JP3645413B2 - レーザーシステム - Google Patents

レーザーシステム Download PDF

Info

Publication number
JP3645413B2
JP3645413B2 JP2316998A JP2316998A JP3645413B2 JP 3645413 B2 JP3645413 B2 JP 3645413B2 JP 2316998 A JP2316998 A JP 2316998A JP 2316998 A JP2316998 A JP 2316998A JP 3645413 B2 JP3645413 B2 JP 3645413B2
Authority
JP
Japan
Prior art keywords
laser
timing
output
value
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2316998A
Other languages
English (en)
Other versions
JPH11224966A (ja
Inventor
聡子 開田
好夫 北
彰 柚木
隆之 芝野
健司 石戸谷
延忠 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Central Research Institute of Electric Power Industry
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
Shikoku Electric Power Co Inc
Original Assignee
Toshiba Corp
Central Research Institute of Electric Power Industry
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Central Research Institute of Electric Power Industry, Hokkaido Electric Power Co Inc, Tohoku Electric Power Co Inc, Kansai Electric Power Co Inc, Tokyo Electric Power Co Inc, Kyushu Electric Power Co Inc, Japan Atomic Power Co Ltd, Chugoku Electric Power Co Inc, Chubu Electric Power Co Inc, Hokuriku Electric Power Co, Shikoku Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2316998A priority Critical patent/JP3645413B2/ja
Publication of JPH11224966A publication Critical patent/JPH11224966A/ja
Application granted granted Critical
Publication of JP3645413B2 publication Critical patent/JP3645413B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発振器レーザーと複数の増幅器レーザーとから構成され、複数の増幅器レーザーを所定のタイミングで放電させることにより、発振器レーザーから出力されたレーザー光を各増幅器レーザーによって順次増幅させていくレーザーシステムに係る。
【0002】
【従来の技術】
従来から、レーザーシステムの一つとして、1系統がn台でm系統のレーザーから構成され、複数の増幅器レーザーを所定のタイミングで放電させることにより、発振器レーザーから出力されたレーザー光を各増幅器レーザーによって順次増幅させていくようにしたレーザーシステム(例えば“特開平4−286387号公報”に示されている)が用いられてきている。
【0003】
図20は、この種の従来のレーザーシステムの構成例を示すブロック図である。
【0004】
図20において、レーザーシステム本体は、発振器レーザー1と、複数の増幅器レーザー2とから構成されている。
【0005】
また、各レーザー1,2のレーザー光の一部をモニタするために、各段間には光学系分配器31を配置し、この光学系分配器31により分配された光が、レーザーパワー検出器32に取り込んで検出される。
【0006】
さらに、このレーザーパワー検出器32により検出された光は、タイミング制御装置33に伝送されて、前回検出時との出力(パワー)の増減が演算され、各レーザー1,2のタイミングが制御される。
【0007】
すなわち、この場合、初段の発振器レーザー1への制御信号を固定タイミングで出力し、次段の増幅器レーザー2のタイミングは、まず、t1のタイミングで発振させて、レーザー出力を測定する。
【0008】
次に、タイミングをt1より進ませて、t2(t2=t1+a、a>0)に変化させ、この時のレーザー出力を測定し、タイミングt1でのレーザー出力と比較する。
【0009】
ここで、t1<t2であれば、タイミングをさらに進ませる。
【0010】
このようにして、一周期前のタイミングでの出力値と今回のタイミングでの出力値とを比較し、もし(tn−1)>tn(前回のタイミングでの出力値>今回のタイミングでの出力値)となれば、“tn−1”のタイミングを最適タイミング値として設定する。
【0011】
以上のような操作を、次段のレーザー以降についても順次行ない、最終的に全てのレーザーに対して最適タイミング値を設定する。
【0012】
しかしながら、上述したようなレーザーシステムでは、次のような問題点がある。
【0013】
(1)レーザーの高出力化に伴ってノイズ環境が悪化すると、タイミング制御装置33にノイズが混入して、レーザシステムが誤動作する恐れがあった。
【0014】
(2)最適タイミング値を設定する際に、前回のタイミングでの出力値と今回のタイミングでの出力値と比較するようにしているが、2点で比較するだけでは、レーザー出力が変動している場合や測定誤差等により、最適タイミング値(出力ピークを与えるタイミング)を精度良く求めることが困難であった。
【0015】
【発明が解決しようとする課題】
以上のように、従来のレーザーシステムにおいては、ノイズ環境が悪化するとタイミング制御装置にノイズが混入したり、あるいは最適タイミング値を精度良く求めることが難しいという問題があった。
【0016】
本発明の目的は、各レーザーの出力を、レーザーの強度損失を起こすことなくモニタしてノイズレスで測定することが可能なレーザーシステムを提供することにある。
【0034】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、1系統がn台でm系統のレーザーから構成され、複数の増幅器レーザーを所定のタイミングで放電させることにより、発振器レーザーから出力されたレーザー光を前記各増幅器レーザーによって順次増幅させていくようにしたレーザーシステムであり、前記レーザーの出力をモニタする手段として、前記増幅器レーザーの入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光をレンズ等の集光手段で集光し、かつ当該集光した光を光ファイバーに導き、当該光ファイバーで光伝送された光からタイミング制御を行う手段を備えて成ることを特徴とするレーザーシステムにおいて、測定したレーザー出力のデータを基に当該レーザーの出力が最大に増幅される最適タイミング値を求める手段として、前記増幅器レーザーのタイミングを前後に少しずつ変化させた時の当該各々のタイミングでのレーザー出力値を測定し、前記タイミングの変動とレーザー出力との関係が二次曲線で近似できない場合には、前記測定データを最小自乗法により多項式近似し、さらに前記測定データと近似曲線とのずれσを下記式に基づいて算出し、当該ずれσがある一定値以内であれば前記最小自乗法による多項式近似が妥当であると判断し、前記近似曲線の傾きが0となりかつその中で最大出力を与えるタイミングを最適タイミング値として設定する手段を備えている。
【0035】
【数6】
Figure 0003645413
【0036】
従って、請求項の発明のレーザーシステムにおいては、増幅器レーザーのタイミングを少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定する。
【0037】
この時、タイミングの変動とレーザー出力値との関係が二次曲線で近似できない場合には、測定データを最小自乗法により多項式近似し、測定データと近似曲線とのずれσを算出する。そして、このずれσがある一定値内(例えば、σ<0.1)であれば、最小自乗法による多項式近似が妥当であると判断し、近似曲線の傾きが0となりかつその中で最大出力を与えるタイミングを、最適タイミング値として設定することにより、レーザーの短時間での出力変動や測定誤差等を補正することが可能となるため、精度良く最適タイミング値を求めることができる。
【0038】
また、請求項の発明では、1系統がn台でm系統のレーザーから構成され、複数の増幅器レーザーを所定のタイミングで放電させることにより、発振器レーザーから出力されたレーザー光を前記各増幅器レーザーによって順次増幅させていくようにしたレーザーシステムであり、前記レーザーの出力をモニタする手段として、前記増幅器レーザーの入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光をレンズ等の集光手段で集光し、かつ当該集光した光を光ファイバーに導き、当該光ファイバーで光伝送された光からタイミング制御を行う手段を備えて成ることを特徴とするレーザーシステムにおいて、測定したレーザー出力のデータを基に当該レーザーの出力が最大に増幅される最適タイミング値を求める手段として、前記増幅器レーザーのタイミングを前後に少しずつ変化させた時の当該各々のタイミングでのレーザー出力値を測定し、前記タイミングの変動とレーザー出力との関係が二次曲線で近似できない場合には、前記測定データを最小自乗法により多項式近似し、さらに前記測定データおよび近似曲線を、横軸をタイミング値とし縦軸をレーザー出力値としたグラフ上に重ねて表示すると共に、前回の最適タイミング値および今回新たに求めた最適タイミング値を、前記グラフ上に表示し、前記多項式近似により測定データを近似できることを判断した上で、前記近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを最適タイミング値として設定する手段を備えている。
【0039】
従って、請求項の発明のレーザーシステムにおいては、増幅器レーザーのタイミングを少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定する。
【0040】
この時、タイミングの変動とレーザー出力値との関係が二次曲線で近似できない場合には、測定データを最小自乗法により多項式近似し、グラフ上の測定データと近似曲線のグラフ表示を人間系により比較し、多項式近似によるピークサーチの健全性を確認した上で、曲線の傾きが0となりかつその中で出力が最大となるタイミングを、最適タイミング値として設定することにより、レーザーの短時間での出力変動や測定誤差等を補正することが可能となるため、精度良く最適タイミング値を求めることができる。
【0041】
さらに、請求項の発明では、1系統がn台でm系統のレーザーから構成され、複数の増幅器レーザーを所定のタイミングで放電させることにより、発振器レーザーから出力されたレーザー光を前記各増幅器レーザーによって順次増幅させていくようにしたレーザーシステムであり、前記レーザーの出力をモニタする手段として、前記増幅器レーザーの入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光をレンズ等の集光手段で集光し、かつ当該集光した光を光ファイバーに導き、当該光ファイバーで光伝送された光からタイミング制御を行う手段を備えて成ることを特徴とするレーザーシステムにおいて、測定したレーザー出力のデータを基に当該レーザーの出力が最大に増幅される最適タイミング値を求める手段として、前記増幅器レーザーのタイミングを前後に少しずつ変化させた時の当該各々のタイミングでのレーザー出力値を測定し、前記タイミングの変動とレーザー出力との関係が二次曲線で近似できない場合には、前記測定データを最小自乗法により多項式近似し、さらに前記測定データと近似曲線とのずれσを下記式に基づいて算出し、かつ当該ずれσに基づいて近似精度を判定し、当該ずれσがある一定値以内であれば前記最小自乗法による多項式近似精度が良いと判断し、前記近似曲線の傾きが0となりかつその中で最大出力を与えるタイミングを最適タイミング値として設定する手段を備えている。
【0042】
【数7】
Figure 0003645413
【0043】
従って、請求項の発明のレーザーシステムにおいては、増幅器レーザーのタイミングを少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、測定データを計算機により最小自乗法で多項式近似する。
【0044】
この時、前記で定義された測定データと近似曲線とのずれσに基づいて近似精度を判定し、ずれσがある一定値以内(例えばσ<0.1となる場合)には、近似精度は良いと判断して、近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを、計算機で自動的に最適タイミング値として設定することにより、レーザーの短時間での出力変動や測定誤差等を補正することが可能となるため、精度良く最適タイミング値を求めることができる。
【0045】
また、請求項の発明では、1系統がn台でm系統のレーザーから構成され、複数の増幅器レーザーを所定のタイミングで放電させることにより、発振器レーザーから出力されたレーザー光を前記各増幅器レーザーによって順次増幅させていくようにしたレーザーシステムであり、前記レーザーの出力をモニタする手段として、前記増幅器レーザーの入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光をレンズ等の集光手段で集光し、かつ当該集光した光を光ファイバーに導き、当該光ファイバーで光伝送された光からタイミング制御を行う手段を備えて成ることを特徴とするレーザーシステムにおいて、測定したレーザー出力のデータを基に当該レーザーの出力が最大に増幅される最適タイミング値を求める手段として、前記増幅器レーザーのタイミングを前後に少しずつ変化させた時の当該各々のタイミングでのレーザー出力値を測定し、当該測定データを最小自乗法により二次曲線近似し、前記測定データおよび近似二次曲線を、横軸をタイミング値とし縦軸をレーザー出力値としたグラフ上に重ねて表示すると共に、前回の最適タイミング値および今回新たに求めた最適タイミング値を、前記グラフ上に表示し、さらに前記測定データと近似曲線とのずれが大きく、データの分布が二次曲線では近似できないことを判断した場合には、最小自乗法による測定データの多項式近似に切り替え、前記多項式近似により測定データを近似できることを判断した上で、前記近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを、最適タイミング値として設定する手段を備えている。
【0046】
従って、請求項の発明のレーザーシステムにおいては、まず最小自乗法による二次曲線近似を行ない、グラフ上の測定データと近似曲線のグラフ表示を人間系によって比較する。
【0047】
この時、測定データと近似曲線とのずれが大きく、データの分布が二次曲線では近似できない(例えば、左右非対象)場合には、最小自乗法による多項式近似に切り替える。このようにして、いずれかの方法で曲線近似し、測定データが曲線近似できることを人間系により確認した上で、二次曲線近似の場合には出力が最大となるタイミングを、また多項式近似の場合には近似曲線が傾きが0となりかつその中で出力が最大となるタイミングを、最適タイミング値として設定することにより、レーザーの短時間での出力変動や測定誤差等を補正することが可能となるため、精度良く最適タイミング値を求めることができる。
【0048】
さらに、請求項の発明では、1系統がn台でm系統のレーザーから構成され、複数の増幅器レーザーを所定のタイミングで放電させることにより、発振器レーザーから出力されたレーザー光を前記各増幅器レーザーによって順次増幅させていくようにしたレーザーシステムであり、前記レーザーの出力をモニタする手段として、前記増幅器レーザーの入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光をレンズ等の集光手段で集光し、かつ当該集光した光を光ファイバーに導き、当該光ファイバーで光伝送された光からタイミング制御を行う手段を備えて成ることを特徴とするレーザーシステムにおいて、測定したレーザー出力のデータを基に当該レーザーの出力が最大に増幅される最適タイミング値を求める手段として、前記増幅器レーザーのタイミングを前後に少しずつ変化させた時の当該各々のタイミングでのレーザー出力値を測定し、当該測定データを最小自乗法により二次曲線近似し、さらに前記測定データと二次近似曲線とのずれσを下記式に基づいて算出し、当該ずれσがある一定値以内にないことを判断した場合には、最小自乗法による測定データの多項式近似に切り替えて、前記測定データと二次近似曲線とのずれσを下記式に基づいて再度算出し、当該ずれσがある一定値以内であれば前記最小自乗法による多項式近似が妥当であると判断し、前記近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを、最適タイミング値として設定する手段を備えている。
【0049】
【数8】
Figure 0003645413
【0050】
従って、請求項の発明のレーザーシステムにおいては、まず最小自乗法による二次曲線近似を行ない、測定データと近似曲線とのずれσを算出する。
【0051】
この時、ずれσが一定値を上回った場合(例えば、σ≧0.1)には、多項式近似による曲線近似に切り替えて、再度ずれσを算出する。このようにして、いずれかの方法でデータを近似し、計算機によりずれσが一定範囲内(例えば、σ<0.1)であることを確認した上で、曲線の傾きが0となりかつその中で出力が最大となるタイミングを、自動的に最適タイミング値として設定することにより、レーザーの短時間での出力変動や測定誤差等を補正することが可能となるため、精度良く最適タイミング値を求めることができる。
【0072】
【発明の実施の形態】
本発明では、
(a)増幅器レーザーの入射側の窓の反射光をレンズで集光して、直接光ファイバーで伝送し、ノイズ環境の良い場所で光検出器により電気信号に変換することを第1の特徴とし。
(b)出力が最大に増幅される最適タイミング付近で、増幅器レーザーのタイミングを前後に変動させ、各々のタイミングでの出力を測定して、その後測定データを最小自乗法により曲線近似し、曲線がピークを与えるタイミングを最適タイミング値として設定することを第2の特徴としている。
【0073】
以下、上記のような考え方に基づく本発明の実施の形態について、図面を参照して詳細に説明する。
【0074】
(第1の実施の形態)
図1は、本実施の形態によるレーザーシステムの構成例を示すブロック図であり、図20と同一部分には同一符号を付して示している。
【0075】
図1において、レーザーシステム本体は、発振器レーザー1と、複数の増幅器レーザー2とから構成している。
【0076】
また、各レーザー1,2のレーザー光の一部をモニタするために、各段間には簡易パワーモニタユニット3を配置し、この簡易パワーモニタユニット3により検出する。
【0077】
さらに、この簡易パワーモニタユニット3により検出された光を、光ファイバー4により制御室のタイミング制御装置33に伝送して、各レーザー1,2のタイミングを制御するようにしている。
【0078】
ここで、レーザー出力モニタ手段である簡易パワーモニタユニット3は、本実施の形態では、その外観図を図2に示すように、集光手段であるレンズ5と、容器6と、光コネクタ7とから構成しており、レーザーの反射光の一部を取り込むようにしている。
【0079】
すなわち、増幅器レーザー2の入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光をレンズ5で集光し、かつこの集光した光を光コネクタ7を介して光ファイバー4に導き、この光ファイバー4でタイミング制御装置33に光伝送するようにしている。
【0080】
なお、この場合、レンズ5を使用するしているのは、レーザー光を効率良く光コネクタ7部へ集光させることを可能とするためである。
【0081】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、図3に示すように、前段のレーザーから出射されたレーザー光が次段のレーザーに入射する際、入射窓を光軸に対して傾斜させることにより反射する光を、簡易パワーモニタユニット3でモニタする(この反射光をモニタする方式は、例えば“特開平4−119678号公報”により公知である)。
【0082】
そして、この簡易パワーモニタユニット3でモニタした光を、直接光ケーブル4に取り込み、この光ケーブル4で制御室のタイミング制御装置33に伝送する。
【0083】
さらに、この伝送された光信号を、制御室のタイミング制御装置33内の光検出器により検出して電気信号に変換し、レーザー出力(パワー)を測定する。
【0084】
この場合、簡易パワーモニタユニット3でモニタした光を、直接光ケーブル4で光伝送することにより、タイミング制御装置33へのノイズの混入を防止することができる。
【0085】
上述したように、本実施の形態のレーザーシステムでは、増幅器レーザー2の入射側の窓の反射光をレンズ5で集光して直接光ファイバー4で伝送し、ノイズ環境の良い場所(制御室)で光検出するようにしているので、モニタした光を光伝送することができるため、タイミング制御装置33へのノイズの混入を防止して、ノイズに強いシステムを実現することが可能となる。
【0086】
これにより、各レーザー1,2の出力を、レーザーの強度損失を起こすことなくモニタしてノイズレスで測定することができ、ノイズの混入によってレーザーシステムが誤動作するようなことがなくなる。
【0087】
(第2の実施の形態)
本実施の形態の簡易パワーモニタユニットは、前述した第1の実施の形態における光ファイバー4の代わりに、色素入り光ファイバーを用いた構成としている。
【0088】
すなわち、増幅器レーザー2の入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光をレンズ5で集光し、かつこの集光した光を吸収波長がレーザー光の波長(510.55nm,578.2nm)範囲内にある色素入り光ファイバーに導き、この色素入り光ファイバーでタイミング制御装置33に光伝送するようにしている。
【0089】
ここで、色素入り光ファイバーとしては、例えば「Hostasol RedGG(吸収波長:500nm、発光波長:610nm)」、「RED520(吸収波長:550nm、発光波長:630nm)」の入った光ファイバーを用いて光伝送する。
【0090】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、図3に示すように、前段のレーザーから出射されたレーザー光が次段のレーザーに入射する際、入射窓を光軸に対して傾斜させることにより反射する光を、簡易パワーモニタユニット3でモニタする。
【0091】
そして、この簡易パワーモニタユニット3でモニタした光を、直接色素入り光ケーブルに取り込み、この色素入り光ケーブルで制御室のタイミング制御装置33に伝送する。
【0092】
さらに、この伝送された光信号を、制御室のタイミング制御装置33内の光検出器により検出して電気信号に変換し、レーザー出力(パワー)を測定する。
【0093】
この場合、簡易パワーモニタユニット3でモニタした光を、直接色素入り光ケーブルで光伝送することにより、タイミング制御装置33へのノイズの混入を防止することができる。
【0094】
上述したように、本実施の形態のレーザーシステムでは、増幅器レーザー2の入射側の窓の反射光をレンズ5で集光して直接色素入り光ファイバーで伝送し、ノイズ環境の良い場所(制御室)で光検出するようにしているので、前述した第1の実施の形態の場合と同様に、モニタした光を光伝送することができるため、タイミング制御装置33へのノイズの混入を防止して、ノイズに強いシステムを実現することが可能となる。
【0095】
これにより、各レーザー1,2の出力を、レーザーの強度損失を起こすことなくモニタしてノイズレスで測定することができ、ノイズの混入によってレーザーシステムが誤動作するようなことがなくなる。
【0096】
(第3の実施の形態)
図4(a)は、本実施の形態によるレーザーシステムにおけるレーザー出力モニタ手段である簡易パワーモニタユニットの構成例を示す外観図である。
【0097】
なお、その他の部分については、前述した第1の実施の形態の場合と同様である。
【0098】
本実施の形態の簡易パワーモニタユニットは、図4(a)に示すように、前述した第1の実施の形態における光ファイバー4の代わりに、前述した第2の実施の形態の場合と同様の色素入り光ファイバー9を用いた構成としている。
【0099】
すなわち、増幅器レーザー2の入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光の光路上に、吸収波長がレーザー光の波長範囲内にある色素入り光ファイバー9を設置して、レーザーの反射光を直接色素入り光ファイバー9に導き、この色素入り光ファイバー9でタイミング制御装置33に光伝送するようにしている。
【0100】
この場合、色素入り光ファイバー9は、レーザー光全体の光を取り込めるように、例えば図4(a)に示すように、固定板9により固定して配置する。
【0101】
ここで、色素入り光ファイバ9ーとしては、前述した第2の実施の形態の場合と同様に、例えば「Hostasol Red GG(吸収波長:500nm、発光波長:610nm)」、「RED520(吸収波長:550nm、発光波長:630nm)」の入った光ファイバーを用いて光伝送する。
【0102】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、図3に示すように、前段のレーザーから出射されたレーザー光が次段のレーザーに入射する際、入射窓を光軸に対して傾斜させることにより反射する光を、簡易パワーモニタユニット3を構成する色素入り光ケーブル9に直接取り込み、この色素入り光ケーブル9で制御室のタイミング制御装置33に伝送する。
【0103】
さらに、この伝送された光信号を、制御室のタイミング制御装置33内の光検出器により検出して電気信号に変換し、レーザー出力(パワー)を測定する。
【0104】
この場合、簡易パワーモニタユニット3でモニタした光を、直接色素入り光ケーブル9で光伝送することにより、タイミング制御装置33へのノイズの混入を防止することができる。
【0105】
上述したように、本実施の形態のレーザーシステムでは、増幅器レーザー2の入射側の窓の反射光を直接色素入り光ファイバー9で伝送し、ノイズ環境の良い場所(制御室)で光検出するようにしているので、前述した第1の実施の形態の場合と同様に、モニタした光を光伝送することができるため、タイミング制御装置33へのノイズの混入を防止して、ノイズに強いシステムを実現することが可能となる。
【0106】
これにより、各レーザー1,2の出力を、レーザーの強度損失を起こすことなくモニタしてノイズレスで測定することができ、ノイズの混入によってレーザーシステムが誤動作するようなことがなくなる。
【0107】
(第4の実施の形態)
本実施の形態のレーザーシステムは、前述した図1に示す第1の実施の形態の場合と同様の構成を有している。
【0108】
そして、第1の実施の形態と異なるのは、測定したレーザー出力のデータを基にレーザーの出力が最大に増幅される最適タイミング値を求める機能として、次のような最適タイミング設定機能を、タイミング制御装置33に持たせている点である。
【0109】
すなわち、タイミング制御装置33は、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、この測定データを最小自乗法により曲線近似し、さらに測定データおよび近似曲線を、横軸をタイミング値とし縦軸をレーザー出力値としたグラフ上に重ねて表示すると共に、前回の最適タイミング値および今回新たに求めた最適タイミング値を、上記グラフ上に表示する機能を備えている。
【0110】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、タイミング制御装置33では、増幅器レーザー2のタイミングを少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、測定データを最小自乗法により曲線近似する。
【0111】
この時、測定データおよび近似曲線を、図5にその表示画面(タイミング制御装置33に備え付けの表示装置)の一例を示すように、横軸をタイミング値とし、縦軸をレーザーの出力値としたグラフ上に重ねて表示し、さらに前回の最適タイミング値と今回新たに求めた最適タイミング値をグラフ上に表示する。
【0112】
図5の例では、増幅器レーザー2の制御信号のタイミングを、前回の最適タイミング値から数nsecきざみに前後に十数回変動させ、各々のタイミングでのレーザー出力の測定値をグラフ上にプロットし、同時に測定データを最小自乗法により近似した近似曲線を重ねて表示している。さらに、前回の最適タイミング値と今回の最適タイミング値も表示させることにより、計算機による演算結果を一画面に視覚的に表示している。
【0113】
これにより、測定データと計算機(ソフト)による最適タイミング値の演算結果を、人間系が判断し易いように視覚的に明確に表示することができるため、曲線近似により算出された最適タイミング値の妥当性を一目で確認することができる。
【0114】
上述したように、本実施の形態のレーザーシステムでは、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、この測定データを最小自乗法により曲線近似し、さらに測定データおよび近似曲線を、横軸をタイミング値とし縦軸をレーザー出力値としたグラフ上に重ねて表示すると共に、前回の最適タイミング値および今回新たに求めた最適タイミング値を、グラフ上に表示するようにしているので、測定データと計算機(ソフト)による最適タイミング値の演算結果を、人間系が判断し易いように視覚的に明確に表示することができるため、曲線近似により算出された最適タイミング値の妥当性を一目で確認することが可能となる。
【0115】
これにより、出力が最大に増幅される最適タイミングを精度良く求めることができる。
【0116】
(第5の実施の形態)
本実施の形態のレーザーシステムは、前述した図1に示す第1の実施の形態の場合と同様の構成を有している。
【0117】
そして、第1の実施の形態と異なるのは、測定したレーザー出力のデータを基にレーザーの出力が最大に増幅される最適タイミング値を求める機能として、次のような最適タイミング設定機能を、タイミング制御装置33に持たせている点である。
【0118】
すなわち、タイミング制御装置33は、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、この測定データを最小自乗法により二次曲線近似し、さらに測定データと二次近似曲線とのずれσを下記のような式に基づいて算出し、このずれσがある一定値以内であれば最小自乗法による二次曲線近似が妥当であると判断し、近似二次曲線を基に近似二次曲線がピークを与えるタイミングを最適タイミング値として設定する機能を備えている。
【0119】
【数9】
Figure 0003645413
【0120】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、タイミング制御装置33では、前段までの発振器レーザー1の発振タイミングを固定とし、最適タイミング設定対象の増幅器レーザー2の制御信号のタイミングのみを、前回の最適タイミング値から数nsecきざみに前後に十数回変動させる。この時、各々のタイミングでのレーザー出力の変動は、ほぼ二次曲線で近似できることが分かっている。
【0121】
そこで、前述の方法で得られた測定データを、最小自乗法により二次曲線近似し、測定データと二次近似曲線とのずれσを求め、このずれσが一定値以内(例えばσ<0.1)であれば、二次曲線近似による近似が妥当であると判断して、曲線が最大出力を与えるタイミングを最適タイミング値として設定する。
【0122】
これにより、測定値の変動を最小自乗法により二次曲線近似することにより、レーザーの短時間での出力変動や測定誤差等を補正して、精度良く最適タイミング値を求めることができる。
【0123】
上述したように、本実施の形態のレーザーシステムでは、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、この測定データを最小自乗法により二次曲線近似し、さらに測定データと二次近似曲線とのずれσを算出し、このずれσがある一定値以内であれば最小自乗法による二次曲線近似が妥当であると判断し、近似二次曲線を基に近似二次曲線がピークを与えるタイミングを最適タイミング値として設定するようにしているので、レーザーの短時間での出力変動や測定誤差等を補正することができるため、精度良く最適タイミング値を求めることが可能となる。
【0124】
(第6の実施の形態)
本実施の形態のレーザーシステムは、前述した図1に示す第1の実施の形態の場合と同様の構成を有している。
【0125】
そして、第1の実施の形態と異なるのは、測定したレーザー出力のデータを基にレーザーの出力が最大に増幅される最適タイミング値を求める機能として、次のような最適タイミング設定機能を、タイミング制御装置33に持たせている点である。
【0126】
すなわち、タイミング制御装置33は、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、この測定データを最小自乗法により二次曲線近似し、さらに測定データおよび近似二次曲線を、横軸をタイミング値とし縦軸をレーザー出力値としたグラフ上に重ねて表示すると共に、前回の最適タイミング値および今回新たに求めた最適タイミング値を、グラフ上に表示し、二次曲線近似により測定データを近似できることを判断した上で、出力が最大となるタイミングを最適タイミング値として設定する機能を備えている。
【0127】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、タイミング制御装置33では、増幅器レーザー2のタイミングを少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、測定データを最小自乗法により二次曲線近似する。
【0128】
この時、測定データおよび近似曲線を、前述した第4の実施の形態の場合と同様に、図5にその表示画面の一例を示すように、横軸をタイミング値とし、縦軸をレーザーの出力値としたグラフ上に重ねて表示し、さらに前回の最適タイミング値と今回新たに求めた最適タイミング値をグラフ上に表示する。
【0129】
そして、画面上の測定データと近似曲線のグラフ表示を人間系により比較し、二次曲線近似により測定データを近似できることを確認した上で、出力が最大となるタイミングを最適タイミング値として設定する。
【0130】
すなわち、最小自乗法による二次曲線近似で求めた最適タイミング設定の健全性を確認する際に、計算機による演算結果を図5で示すように画面表示して、これを人間系が確認し、曲線近似の健全性と今回の最適タイミング値が妥当であると判断すれば、曲線近似により求めた最適タイミングを設定する。
【0131】
また、もし近似曲線が測定データから大きくはずれていた場合には、再測定をするか、設定をやめて元のタイミングで制御するかを選択する。
【0132】
なお、図6は、以上のような最適タイミング値の設定方法を示すフローチャートである。
【0133】
これにより、測定値の変動を最小自乗法により二次曲線近似することにより、レーザーの短時間での出力変動や測定誤差等を補正して、精度良く最適タイミング値を求めることができる。
【0134】
上述したように、本実施の形態のレーザーシステムでは、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、この測定データを最小自乗法により二次曲線近似し、さらに測定データおよび近似二次曲線を、横軸をタイミング値とし縦軸をレーザー出力値としたグラフ上に重ねて表示すると共に、前回の最適タイミング値および今回新たに求めた最適タイミング値を、グラフ上に表示し、二次曲線近似により測定データを近似できることを判断した上で、出力が最大となるタイミングを最適タイミング値として設定するようにしているので、レーザーの短時間での出力変動や測定誤差等を補正することができるため、精度良く最適タイミング値を求めることが可能となる。
【0135】
(第7の実施の形態)
本実施の形態のレーザーシステムは、前述した図1に示す第1の実施の形態の場合と同様の構成を有している。
【0136】
そして、第1の実施の形態と異なるのは、測定したレーザー出力のデータを基にレーザーの出力が最大に増幅される最適タイミング値を求める機能として、次のような最適タイミング設定機能を、タイミング制御装置33に持たせている点である。
【0137】
すなわち、タイミング制御装置33は、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、タイミングの変動とレーザー出力との関係が二次曲線で近似できない場合には、測定データを最小自乗法により多項式近似し、さらに測定データと近似曲線とのずれσを、前述した第5の実施の形態の場合と同様の式に基づいて算出し、このずれσがある一定値以内であれば最小自乗法による多項式近似が妥当であると判断し、近似曲線の傾きが0となりかつその中で最大出力を与えるタイミングを最適タイミング値として設定する機能を備えている。
【0138】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、増幅器レーザー2のタイミングを少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定する。
【0139】
この時、タイミングの変動とレーザー出力値との関係が、図7に示すように、二次曲線で近似できないレーザーの運転の場合には、測定データを最小自乗法により多項式近似を実施する。
【0140】
この場合、測定データと近似曲線とのずれσを算出する。そして、このずれσがある一定値内(例えば、σ<0.1)であれば、最小自乗法による多項式近似が妥当である(近似精度が良い)と判断し、近似曲線の傾きが0となりかつその中で最大出力を与えるタイミングを、最適タイミング値として設定する。
【0141】
なお、図7は、以上のような最適タイミング値の設定方法を示す関係図である。
【0142】
これにより、測定値の変動を最小自乗法により多項式近似することにより、レーザーの短時間での出力変動や測定誤差等を補正して、精度良く最適タイミング値を求めることができる。
【0143】
上述したように、本実施の形態のレーザーシステムでは、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、タイミングの変動とレーザー出力との関係が二次曲線で近似できない場合には、測定データを最小自乗法により多項式近似し、さらに測定データと近似曲線とのずれσを算出し、このずれσがある一定値以内であれば最小自乗法による多項式近似が妥当であると判断し、近似曲線の傾きが0となりかつその中で最大出力を与えるタイミングを最適タイミング値として設定するようにしているので、レーザーの短時間での出力変動や測定誤差等を補正することができるため、精度良く最適タイミング値を求めることが可能となる。
【0144】
(第8の実施の形態)
本実施の形態のレーザーシステムは、前述した図1に示す第1の実施の形態の場合と同様の構成を有している。
【0145】
そして、第1の実施の形態と異なるのは、測定したレーザー出力のデータを基にレーザーの出力が最大に増幅される最適タイミング値を求める機能として、次のような最適タイミング設定機能を、タイミング制御装置33に持たせている点である。
【0146】
すなわち、タイミング制御装置33は、増幅器レーザーのタイミングを前後に少しずつ変化させた時の当該各々のタイミングでのレーザー出力値を測定し、タイミングの変動とレーザー出力との関係が二次曲線で近似できない場合には、測定データを最小自乗法により多項式近似し、さらに測定データおよび近似曲線を、横軸をタイミング値とし縦軸をレーザー出力値としたグラフ上に重ねて表示すると共に、前回の最適タイミング値および今回新たに求めた最適タイミング値を、グラフ上に表示し、多項式近似により測定データを近似できることを判断した上で、近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを最適タイミング値として設定する機能を備えている。
【0147】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、増幅器レーザー2のタイミングを少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定する。
【0148】
この時、タイミングの変動とレーザー出力値との関係が、前述したように、二次曲線で近似できないレーザーの運転の場合には、測定データを最小自乗法により多項式近似する。
【0149】
この時、測定データおよび近似曲線を、前述した第4の実施の形態の場合と同様に、図5にその表示画面の一例を示すように、横軸をタイミング値とし、縦軸をレーザーの出力値としたグラフ上に重ねて表示し、さらに前回の最適タイミング値と今回新たに求めた最適タイミング値をグラフ上に表示する。
【0150】
そして、画面上の測定データと近似曲線のグラフ表示を人間系により比較し、多項式近似によるピークサーチの健全性を確認した上で、曲線の傾きが0となりかつその中で出力が最大となるタイミングを、最適タイミング値として設定する。
【0151】
すなわち、曲線近似の健全性と今回の最適タイミング値が妥当であると判断されれば、近似曲線から求めた最適タイミングが設定される。
【0152】
もし、近似曲線が測定データから大きくはずれていた場合には、再測定をするか、または設定をやめて元のタイミングで制御するかを選択する。
【0153】
なお、図8は、以上のような最適タイミング値の設定方法を示すフローチャートである。
【0154】
これにより、測定値の変動を最小自乗法により多項式近似することにより、レーザーの短時間での出力変動や測定誤差等を補正して、精度良く最適タイミング値を求めることができる。
【0155】
上述したように、本実施の形態のレーザーシステムでは、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、タイミングの変動とレーザー出力との関係が二次曲線で近似できない場合には、測定データを最小自乗法により多項式近似し、さらに測定データおよび近似曲線を、横軸をタイミング値とし縦軸をレーザー出力値としたグラフ上に重ねて表示すると共に、前回の最適タイミング値および今回新たに求めた最適タイミング値を、グラフ上に表示し、多項式近似により測定データを近似できることを判断した上で、近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを最適タイミング値として設定するようにしているので、レーザーの短時間での出力変動や測定誤差等を補正することができるため、精度良く最適タイミング値を求めることが可能となる。
【0156】
(第9の実施の形態)
本実施の形態のレーザーシステムは、前述した図1に示す第1の実施の形態の場合と同様の構成を有している。
【0157】
そして、第1の実施の形態と異なるのは、測定したレーザー出力のデータを基にレーザーの出力が最大に増幅される最適タイミング値を求める機能として、次のような最適タイミング設定機能を、タイミング制御装置33に持たせている点である。
【0158】
すなわち、タイミング制御装置33は、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、タイミングの変動とレーザー出力との関係が二次曲線で近似できない場合には、測定データを最小自乗法により多項式近似し、さらに測定データと近似曲線とのずれσを、前述した第5の実施の形態の場合と同様の式に基づいて算出し、かつこのずれσに基づいて近似精度を判定し、このずれσがある一定値以内であれば最小自乗法による多項式近似精度が良いと判断し、近似曲線の傾きが0となりかつその中で最大出力を与えるタイミングを最適タイミング値として設定する機能を備えている。
【0159】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、増幅器レーザー2のタイミングを少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、測定データを計算機により最小自乗法で多項式近似する。
【0160】
この時、前記で定義された測定データと近似曲線とのずれσに基づいて近似精度を判定し、ずれσがある一定値以内(例えばσ<0.1となる場合)には、近似精度は良いと判断して、近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを、計算機で自動的に最適タイミング値として設定する。
【0161】
すなわち、最小自乗法による多項式近似で求めた最適タイミング設定の健全性を確認する際に、測定データと近似結果とのずれσを求め、このσがある一定値以内(例えば、σ<0.1)であれば、近似精度が良いと判断して、計算機により自動的に最適タイミング値を設定する。そして、最適タイミングは、近似曲線の傾きが0となり、かつその中で最大出力を与えるタイミングとする。
【0162】
なお、図9は、以上のような最適タイミング値の設定方法を示すフローチャートである。
【0163】
これにより、測定値の変動を最小自乗法により多項式近似することにより、レーザーの短時間での出力変動や測定誤差等を補正して、精度良く最適タイミング値を求めることができる。
【0164】
上述したように、本実施の形態のレーザーシステムでは、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、タイミングの変動とレーザー出力との関係が二次曲線で近似できない場合には、測定データを最小自乗法により多項式近似し、さらに測定データと近似曲線とのずれσを算出し、かつこのずれσに基づいて近似精度を判定し、このずれσがある一定値以内であれば最小自乗法による多項式近似精度が良いと判断し、近似曲線の傾きが0となりかつその中で最大出力を与えるタイミングを最適タイミング値として設定するようにしているので、レーザーの短時間での出力変動や測定誤差等を補正することができるため、精度良く最適タイミング値を求めることが可能となる。
【0165】
(第10の実施の形態)
本実施の形態のレーザーシステムは、前述した図1に示す第1の実施の形態の場合と同様の構成を有している。
【0166】
そして、第1の実施の形態と異なるのは、測定したレーザー出力のデータを基にレーザーの出力が最大に増幅される最適タイミング値を求める機能として、次のような最適タイミング設定機能を、タイミング制御装置33に持たせている点である。
【0167】
すなわち、タイミング制御装置33は、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、この測定データを最小自乗法により二次曲線近似し、測定データおよび近似二次曲線を、横軸をタイミング値とし縦軸をレーザー出力値としたグラフ上に重ねて表示すると共に、前回の最適タイミング値および今回新たに求めた最適タイミング値を、グラフ上に表示し、さらに測定データと近似曲線とのずれが大きく、データの分布が二次曲線では近似できないことを判断した場合には、最小自乗法による測定データの多項式近似に切り替え、多項式近似により測定データを近似できることを判断した上で、近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを、最適タイミング値として設定する機能を備えている。
【0168】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、まず最小自乗法による二次曲線近似を行ない、測定データと近似曲線を画面上に表示する。そして、グラフ上の測定データと近似曲線のグラフ表示を人間系によって比較する。
【0169】
この時、測定データと近似曲線とのずれが大きく、データの分布が二次曲線では近似できない(例えば、左右非対象)場合には、近似精度が悪いと判断して、最小自乗法による多項式近似に切り替え、再度演算をやり直して、今度は多項式による近似を行なう。
【0170】
そして、多項式近似による近似曲線の健全性を人間系により確認した上で、曲線の傾きが0となり、かつその中で出力が最大となるタイミングを最適タイミングとして設定する。
【0171】
このようにして、いずれかの方法で曲線近似し、測定データが曲線近似できることを人間系により確認した上で、二次曲線近似の場合には出力が最大となるタイミングを、また多項式近似の場合には近似曲線が傾きが0となりかつその中で出力が最大となるタイミングを、最適タイミング値として設定する。
【0172】
なお、いずれの方法を用いても、算出された最適タイミング値が妥当でないと判断した場合には、再測定をするか、または設定をやめて元のタイミングで制御するかを選択する。
【0173】
図10は、以上のような最適タイミング値の設定方法を示すフローチャートである。
【0174】
上述したように、本実施の形態のレーザーシステムでは、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、この測定データを最小自乗法により二次曲線近似し、測定データおよび近似二次曲線を、横軸をタイミング値とし縦軸をレーザー出力値としたグラフ上に重ねて表示すると共に、前回の最適タイミング値および今回新たに求めた最適タイミング値を、グラフ上に表示し、さらに測定データと近似曲線とのずれが大きく、データの分布が二次曲線では近似できないことを判断した場合には、最小自乗法による測定データの多項式近似に切り替え、多項式近似により測定データを近似できることを判断した上で、近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを、最適タイミング値として設定するようにしているので、レーザーの短時間での出力変動や測定誤差等を補正することができるため、精度良く最適タイミング値を求めることが可能となる。
【0175】
(第11の実施の形態)
本実施の形態のレーザーシステムは、前述した図1に示す第1の実施の形態の場合と同様の構成を有している。
【0176】
そして、第1の実施の形態と異なるのは、測定したレーザー出力のデータを基にレーザーの出力が最大に増幅される最適タイミング値を求める機能として、次のような最適タイミング設定機能を、タイミング制御装置33に持たせている点である。
【0177】
すなわち、タイミング制御装置33は、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、測定データを最小自乗法により二次曲線近似し、さらに測定データと二次近似曲線とのずれσを、前述した第5の実施の形態の場合と同様の式に基づいて算出し、このずれσがある一定値以内にないことを判断した場合には、最小自乗法による測定データの多項式近似に切り替えて、測定データと二次近似曲線とのずれσを下記式に基づいて再度算出し、このずれσがある一定値以内であれば最小自乗法による多項式近似が妥当であると判断し、近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを、最適タイミング値として設定する機能を備えている。
【0178】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、まず最小自乗法による二次曲線近似を行ない、測定データと近似曲線とのずれσを算出する。
【0179】
この時、ずれσが一定値を上回った場合(例えば、σ≧0.1)には、計算機により自動的に最小自乗法による多項式近似に切り替えて、再度ずれσを算出する。
【0180】
このようにして、いずれかの方法でデータを近似し、計算機により測定データと近似曲線とのずれσが一定範囲内(例えば、σ<0.1)であることを確認した上で、曲線の傾きが0となりかつその中で出力が最大となるタイミングを、自動的に最適タイミング値として設定する
なお、いずれの方法を用いても、算出された最適タイミング値が妥当でないと判断した場合には、アラームを出力して処理を中断し、再測定をするか、または設定をやめて元のタイミングで制御するかを人間系により判断する。
【0181】
図11は、以上のような最適タイミング値の設定方法を示すフローチャートである。
【0182】
上述したように、本実施の形態のレーザーシステムでは、増幅器レーザー2のタイミングを前後に少しずつ変化させた時の各々のタイミングでのレーザー出力値を測定し、測定データを最小自乗法により二次曲線近似し、さらに測定データと二次近似曲線とのずれσを算出し、このずれσがある一定値以内にないことを判断した場合には、最小自乗法による測定データの多項式近似に切り替えて、測定データと二次近似曲線とのずれσを再度算出し、このずれσがある一定値以内であれば最小自乗法による多項式近似が妥当であると判断し、近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを、最適タイミング値として設定するようにしているので、レーザーの短時間での出力変動や測定誤差等を補正することができるため、精度良く最適タイミング値を求めることが可能となる。
【0183】
(第12の実施の形態)
図12は、本実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図であり、前記実施の形態と同一要素には同一符号を付して示している。
【0184】
すなわち、本実施の形態の簡易パワーモニタユニットは、図12に示すように、測定するレーザー光の形状に適合する形の板状(本例では、円板状)の光散乱体(例えば、細かい多数の気泡、多数の微粒子等)を内蔵する透明体10の周囲に、吸収波長がレーザー光の波長範囲内にある色素入り光ファイバー9を設置し、増幅器レーザー2の入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光を集光手段であるレンズ5で集光し、かつこの集光した光を透明体10に照射し、この透明体10の外周方向に散乱された光による色素の発光を色素入り光ファイバー9に取り込み、この色素入り光ファイバー9で光伝送した光を光検出器でモニタして、レーザー出力をモニタする構成としている。
【0185】
ここで、色素入り光ファイバー9の色素は、レーザー光の波長に応じて、適宜選択するものとする。
【0186】
また、透明体10の形状は、図12では円形状であるが、レーザー光の形状に応じて適宜、四角、三角、楕円等の任意の形状とすることができる。
【0187】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、光散乱体を内蔵した透明体10にレーザー光を照射し、透明体10の外周方向に散乱されたレーザー光を、色素入り光ファイバー9の色素を発光させ、色素入り光ファイバー9内で発生した光をモニタして、レーザー出力をモニタすることにより、この場合、レーザー光の軸と透明体10の軸がずれても、発光部分の体積の変化は少ないため、光軸の調整が簡単となり、保守も容易となる。
【0188】
すなわち、前述した第1の実施の形態では、レーザーの光軸とレンズ5の軸がずれた場合(ずれ角がθとする)、光ファイバー4でのずれは、f×θ(fはレンズ5の焦点距離)となるため、レンズ5の設置位置だけではなく、微妙な角度調整が必要である。
【0189】
この点、本実施の形態では、光軸の調整を簡単に行なうことができる。
【0190】
これにより、レーザー光の入射角度が変化しても、安定にレーザー出力をモニタすることができる。
【0191】
(第13の実施の形態)
図13は、本実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図であり、図12と同一要素には同一符号を付して示している。
【0192】
すなわち、本実施の形態の簡易パワーモニタユニットは、図13に示すように、前記図12における透明体10の中央部付近の厚みを、その周辺部よりも厚くする構成としている。
【0193】
なお、透明体10の形状は、図13では円形状であるが、レーザー光の形状に応じて適宜、四角、三角、楕円等の任意の形状とすることができる。
