手段と、
    前記開度情報検出手段にて検出された開度情報に基づき、前記内燃機関が前記第1加速移行状態、前記減速移行状態、又は前記第2加速移行状態の何れの過渡状態にあるか判定する判定手段とを含むことを特徴とする請求項8又は9に記載の筒内噴射型内燃機関の燃料噴射制御装置。
  11. 前記所定期間が、前記内燃機関の行程数として設定されることを特徴とする請求項9に記載の筒内噴射型内燃機関の燃料噴射制御装置。
JP2001004984A 1995-05-15 2001-01-12 筒内噴射型内燃機関の燃料噴射制御装置 Expired - Fee Related JP3649280B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004984A JP3649280B2 (ja) 1995-05-15 2001-01-12 筒内噴射型内燃機関の燃料噴射制御装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7-115775 1995-05-15
JP11577695 1995-05-15
JP7-115776 1995-05-15
JP11577595 1995-05-15
JP2001004984A JP3649280B2 (ja) 1995-05-15 2001-01-12 筒内噴射型内燃機関の燃料噴射制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP53469996A Division JP3243793B2 (ja) 1995-05-15 1996-05-15 筒内噴射型内燃機関及びその燃料噴射制御装置

Publications (2)

Publication Number Publication Date
JP2001221088A JP2001221088A (ja) 2001-08-17
JP3649280B2 true JP3649280B2 (ja) 2005-05-18

Family

ID=27313024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004984A Expired - Fee Related JP3649280B2 (ja) 1995-05-15 2001-01-12 筒内噴射型内燃機関の燃料噴射制御装置

Country Status (1)

Country Link
JP (1) JP3649280B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029525B2 (ja) * 2008-07-15 2012-09-19 トヨタ自動車株式会社 内燃機関の燃料供給装置

Also Published As

Publication number Publication date
JP2001221088A (ja) 2001-08-17

Similar Documents

Publication Publication Date Title
KR100235152B1 (ko) 기통내분사형 내연기관 및 그 연료분사제어장치
JP4150152B2 (ja) 筒内噴射型火花点火式内燃機関の燃料噴射制御装置
US5967113A (en) Exhaust-gas temperature raising system for an in-cylinder injection type internal combustion engine
EP1891314B1 (en) Starting system and method of internal combustion engine
EP0848146B1 (en) Control apparatus for an in-cylinder injection type internal combustion engine
JP3186598B2 (ja) 内燃エンジンの制御装置
JP3149813B2 (ja) 筒内噴射型内燃機関の燃料噴射制御装置
KR100214799B1 (ko) 내연 기관의 제어 장치
JP3649280B2 (ja) 筒内噴射型内燃機関の燃料噴射制御装置
JP2850849B2 (ja) 変速機付き内燃機関の燃料供給制御装置
JP3233031B2 (ja) 筒内噴射型火花点火式内燃エンジン
JP3757998B2 (ja) 筒内噴射型内燃エンジンの制御装置
JP4092579B2 (ja) 内燃エンジンの制御装置
JP4020582B2 (ja) 内燃機関の制御装置
JP3289653B2 (ja) 内燃機関の制御装置
JP3269350B2 (ja) 筒内噴射型火花点火式内燃機関
JP4208994B2 (ja) 内燃機関
JP3161361B2 (ja) 車両の制御装置
JPH1054273A (ja) 内燃機関の制御装置
JPH11148398A (ja) 希薄燃焼機関
JPH1077891A (ja) 内燃エンジンの制御装置
JPH1089099A (ja) 筒内噴射式2サイクルエンジンの運転制御装置
JPH08312403A (ja) 筒内噴射型火花点火式内燃機関の燃料噴射制御装置
JPH1089100A (ja) 筒内噴射式2サイクルエンジン
JPH1089098A (ja) 筒内噴射式2サイクルエンジンの運転制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050208

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees