JP3644991B2 - ロボット−センサシステムにおける座標系結合方法 - Google Patents

ロボット−センサシステムにおける座標系結合方法 Download PDF

Info

Publication number
JP3644991B2
JP3644991B2 JP29807594A JP29807594A JP3644991B2 JP 3644991 B2 JP3644991 B2 JP 3644991B2 JP 29807594 A JP29807594 A JP 29807594A JP 29807594 A JP29807594 A JP 29807594A JP 3644991 B2 JP3644991 B2 JP 3644991B2
Authority
JP
Japan
Prior art keywords
robot
coordinate system
sensor
measurement
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29807594A
Other languages
English (en)
Other versions
JPH08132373A (ja
Inventor
克俊 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP29807594A priority Critical patent/JP3644991B2/ja
Publication of JPH08132373A publication Critical patent/JPH08132373A/ja
Application granted granted Critical
Publication of JP3644991B2 publication Critical patent/JP3644991B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • User Interface Of Digital Computer (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Manipulator (AREA)
  • Image Processing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Analysis (AREA)

Description

【0001】
【産業上の利用分野】
本願発明は、対象物の位置あるいは位置と姿勢(以下、特に区別しない限り、両者併せて単に「位置」と言う。)を3次元的に計測する3次元視覚センサを用いたロボット−センサシステムにおいて、ロボットが動作する座標系とセンサ側で得られる位置データの表現に使用される座標系とを結合する為の方法に関する。本願発明の適用分野としては、例えば、工場の製造ラインにおける組み立て作業、加工作業等に利用されるロボットシステムがある。
【0002】
【従来の技術】
工場の製造ラインにおける組み立て作業、加工作業等においては、作業の自動化・省力化を図る為に、ロボット等の自動機械と視覚センサとを組み合わせたシステムが利用されている。近年では特に作業対象物であるワークの3次元位置計測が必要とされるケースが増加しており、物体の3次元位置が計測出来る3次元視覚センサがロボットシステムに導入されている。
【0003】
3次元視覚センサの代表的なものは、スリット状の光を被計測対象物(以下、単に「対象物」と言う。)に投射し、対象物上に周辺よりも高輝度の光帯を形成し、これをCCDカメラ等のカメラ手段によって観測し、三角測量の原理によって対象物の3次元計測を行なうものである。
【0004】
このような3次元視覚センサを用いてワークの位置を計測し、それに基づいてロボットの動作を補正する場合、センサの出力するワークの位置データをロボットが動作する座標系上のデータに変換することが必要となる。従って、センサ側の計測データの表現に使用される座標系((以下、「センサ座標系」と言う。)と、ロボットが動作する座標系(以下、「ロボット座標系」と言う。)の間の関係を予め求めておかなければならない。
【0005】
従来より、センサ座標系とロボット座標系の関係を求める方法として次の2つの方法があった。
(1)ロボットの手先(フェイスプレート)に対して既知の位置にセンサ取り付ける方法。
(2)座標系結合用に専用のジグを使用する。
【0006】
(1)の方法は、ロボット手先に対するセンサ取り付け位置(正確に言えば、センサ座標系の原点位置)が既知となるようにセンサを取り付ける方法で、センサ座標系とロボット座標系の関係は、取り付け位置に関する幾何学的なデータで表わされる。このデータとして通常使われるのは、設計データ(設計図面上のデータ)である。その為、当初は設計データが正確にセンサの取り付け位置を表わしていたとしても、ロボットとワーク等の衝突等の原因でセンサの取り付け位置に狂いが生じた場合に適切な対処法が無い。一旦狂ったセンサの取り付け位置を元の状態に復元することや、元の状態からのずれ量を知ることは極めて困難である。
【0007】
また、実際のセンサ座標系はカメラの光学系を基準とした座標系であり、その座標系の原点はカメラの内部(レンズ系の焦点位置)に存在するから、レンズ系の焦点調整を行なうだけでセンサ座標系の位置が変化する。従って、設計データで表わされたロボット手先に対するセンサ取り付け位置からロボット座標系とセンサ座標系の位置関係を正確に知ることは実際には困難である。
【0008】
(2)の方法では座標系結合の為に専用のジグが使用される。このジグには、センサで計測が可能な穴などのマークと、ロボットがタッチアップする為の点が両者の位置関係が既知となるように設けられている。
【0009】
実際の操作にあたっては、先ずセンサを用いてマークの位置を計測することにより、ジグとセンサ座標系の位置関係を求める。次に、ロボットでジグ上のタッチアップ点をタッチアップすることにより、ロボット座標系とジグとの位置関係を知る。そして、これら2つの位置関係から、ジグを媒介にしてロボット座標系とセンサ座標系の位置関係が求められる。
【0010】
この方法は、常に専用のジグを要するという問題点がある。また、座標系結合後に設置されたロボットシステムにおいて、ロボットをワークなどにぶつけるなどの理由でセンサ座標系の位置に狂いが生じた場合には、座標系結合をやり直す必要があるが、工場の生産現場等の設置環境によっては、専用のジグを設置して上記操作を支障なく実行する為のスペース(ジグ設置の為のスペースとロボットにタッチアップ動作を安全に行なわせる為のスペース)を確保することが難しい場合も少なくない。
【0011】
【発明が解決しようとする課題】
そこで、本願発明の一つの目的は、正確な設計データや特別のジグを用意する必要のないロボット座標系とセンサ座標系の結合方法を提供することにある。 また、本願発明のもう一つ目的は、ロボットの干渉時等に必要となる座標系結合の再実行が容易なロボット座標系とセンサ座標系の結合方法を提供することにある。
【0012】
【課題を解決するための手段】
本願発明は上記従来技術における種々の問題点を解決する為の基本構成として、「ロボットと該ロボットに支持された3次元視覚センサを含むロボット−センサシステムにおける座標系結合方法において、一直線上に並ばない少なくとも3つの位置から、センサ座標系上での同一対象物に関する位置を表わすセンサ出力を得る段階と、
前記少なくとも3つの位置をロボット座標系上で表現するデータと前記センサ出力を表わすデータに基づくソフトウェア処理によって、ロボット座標系とセンサ座標系の相対的な位置関係を求める段階を含む前記方法」を提案したものである。
【0015】
【作用】
本願発明は、ロボットとロボットに支持された3次元視覚センサを含むロボット−センサシステムにおいてセンサ座標系とロボット座標系とを結合する方法を提供する。計測位置としては、一直線上に並ばない少なくとも3つの位置が選ばれる。計測位置間の移動はロボットの動作によって行なわれる。
【0016】
少なくとも3つの計測位置として好ましいのは、それらの位置間の移動が、ロボット座標系の座標軸の正あるいは負方向に沿った移動によって実行され得る関係にあることである。例えば、第1の計測位置から第2の計測位置に向かうベクトルがロボット座標系のX軸の+方向に選ばれ、第2の計測位置から第3の計測位置に向かうベクトルがロボット座標系のY軸の+方向に選ばれる。これら計測位置間の移動は、予めロボットに教示した位置間を再生運転によって移動させることで実行されても良い。
【0017】
各計測位置においては、同一対象物に関する3次元位置計測が行なわれ、その結果をセンサ座標系上で表現するセンサ出力データが獲得される。これらのセンサ出力データと各計測位置をロボット座標系上で表現するデータ(各計測位置におけるロボットの位置データが使用出来る。)の間には、同一の線形変換関係が存在する。この線形変換を表わす行列が座標変換行列である。
【0018】
異なる計測位置について成立する座標変換の関係を行列要素を未知数とする連立方程式と考えてこれを解けば、センサ座標系とロボット座標系の関係を求めることが出来る。3つの計測位置として、それらの位置間の移動が、ロボット座標系の座標軸の正あるいは負方向に沿った移動によって実行され得る関係にある場合には、行列要素を個別に求めることも可能になる(実施例を参照。この場合も、数学的には上記連立方程式を解くことと等価である)。
【0019】
3次元視覚センサとして代表的なものは、スリット光投光器と1台のカメラとを組み合わせた型のものであるが、他の型の3次元視覚センサ(例えば、2台の視線方向の異なるカメラを使用したもの)が使用されても構わない。
【0020】
本願発明の方法は、座標系結合が行なわれる対象とされるロボットと3次元視覚センサそのものの機能を利用して座標系結合が達成される点に基本的な特徴がある。本願発明の方法は、正確な設計データや特別のジグを必要としない。従って、一旦座標系結合を行なったロボットの稼働中に干渉等によってセンサ座標系の位置に狂いが生じても、簡単にセンサ座標系とロボット座標系の再結合を実行することが出来る。
【0021】
【実施例】
図1は、本願発明の方法が実施されるロボット−センサシステムの構成の概要を例示した要部ブロック図である。システム全体は、ロボットコントローラ1、画像処理装2、センサ部コントローラ3、センサ部10、ロボット20から構成されている。ロボットコントローラ1にはロボット20と画像処理装2が接続されている。画像処理装置2には、センサ部コントローラ3が接続されている。センサ部コントローラ3はセンサ部10に接続されており、センサ部10のレーザスリット光13を出射する投光器11に出射指令を出力する。以下、各部分について説明する。
【0022】
[視覚センサ部]
センサ部10は、投光器11とカメラ(例えば、CCDカメラ)を備えている。投光器11は、スリット状のレーザ光を対象物4上に投影する機能を備えている。カメラ12は、投光器11を点灯しスリット光を投影した状態における撮影と投光器11を消灯し通常照明下における撮影とを行なうことが出来る。前者の撮影時には、三角測量の原理に基づいて3次元位置の計測が行なわれる。また、後者の撮影時には、通常の明暗画像が取得される。
【0023】
投光器11は、センサ部コントローラ3からの出射指令に応じてレーザ光を発生し、スリット状のレーザスリット光13に変換して対象物4上に投影する。これにより、対象物4上にはスリット光像14が形成され、反射光15がカメラ12で撮像される。
【0024】
投光器11によるレーザスリット光13のオン/オフ状態の切換及び投光方向の制御は、投光器11に内蔵された偏向ミラー(図示省略)の角度位置を制御することによって行なわれる。偏向ミラーの角度位置を定める指令は、画像処理装置2からセンサ部コントローラ3を介して投光器11に与えられる。偏向ミラーの角度位置を順次変えることにより、対象物4上の異なる位置にレーザスリット光像14が形成される。
【0025】
対象物4の所定の面上にスリット光像14が形成された状態で、画像処理装置2からセンサ部コントローラ3を介してカメラ12に撮影指令が送られると、カメラ12はレーザスリット光像14の反射光15を撮像する。取得された画像信号は、センサ部コントローラ3を介して画像処理装置2へ送られる。
【0026】
画像処理装置2では、カメラインターフェイスを介して取り込まれた画像信号を、濃淡グレイスケールによる明暗信号に変換した上でフレームメモリに格納する。
【0027】
画像処理装置2は、画像処理プロセッサを利用してレーザスリット像を解析し、三角測量の原理に基づいて、その屈曲点、端点等の3次元位置が求められる。このような3次元位置計測方法自体は既に知られているものであるから、詳しい説明は省略する。前記屈曲点、端点等の3次元位置から、対象物4の位置及び姿勢が認識され、その情報がロボットコントローラ1に送られる。
【0028】
センサ部10は、画像処理装置2からのレーザ光出射指令をオフにし、通常照明光あるいは自然光の下で対象物4の撮影を行ないうことも出来る。このような通常撮影によって得られた画像は、レーザスリット像と同様、濃淡グレースケールによる明暗信号に変換されてフレームメモリに格納される。この画像には、対象物4の表面に明暗として現われている細部の情報が含まれている。
【0029】
[ロボットコントローラ及びロボット]
ロボットコントローラ1は通常使用されている型のもので、マイクロプロセッサからなる中央演算処理装置(以下、「CPU」と言う。)と、CPUにバス結合されたROMメモリ、RAMメモリ、教示操作盤、ロボットの軸制御器、汎用信号インターフェイス等を備えている。
【0030】
ROMメモリには、システム全体を制御するプログラムが格納される。ROMメモリには、ロボット動作や画像処理装置への指令送信、画像処理装置からの画像解析結果の受信等を制御するプログラム、関連設定値等が格納され、また、CPUによる演算実行時の一時記憶用のメモリや必要に応じて設定されるレジスタ領域としても使用される。軸制御器は、ロボット20の各軸をサーボ回路を介して制御する。汎用信号インターフェイスは、画像処理装置2やオフラインプログラミング装置、製造ラインの制御部等に対する入出力装置の役割を果たす。これら個別要素の図示及び詳しい説明は省略する。
【0031】
ロボット20の動作は、ロボットコントローラ1のメモリに格納された動作プログラムによって制御される。ロボット20は、アーム21,22,23を備え、アーム23の先端にセンサ部10が装着されている。ロボット20を動作させることにより、センサ部10をロボット20の動作範囲内の任意の位置に任意の姿勢で位置決めすることが出来る。なお、アーム23の先端には、センサ部10と並んで作業用のハンドが装着されているが、図示を省略した。
【0032】
図2は、以上説明した構成と機能を有するロボット−センサシステムを小型ロボットの組み立て作業に利用するケースを例にとり、本願発明の方法を適用してセンサ座標系とロボット座標系の関係を求めるプロセスを説明する為の全体配置である。
【0033】
同図において、図1と共通の符号をもって指示した要素、即ち、ロボットコントローラ1、画像処理装2、センサ部コントローラ3、センサ部10及びロボット20の構成、機能及び接続関係については、既に説明した通りである。
【0034】
先ず、ここで作業例として取り上げられた小型ロボットの組み立て作業の概要について簡単に説明する。
図1における対象物4は、作業空間内に次々と供給される組み立て工程中の小型ロボットの機構部の一部分5(以下、「機構部5」と略称する。)として示されている。機構部5は、ベース50とその回転軸51の周りに回転するアーム52を含んでいる。その為、ロボットハンドHに把持された減速機、モータ等の部品6(以下、「取り付け部品」と言う。)が取り付けられる取り付け面53の位置・姿勢が供給される機構部5毎にばらつく。同時に、取り付け部品の凸部が差し込まれる穴54の位置・姿勢にも同様のばらつきによる位置ずれが発生する。
【0035】
そこで、図2中、位置ずれを補正して部品6の組み付け作業を実行する為に、スリット光を投光した下で行なわれる3次元計測と通常撮影による画像の解析を組み合わせて、機構部5の穴54の位置・姿勢が求められ、それに基づいてロボットの動作が補正される。
【0036】
機構部50の取り付け面53上にレーザスリット光像61,52が順次形成され、カメラ12による撮影が実行される。レーザスリット光像61,52を含む画像は、画像処理装置内で解析され、取り付け面53の外縁上の諸点に対応した屈曲点P1 ,P2 及び端点Q1 ,Q2 の3次元位置が計算される。その結果に基づいて取り付け面53の位置・方向が計算され、更に、基準位置・方向からのずれが計算される。
【0037】
次いで、ロボット20を取り付け面53に正対する位置に移動させ、通常撮影を行なう。画像処理装置2に取り込まれた通常画像は画像処理プロセッサを用いて解析され、穴54の中心位置を求める。その結果と取り付け面53の位置・姿勢に基づき、穴54の3次元的な位置・姿勢と基準位置・姿勢からのずれが算出され、ロボットの位置・姿勢(即ち、ツール先端点Tの位置・姿)を補正した動作が実行される。
【0038】
上記プロセスの中で、視覚センサ側(画像処理装置内)で得られる取り付け面53や穴54の位置・姿勢あるいはそのずれ量を表わすデータ(センサ座標系上で表現されたデータ)をロボット座標系上で表現されたデータに変換する処理が実行される。
【0039】
以下、その為に必要なセンサ座標系とロボット座標系の結合を本願発明に従って実行するプロセスの概要を図3のフローチャートを参照図に加えて説明する。
【0040】
なお、準備として、1つの機構部5(例えば、最初に供給される機構部5)が適当な位置(組立作業時と同じ位置が好ましい。)に位置決めされているものとする。位置決め後に面53の向きが変わることは無いものとする。また、各ステップにおいて必要となる計算処理等は、ロボットコントローラ1あるいは画像処理装置2のメモリに格納されたプログラムを利用したソフトウェア処理によって遂行される。
【0041】
先ず、ロボット20を移動させ、穴54の計測に適した位置にセンサ部10を位置決めする(ステップS1)。この時のロボット20の位置(ツール先端点Tの位置、以下同じ。)をR0 (X0 ,Y0 ,Z0 )とする。
【0042】
位置R0 で穴54の3次元位置計測を行ない、得られた結果を位置R0 のデータ(X0 ,Y0 ,Z0 )と共に画像処理装置2内のメモリに記憶する(ステップS2)。位置計測の手順は既に述べた通りであるから、説明を省略する。この時センサで計測された位置(センサ座標系上で表わされた位置)をp0 (x0 ,y0 ,z0 )とする。
【0043】
次に、ロボット20をロボット座標系の1つの座標軸の方向(+方向または−方向)に適当な距離だけ移動させる。ここでは、位置R0 からX軸方向にdXだけ変位させた位置R1 へ移動させる(ステップS3)。位置R1 のロボット座標系上の座標値は(X0 +dX,Y0 ,Y0 )となる。位置R1 で再度穴54の3次元位置計測を行ない、位置R1 のデータ(X0 +dX,Y0 ,Z0 )と共に得られた結果を画像処理装置2内のメモリに記憶する(ステップS4)。この時、センサで計測された位置(センサ座標系上で表わされた位置)をp1 (x1 ,y1 ,z1 )とする。
【0044】
更に、ロボット20をロボット座標系のもう1つの座標軸の方向(+方向または−方向)に適当な距離だけ移動させる。ここでは、位置R1 からY軸方向にdYだけ変位させた位置R2 へ移動させる(ステップS5)。位置R2 のロボット座標系上の座標値は(X0 +dX,Y0 +dY,Z0 )となる。R2 で穴54の3次元位置計測を更に再び実行し、得られた結果を位置R2 のデータ(X0 +dX,Y0 +dY,Z0 )と共に画像処理装置2内のメモリに記憶する(ステップS6)。この時、センサで計測された位置(センサ座標系上で表わされた位置)をp1 (x2 ,y2 ,z2 )とする。
【0045】
一般には、以上のような位置計測は、少なくとも3回実行される。また、原理的に言えば、位置R0 からR1 、R1 からR2 の変位は、必ずしもロボット座標系の座標軸に沿っていなくとも良い。但し、R0 ,R1 ,R1 の3点が一直線上に並ばないように選ばれる。本実施例では、ロボット移動や後述する座標変換行列の計算が簡単となる移動方法の1つを選んだ。
【0046】
以上のような位置計測によって、穴54の3次元位置に関し、(少なくとも)3組のセンサデータ(センサ座標系上で表現されている。)と、各センサデータを得た時のロボット位置(ロボット座標系上で表現されている。)が用意されたことになる。
【0047】
そこで、続くステップS7で、これらのデータに基づいて、センサ座標系とロボット座標系の間の関係を表わす座標変換行列を求め、画像処理装置2内のメモリに記憶し、処理を終了する。座標系の結合が終了したロボット−センサシステムを用いて、前記説明した組立作業を実行すれば、供給される機構部5毎に3次元位置計測が行なわれ、機構部5の位置ずれを補正したロボット動作が実現される。
【0048】
次に、ステップS7において、座標変換行列を求める為に実行される計算について説明する。
ロボット20を位置R0 (X0 ,Y0 ,Z0 )からR1 (X0 +dX,Y0 ,Z0 )に移動させることは、センサから見れば、穴54がロボット座標系のX軸方法に−dX変位することと等価である。
【0049】
従って、位置R1 においてセンサが出力した位置p1 (x1 ,y1 ,z1 )から位置R0 においてセンサが出力した位置p0 (x0 ,y0 ,z0 )へ向かうベクトルの方向が、ロボット座標系のX軸の方向を表わしている。従って、ロボット座標系のX軸の方向は、センサ座標系上で(x0 −x1 ,y0 −y1 ,z0 −z1 )で表わされるベクトルの方向と一致する。同様に、ロボット座標系のY軸の方向は、センサ座標系上で(x1 −x2 ,y1 −y2 ,z1 −z2 )で表わされるベクトルの方向と一致する。
【0050】
これらのベクトルを各々のノルムで除した単位ベクトルをn1 (n1x,n1y,n1z),n2 (n2x,n2y,n2z)とすれば、ロボット座標系のZ軸の方向を表わす単位ベクトルは、n1 とn2 の外積n1 ×n2 で与えられる。これをベクトルn3 (n3x,n3y,n3z)とする。また、センサ座標系上で表わしたロボット座標系の原点位置は、ベクトルn1 ,n2 で表わされる2本の直線の交点位置として求められる。これをn0 (n0x,n0y,n0z)で表わす。
【0051】
すると、センサ座標系から見たロボット座標系を表わす座標変換行列[A]は、次式(1)で与えられる。
【0052】
【数1】
Figure 0003644991
従って、センサ座標系上で表現された位置を表わすセンサの出力データをロボット座標系上で表現された位置を表わすデータに変換する座標変換行列は、行列[A]の逆行列[A]-1で与えられる。従って、上記(1)式で求められた行列[A]の逆行列[A]-1を計算し、その結果表わすデータが画像処理装置2(場合によっては、ロボットコントローラ1)内のメモリに格納されることが好ましい。この逆行列[A]-1を用いれば、センサによって出力される任意の位置データ(x,y,z)は次式(2)によって直ちにベース座標系上の位置データに変換される。
【0053】
【数2】
Figure 0003644991
なお、計測位置R0 からR1 、R1 からR2 への変位をロボット座標系の座標軸方向に選ばない場合には、次のような連立方程式(3)〜(5)を解いて、座標変換行列の各行列要素を求めることになる。
【0054】
【数3】
Figure 0003644991
また、以上の説明において、ロボット20の移動はジョグ送り操作で行なっても良いし、予め計測位置R0 ,R1 ,R2 教示しておく方法によっても良い。
【0055】
更に、本実施例における3次元視覚センサは、スリット光投光器と1台のカメラとを組み合わせたものを使用したが、これに代えて、他の型の3次元視覚センサ(例えば、2台の視線方向の異なるカメラを使用したもの)を用いても構わない。
【0056】
【発明の効果】
本願発明によって、正確な設計データや特別のジグを用いずにロボット座標系とセンサ座標系を結合することが出来るようになった。また、一旦座標系結合を行なったロボットの稼働中に干渉等によってセンサ座標系の位置に狂いが生じても、簡単にセンサ座標系とロボット座標系の再結合を実行することが可能となった。
【図面の簡単な説明】
【図1】本願発明の方法が実施されるロボット−センサシステムの構成の概要を例示した要部ブロック図である。
【図2】図1に示した構成と機能を有するロボット−センサシステムを小型ロボットの組み立て作業に利用するケースを例にとり、本願発明の方法を適用してセンサ座標系とロボット座標系の関係を求めるプロセスを説明する為の全体配置である。小型ロボットの組み立て作業における位置ずれ補正に本願発明の方法を適用する場合の全体配置を表わした模式図である。
【図3】本実施例におけるセンサ座標系とロボット座標系の結合のプロセスの概要を説明する為のフローチャートである。
【符号の説明】
1 ロボットコントローラ
2 画像処理装置
3 センサ部コントローラ
4 被計測対象物
5 機構部
6 組み付け部品
10 センサ部
11 投光器
12 CCDカメラ
20 ロボット
21〜23 ロボットアーム
50 ベース
51 回転軸
52 アーム
53 取り付け面
54 穴
H ハンド
R0 ,R1 ,R2 計測位置
T ツール先端点

Claims (1)

  1. ロボットと該ロボットに支持された3次元視覚センサを備えたロボット−センサシステムにおける座標系結合方法において、
    一直線上に並ばない少なくとも3つの位置から、センサ座標系上で同一対象物に関する位置を表わすセンサ出力を得る段階と、
    前記少なくとも3つの位置をロボット座標系上で表現するデータと前記センサ出力を表わすデータに基づくソフトウェア処理によって、ロボット座標系とセンサ座標系の相対的な位置関係を求める段階を含む前記方法。
JP29807594A 1994-11-08 1994-11-08 ロボット−センサシステムにおける座標系結合方法 Expired - Fee Related JP3644991B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29807594A JP3644991B2 (ja) 1994-11-08 1994-11-08 ロボット−センサシステムにおける座標系結合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29807594A JP3644991B2 (ja) 1994-11-08 1994-11-08 ロボット−センサシステムにおける座標系結合方法

Publications (2)

Publication Number Publication Date
JPH08132373A JPH08132373A (ja) 1996-05-28
JP3644991B2 true JP3644991B2 (ja) 2005-05-11

Family

ID=17854830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29807594A Expired - Fee Related JP3644991B2 (ja) 1994-11-08 1994-11-08 ロボット−センサシステムにおける座標系結合方法

Country Status (1)

Country Link
JP (1) JP3644991B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517560B2 (en) 2013-07-22 2016-12-13 Canon Kabushiki Kaisha Robot system and calibration method of the robot system