【0194】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、透明体10の中央部付近の厚みを周辺部よりも厚くしていることにより、効率を補正することができるため、透明体10の中央部付近の厚みを調整して、中央部分の検出効率を調整することができる。
【0195】
すなわち、前述した第12の実施の形態では、光軸に垂直方向に散乱された光は、途中の散乱体によりさらに散乱されて光量が減少するため、中心部付近の光の検出効率は、周辺部の検出効率よりも低くなる。そして、レーザー光の出力に分布があり、中心部と周辺部の光量の比率が時間的にドリフトする場合には、正確なレーザーの出力の変化が得られない可能性がある。
【0196】
この点、本実施の形態では、透明体10の中心部付近の厚みを、周辺部より厚くすることにより、効率を補正することができる。
【0197】
(第14の実施の形態)
図14は、本実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図であり、図12と同一要素には同一符号を付して示している。
【0198】
すなわち、本実施の形態の簡易パワーモニタユニットは、図14に示すように、前記図12における透明体10の片面を反射面とする構成としている。
【0199】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、透明体10の片面を反射面としていることにより、反射光の散乱も利用することができるため、検出効率を約2倍向上することができる。
【0200】
なお、図14では、透明体10の面は、反射光が元のレーザー光と干渉しないように、角度を持たせて配置した例について示している。
【0201】
(第15の実施の形態)
図15は、本実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図であり、図12と同一要素には同一符号を付して示している。
【0202】
すなわち、本実施の形態の簡易パワーモニタユニットは、図15に示すように、前記図14における透明体10の中央部付近の厚みを、周辺部よりも厚くする構成としている。
【0203】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、中央部付近の厚みの厚い透明体10の片面を反射面としていることにより、検出効率をより一層向上することができる。
【0204】
(第16の実施の形態)
図16は、本実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図であり、図12と同一要素には同一符号を付して示している。
【0205】
すなわち、本実施の形態の簡易パワーモニタユニットは、図16に示すように、前記図12における透明体10の形状を円柱状とし、かつこの円柱状の透明体10の円周面上にヘリカル状の溝を設け、さらに円筒状のカバー11との間の溝に、吸収波長がレーザー光の波長範囲内にある色素入り光ファイバー9を挿入する構成としている。
【0206】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、光散乱体を内蔵する透明体10を円柱状とし、レーザー光が照射される体積を大きくとって散乱光を多くし、さらに色素入り光ファイバー9を多数回巻き付けしていることにより、検出効率を向上することができる。
【0207】
また、色素入り光ファイバー9の巻き付け回数を増減することにより、光量の調整を行なうことができる。
【0208】
すなわち、製作方法としては、円柱状の透明体10の外側に円筒状のカバー11を設け、この円筒状のカバー11の内面にヘリカルに溝を設け、さらに色素入り光ファイバー9を、円柱側面と円筒状のカバー11の間のヘリカル状の溝に沿ってを挿入するため、容易に、巻き数を変更でき、光量を可変することができる。
【0209】
よって、従来では、光量調整用に調整器を使用していたが、これを不要とすることができる。
【0210】
なお、図16では、透明体10の内部で焦点を結んでいるが、レーザーの強度が強い場合には破損する可能性があることから、このような場合には、透明体10の外部で焦点を結ぶようにすることもできる。
【0211】
(第17の実施の形態)
図17は、本実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図であり、図16と同一要素には同一符号を付して示している。
【0212】
すなわち、本実施の形態の簡易パワーモニタユニットは、図17に示すように、前記図16における透明体10の形状を円柱状とし、かつこの円柱状の透明体10の外面、すなわち円筒状のカバー11の内面にヘリカル状の溝を設け、さらに円筒状のカバー11との間の溝に、吸収波長がレーザー光の波長範囲内にある色素入り光ファイバー9を挿入する構成としている。
【0213】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、円柱状の透明体10の外面にヘリカルな溝を設け、円筒状のカバー11との間に色素入りのファイバー9を巻き込んでいることにより、検出効率を向上することができる。
【0214】
また、色素入り光ファイバー9の巻き付け回数を増減することにより、光量の調整を行なうことができる。
【0215】
(第18の実施の形態)
図18は、本実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図であり、図16と同一要素には同一符号を付して示している。
【0216】
すなわち、本実施の形態の簡易パワーモニタユニットは、図18に示すように、前記図16における円柱状の透明体10の片面を反射面とする構成としている。
【0217】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、円柱状の透明体10の片面を反射面としていることにより、検出効率を向上することができる。
【0218】
(第19の実施の形態)
図19は、本実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図であり、前記実施の形態と同一要素には同一符号を付して示している。
【0219】
すなわち、本実施の形態の簡易パワーモニタユニットは、図19に示すように、光散乱体を内蔵する板状の透明体10を固定板8とし、かつこの透明体10に平行に溝を複数本設け、さらにこれらの溝に、吸収波長がレーザー光の波長範囲内にある色素入り光ファイバー9を固定して、レーザー光を照射する構成としている。
【0220】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、光散乱体を内蔵する透明体10に平行な溝を設け、色素入り光ファイバー9を固定していることにより、光散乱体による散乱光を測定することができる。
【0221】
これにより、色素入り光ファイバー9以外の場所のレーザーも測定して、全体の光を測定することができる、すなわち直接光と同時に散乱光を測定することができる。
【0222】
(第20の実施の形態:第3の実施の形態の変形例)
図4(b)は、本実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図であり、図4(b)と同一要素には同一符号を付して示している。
【0223】
すなわち、本実施の形態の簡易パワーモニタユニットは、図4(b)に示すように、固定板8に平行な溝を複数本設け、さらにこれらの溝に、吸収波長がレーザー光の波長範囲内にある色素入り光ファイバー9を図示のように固定する構成としている。
【0224】
次に、以上のように構成した本実施の形態のレーザーシステムにおいては、固定板8に平行な溝を複数本設けて、これらの溝に色素入り光ファイバー9を固定していることにより、平行線の間隔を適切にすることによって、色素入り光ファイバー9の曲率を小さくせずに済む。
【0225】
すなわち、前述した第3の実施の形態では、色素入り光ファイバー9を、香取せんこう状にして固定板に固定していることから、中心部分では、曲率の関係から、小さな曲率半径では、色素入り光ファイバー9を巻けないため、中心部分のレーザー光をモニタすることが難しい。
【0226】
この点、本実施の形態では、中心部分のレーザー光を容易にモニタすることができる。
【0227】
【発明の効果】
以上説明したように、本発明によれば、各レーザーの出力を、レーザーの強度損失を起こすことなくモニタしてノイズレスで測定することが可能なレーザーシステムが提供できる。
【図面の簡単な説明】
【図1】本発明によるレーザーシステムの第1の実施の形態を示すブロック図。
【図2】同第1の実施の形態のレーザーシステムにおける簡易パワーモニタユニットの構成例を示す外観図。
【図3】同第1の実施の形態のレーザーシステムにおける前段からのレーザー光が次段レーザーに入射する様子を示す図。
【図4】本発明によるレーザーシステムの第3および第20の各実施の形態を示す概要図。
【図5】本発明によるレーザーシステムの第4の実施の形態を示す関係図。
【図6】本発明の第6の実施の形態によるレーザーシステムにおける最適タイミング値の設定方法を示すフローチャート。
【図7】本発明の第7の実施の形態によるレーザーシステムにおける最適タイミング値の設定方法を示す関係図。
【図8】本発明の第8の実施の形態によるレーザーシステムにおける最適タイミング値の設定方法を示すフローチャート。
【図9】本発明の第9の実施の形態によるレーザーシステムにおける最適タイミング値の設定方法を示すフローチャート。
【図10】本発明の第10の実施の形態によるレーザーシステムにおける最適タイミング値の設定方法を示すフローチャート。
【図11】本発明の第11の実施の形態によるレーザーシステムにおける最適タイミング値の設定方法を示すフローチャート。
【図12】本発明の第12の実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図。
【図13】本発明の第13の実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図。
【図14】本発明の第14の実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図。
【図15】本発明の第15の実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図。
【図16】本発明の第16の実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図。
【図17】本発明の第17の実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図。
【図18】本発明の第18の実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図。
【図19】本発明の第19の実施の形態によるレーザーシステムにおける簡易パワーモニタユニットの構成例を示す概要図。
【図20】従来のレーザーシステムの構成例を示すブロック図。
【符号の説明】
1…発振器レーザー、
2…増幅器レーザー、
3…簡易パワーモニタユニット、
4…光ファイバー、
5…レンズ、
6…容器、
7…光コネクタ、
8…固定板、
9…色素入り光ファイバー、
10…透明体、
11…カバー、
33…タイミング制御装置。

Claims (5)

  1. 1系統がn台でm系統のレーザーから構成され、複数の増幅器レーザーを所定のタイミングで放電させることにより、発振器レーザーから出力されたレーザー光を前記各増幅器レーザーによって順次増幅させていくようにしたレーザーシステムであり、前記レーザーの出力をモニタする手段として、前記増幅器レーザーの入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光をレンズ等の集光手段で集光し、かつ当該集光した光を光ファイバーに導き、当該光ファイバーで光伝送された光からタイミング制御を行う手段を備えて成ることを特徴とするレーザーシステムにおいて、
    測定したレーザー出力のデータを基に当該レーザーの出力が最大に増幅される最適タイミング値を求める手段として、
    前記増幅器レーザーのタイミングを前後に少しずつ変化させた時の当該各々のタイミングでのレーザー出力値を測定し、前記タイミングの変動とレーザー出力との関係が二次曲線で近似できない場合には、前記測定データを最小自乗法により多項式近似し、
    さらに前記測定データと近似曲線とのずれσを下記式に基づいて算出し、当該ずれσがある一定値以内であれば前記最小自乗法による多項式近似が妥当であると判断し、前記近似曲線の傾きが0となりかつその中で最大出力を与えるタイミングを最適タイミング値として設定する手段を備えて成ることを特徴とするレーザーシステム。
    Figure 0003645413
  2. 1系統がn台でm系統のレーザーから構成され、複数の増幅器レーザーを所定のタイミングで放電させることにより、発振器レーザーから出力されたレーザー光を前記各増幅器レーザーによって順次増幅させていくようにしたレーザーシステムであり、前記レーザーの出力をモニタする手段として、前記増幅器レーザーの入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光をレンズ等の集光手段で集光し、かつ当該集光した光を光ファイバーに導き、当該光ファイバーで光伝送された光からタイミング制御を行う手段を備えて成ることを特徴とするレーザーシステムにおいて、
    測定したレーザー出力のデータを基に当該レーザーの出力が最大に増幅される最適タイミング値を求める手段として、
    前記増幅器レーザーのタイミングを前後に少しずつ変化させた時の当該各々のタイミングでのレーザー出力値を測定し、前記タイミングの変動とレーザー出力との関係が二次曲線で近似できない場合には、前記測定データを最小自乗法により多項式近似し、
    さらに前記測定データおよび近似曲線を、横軸をタイミング値とし縦軸をレーザー出力値としたグラフ上に重ねて表示すると共に、前回の最適タイミング値および今回新たに求めた最適タイミング値を、前記グラフ上に表示し、前記多項式近似により測定データを近似できることを判断した上で、前記近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを最適タイミング値として設定する手段を備えて成ることを特徴とするレーザーシステム。
  3. 1系統がn台でm系統のレーザーから構成され、複数の増幅器レーザーを所定のタイミングで放電させることにより、発振器レーザーから出力されたレーザー光を前記各増幅器レーザーによって順次増幅させていくようにしたレーザーシステムであり、前記レーザーの出力をモニタする手段として、前記増幅器レーザーの入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光をレンズ等の集光手段で集光し、かつ当該集光した光を光ファイバーに導き、当該光ファイバーで光伝送された光からタイミング制御を行う手段を備えて成ることを特徴とするレーザーシステムにおいて、
    測定したレーザー出力のデータを基に当該レーザーの出力が最大に増幅される最適タイミング値を求める手段として、
    前記増幅器レーザーのタイミングを前後に少しずつ変化させた時の当該各々のタイミングでのレーザー出力値を測定し、前記タイミングの変動とレーザー出力との関係が二次曲線で近似できない場合には、前記測定データを最小自乗法により多項式近似し、
    さらに前記測定データと近似曲線とのずれσを下記式に基づいて算出し、かつ当該ずれσに基づいて近似精度を判定し、当該ずれσがある一定値以内であれば前記最小自乗法による多項式近似精度が良いと判断し、前記近似曲線の傾きが0となりかつその中で最大出力を与えるタイミングを最適タイミング値として設定する手段を備えて成ることを特徴とするレーザーシステム。
    Figure 0003645413
  4. 1系統がn台でm系統のレーザーから構成され、複数の増幅器レーザーを所定のタイミングで放電させることにより、発振器レーザーから出力されたレーザー光を前記各増幅器レーザーによって順次増幅させていくようにしたレーザーシステムであり、前記レーザーの出力をモニタする手段として、前記増幅器レーザーの入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光をレンズ等の集光手段で集光し、かつ当該集光した光を光ファイバーに導き、当該光ファイバーで光伝送された光からタイミング制御を行う手段を備えて成ることを特徴とするレーザーシステムにおいて、
    測定したレーザー出力のデータを基に当該レーザーの出力が最大に増幅される最適タイミング値を求める手段として、
    前記増幅器レーザーのタイミングを前後に少しずつ変化させた時の当該各々のタイミングでのレーザー出力値を測定し、当該測定データを最小自乗法により二次曲線近似し、
    前記測定データおよび近似二次曲線を、横軸をタイミング値とし縦軸をレーザー出力値としたグラフ上に重ねて表示すると共に、前回の最適タイミング値および今回新たに求めた最適タイミング値を、前記グラフ上に表示し、さらに前記測定データと近似曲線とのずれが大きく、データの分布が二次曲線では近似できないことを判断した場合には、最小自乗法による測定データの多項式近似に切り替え、前記多項式近似により測定データを近似できることを判断した上で、前記近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを、最適タイミング値として設定する手段を備えて成ることを特徴とするレーザーシステム。
  5. 1系統がn台でm系統のレーザーから構成され、複数の増幅器レーザーを所定のタイミングで放電させることにより、発振器レーザーから出力されたレーザー光を前記各増幅器レーザーによって順次増幅させていくようにしたレーザーシステムであり、前記レーザーの出力をモニタする手段として、前記増幅器レーザーの入射窓を光軸に対して傾斜させることによって生じる前段からのレーザーの反射光をレンズ等の集光手段で集光し、かつ当該集光した光を光ファイバーに導き、当該光ファイバーで光伝送された光からタイミング制御を行う手段を備えて成ることを特徴とするレーザーシステムにおいて、
    測定したレーザー出力のデータを基に当該レーザーの出力が最大に増幅される最適タイミング値を求める手段として、
    前記増幅器レーザーのタイミングを前後に少しずつ変化させた時の当該各々のタイミングでのレーザー出力値を測定し、当該測定データを最小自乗法により二次曲線近似し、
    さらに前記測定データと二次近似曲線とのずれσを下記式に基づいて算出し、当該ずれσがある一定値以内にないことを判断した場合には、最小自乗法による測定データの多項式近似に切り替えて、前記測定データと二次近似曲線とのずれσを下記式に基づいて再度算出し、当該ずれσがある一定値以内であれば前記最小自乗法による多項式近似が妥当であると判断し、前記近似曲線の傾きが0となりかつその中で出力が最大となるタイミングを、最適タイミング値として設定する手段を備えて成ることを特徴とするレーザーシステム。
    Figure 0003645413
JP2316998A 1998-02-04 1998-02-04 レーザーシステム Expired - Lifetime JP3645413B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2316998A JP3645413B2 (ja) 1998-02-04 1998-02-04 レーザーシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316998A JP3645413B2 (ja) 1998-02-04 1998-02-04 レーザーシステム

Publications (2)

Publication Number Publication Date
JPH11224966A JPH11224966A (ja) 1999-08-17
JP3645413B2 true JP3645413B2 (ja) 2005-05-11

Family

ID=12103133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316998A Expired - Lifetime JP3645413B2 (ja) 1998-02-04 1998-02-04 レーザーシステム

Country Status (1)

Country Link
JP (1) JP3645413B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536437B1 (ko) * 2002-07-12 2005-12-16 김미화 단면이 경사진 grin 렌즈 미러를 이용한 광도파로 탭
KR100982308B1 (ko) 2008-12-12 2010-09-15 삼성모바일디스플레이주식회사 레이저 시스템
DE102012205308B4 (de) * 2012-03-30 2018-05-30 Trumpf Lasersystems For Semiconductor Manufacturing Gmbh Vorrichtung zur Verstärkung eines Laserstrahls

Also Published As

Publication number Publication date
JPH11224966A (ja) 1999-08-17

Similar Documents

Publication Publication Date Title
US7211078B2 (en) Method and device for monitoring the energy and/or the position of a pulsed and scanned laser beam
US4556875A (en) Irradiated power monitoring system for optical fiber
US5693003A (en) Endoscope and method for determining object distances
US7663764B2 (en) Measuring device and method to optically measure an object
US20170122803A1 (en) System and method for analyzing a light beam guided by a beam guiding optical unit
EP0259837A2 (en) Method of measuring the refractive index profile of optical fibers
JP3645413B2 (ja) レーザーシステム
US20090051902A1 (en) Systems and methods for characterizing laser beam quality
JP4142644B2 (ja) 発光分光分析法を行うための方法及びデバイス
JPH10253892A (ja) 位相干渉顕微鏡
JP2599463Y2 (ja) レーザ集光位置変動計測装置
JP2580148B2 (ja) 光ミキサ−
JP2001349943A (ja) レーザ測距装置、レーザ測距方法及び計測装置
JP2540430B2 (ja) レ―ザ―ビ―ムの集光特性測定装置
JP3668129B2 (ja) 光学式寸法測定方法及び装置
CN115755424B (zh) 基于光学增强腔模式匹配的光路准直装置及准直方法
JP4878080B2 (ja) 物体検知装置
JPH08240655A (ja) 信号処理方法およびその装置
JP2627600B2 (ja) レーザービームの伝搬特性測定装置
JP3360615B2 (ja) 非接触式寸法測定方法及び装置
JPS6112530B2 (ja)
JPH06109549A (ja) 赤外線撮像装置
JPH09258091A (ja) レーザー光射出光学ユニットのピント測定方法
JP3204636B2 (ja) 蛍光ガラス線量計測定装置
JP3371478B2 (ja) 振動光学要素の振幅制御装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term