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271103A (ja) * 2004-03-23 2005-10-06 Tookin:Kk 作業用ロボット及びそのキャリブレーション方法
JP4967858B2 (ja) * 2007-06-29 2012-07-04 日産自動車株式会社 カメラとロボット間のキャリブレーション方法及びその装置
JP5093058B2 (ja) * 2008-11-04 2012-12-05 株式会社デンソーウェーブ ロボットの座標の結合方法
JP4763074B2 (ja) 2009-08-03 2011-08-31 ファナック株式会社 ロボットのツール先端点の位置の計測装置および計測方法
KR101155446B1 (ko) * 2010-11-01 2012-06-15 대우조선해양 주식회사 러그를 이용한 로봇과 레이저 비전 시스템 간의 캘리브레이션 방법
JP5526375B2 (ja) * 2011-07-07 2014-06-18 トヨタ自動車東日本株式会社 三次元計測システム及び三次元計測方法
JP6017213B2 (ja) * 2012-07-20 2016-10-26 株式会社神戸製鋼所 光学式センサ付きロボットのキャリブレーション方法
JP6489776B2 (ja) * 2013-08-28 2019-03-27 キヤノン株式会社 座標系校正方法、ロボットシステム、プログラム及び記録媒体
JP6457208B2 (ja) * 2014-07-03 2019-01-23 川崎重工業株式会社 ロボットへの動作指示システム及び動作指示方法
JP6298026B2 (ja) * 2015-09-15 2018-03-20 ファナック株式会社 多関節ロボットのたわみを計測するたわみ計測システム
DE102017209178B4 (de) * 2017-05-31 2021-09-02 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zur Ermittlung der Raumlage eines bewegten Koordinatensystems, eines Messpunkts seines Sensors oder eines Arbeitspunktes eines Werkzeugs bei einem Roboter
JP6869159B2 (ja) * 2017-10-03 2021-05-12 株式会社ダイヘン ロボットシステム
JP7135495B2 (ja) * 2018-06-26 2022-09-13 セイコーエプソン株式会社 三次元計測装置、制御装置およびロボットシステム
CN109341532B (zh) * 2018-11-05 2020-11-10 航天材料及工艺研究所 一种面向自动装配的基于结构特征的零件坐标标定方法
DE102019127250B3 (de) * 2019-10-10 2020-12-03 Franka Emika Gmbh Verifikation einer Vorwärtskinematik eines Robotermanipulators
JP6670974B1 (ja) 2019-12-02 2020-03-25 ジック株式会社 ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置
CN111951340B (zh) * 2020-08-26 2024-05-07 珠海广浩捷科技股份有限公司 一种非接触式光学视觉标定的方法
CN114353802A (zh) * 2022-01-04 2022-04-15 上海圭目机器人有限公司 一种基于激光跟踪的机器人三维空间定位方法
WO2023135764A1 (ja) * 2022-01-14 2023-07-20 ファナック株式会社 3次元センサを備えるロボット装置およびロボット装置の制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517560B2 (en) 2013-07-22 2016-12-13 Canon Kabushiki Kaisha Robot system and calibration method of the robot system

Also Published As

Publication number Publication date
JPH08132373A (ja) 1996-05-28

Similar Documents

Publication Publication Date Title
JP3644991B2 (ja) ロボット−センサシステムにおける座標系結合方法
US11565427B2 (en) Robot system
KR102532072B1 (ko) 로봇 모션 용 비전 시스템의 자동 핸드-아이 캘리브레이션을 위한 시스템 및 방법
JP4267005B2 (ja) 計測装置及びキャリブレーション方法
US10618166B2 (en) Teaching position correction device and teaching position correction method
JP3733364B2 (ja) 教示位置修正方法
JP4819957B1 (ja) ロボットの位置情報復元装置および位置情報復元方法
US20050159842A1 (en) Measuring system
US20110029131A1 (en) Apparatus and method for measuring tool center point position of robot
JP3442140B2 (ja) 3次元視覚センサを用いた位置計測装置及び位置ずれ補正装置
JP6922204B2 (ja) 制御装置、ロボットおよびロボットシステム
JPH1063317A (ja) ロボット−視覚センサシステムにおける座標系結合方法
CN109531604B (zh) 进行校准的机器人控制装置、测量系统以及校准方法
KR20080088165A (ko) 로봇 캘리브레이션 방법
CN107953333A (zh) 一种机械手末端工具标定的控制方法及系统
JP4020994B2 (ja) ロボットのツール座標系補正設定方法並びに該方法に使用するエンドエフェクタ
JPH09222913A (ja) ロボットの教示位置補正装置
JPH08328624A (ja) センサとロボットとの結合方法及びロボットシステム
JP6628170B1 (ja) 計測システム及び計測方法
JP2021024075A (ja) ロボットの位置を制御するロボット装置の制御装置
US20240066701A1 (en) Simulation device using three-dimensional position information obtained from output from vision sensor
WO2022075159A1 (ja) ロボットのツール変形量算出装置、ロボットのツール変形量算出システム、及びロボットのツール変形量算出方法
WO2022249410A1 (ja) 視覚センサにて撮像された画像に基づいて3次元の位置を算出する撮像装置
WO2021210540A1 (ja) 座標系設定システム及び位置姿勢計測システム
CN117584115A (zh) 控制方法以及机器人系统

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees