JP6670974B1 - ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置 - Google Patents

ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置 Download PDF

Info

Publication number
JP6670974B1
JP6670974B1 JP2019217775A JP2019217775A JP6670974B1 JP 6670974 B1 JP6670974 B1 JP 6670974B1 JP 2019217775 A JP2019217775 A JP 2019217775A JP 2019217775 A JP2019217775 A JP 2019217775A JP 6670974 B1 JP6670974 B1 JP 6670974B1
Authority
JP
Japan
Prior art keywords
coordinate system
measuring device
robot
projection line
dimensional measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019217775A
Other languages
English (en)
Other versions
JP2021088003A (ja
Inventor
勇政 坪井
勇政 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SICK K.K.
Original Assignee
SICK K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SICK K.K. filed Critical SICK K.K.
Priority to JP2019217775A priority Critical patent/JP6670974B1/ja
Application granted granted Critical
Publication of JP6670974B1 publication Critical patent/JP6670974B1/ja
Priority to PCT/JP2020/042870 priority patent/WO2021111868A1/ja
Priority to US17/781,141 priority patent/US20220410375A1/en
Priority to JP2021562554A priority patent/JP7273185B2/ja
Priority to EP20896987.3A priority patent/EP4070923A4/en
Publication of JP2021088003A publication Critical patent/JP2021088003A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39024Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39045Camera on end effector detects reference pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Manipulator (AREA)

Abstract

【課題】ロボット座標系のアライメントを容易に行うことができる技術を提供する。【解決手段】ロボット座標系と計測器座標系をアライメントするシステムにおいて、動作空間座標系の原点に位置する第1基準点A、該第1基準点を通る直交2直線上の第2基準点B、及び第3基準点Cの位置をティーチングして動作空間座標系とロボット座標系の関係を決定する動作空間座標系設定部31と、動作空間座標系を規定する直交三軸の二軸が載る平面に平行に配置された板状部材51に該直交三軸に対して各辺が平行になるように固定された参照物体52に三次元計測器4からスリット光を照射して投映線を取得する投映線取得部432と、投映線のプロファイルに基づいて参照物体52に対する三次元計測器30の姿勢を求める計測器姿勢算出部433と、三次元計測器4を移動させる計測器移動部3を備える。【選択図】図2

Description

本発明は、対象物に対して所定の動作を実行するロボットの動作を制御する基準となる座標系と、該ロボットに取り付けて用いられる三次元計測器の座標系をアライメントする技術に関する。
工場の製造ラインでは、製品の組み立てや加工の効率を高めるために産業用ロボットが用いられている。産業用ロボットは、先端部を三次元的に移動可能なアームと、該先端部に取り付けられ被処理物に所定の処理を施す治具とを備えている。また、アームの先端部には三次元計測器が取り付けられており、例えば光切断法により被処理物を三次元的に計測してその位置及び向きを特定する。
産業用ロボットには、製造時等に予めメーカによって座標系が設定されており、アームの動作はその座標系に基づいて制御される。一方、前記三次元計測器は、該三次元計測器自身が有する座標系に基づく計測結果を出力する。従って、三次元計測器により位置及び向きが特定された被処理物の処理対象の位置に治具を移動するには、ロボットの座標系と三次元計測器の座標系を整合させる(アライメントする、又はキャリブレーションするとも言う)必要がある。
従来、両座標系のアライメントには行列演算によるアフィン変換が用いられている(例えば特許文献1)。特許文献1に記載のアライメント方法では、アームの先端に取り付けた三次元計測器を、同一直線上にない3つの位置に移動させ、それぞれの位置で対象物の同一箇所を計測して、三次元計測器の座標系での座標値を取得する。そして、前記3つの位置のロボットの座標系での座標値と、各位置で取得した三次元計測器の座標系での座標値を用いて行列式を作成し、それらの行列式から得られる方程式を解くことにより三次元計測器の座標系をロボットの座標系に変換する変換行列を得る。
特開平8-132373号公報
特許文献1に記載のアライメント方法では、変換行列を得るために、3つの位置のそれぞれに対応する行列式を展開して複雑な方程式を解く必要がある。また、ロボットの動作を制御するプログラムの開発環境(開発言語)はメーカによって異なる。そのため、種々のプログラム言語を理解して行列演算を行うことが可能な熟練者でなければアライメントを行うことが難しいという問題があった。
本発明が解決しようとする課題は、熟練者でなくても容易にロボット座標系のアライメントを行うことができる技術を提供することである。
上記課題を解決するために成された本発明の一態様は、動作点を三次元的に移動するためのロボットの座標系であるロボット座標系と、光切断法を実行可能であり前記動作点に対する位置及び姿勢が不変である三次元計測器の座標系である計測器座標系をアライメントする方法であって、
前記動作点の動作空間の座標系である動作空間座標系における原点に位置する第1基準点、該第1基準点で直交する2つの直線上にそれぞれ位置する第2基準点、及び第3基準点に前記動作点を移動させて各基準点の位置をティーチングすることにより、前記動作空間座標系と前記ロボット座標系の関係を決定し、
前記動作空間座標系を規定する直交三軸のうちの二軸が載る平面に対して平行に配置された板状部材の表面に、該直交三軸のそれぞれに対して各辺が平行になるように固定された直方体状の参照物体に対し、前記三次元計測器からシート状のスリット光を照射して、該スリット光による前記参照物体への投映線を取得し、
前記投映線のプロファイルに基づいて、前記参照物体に対する前記三次元計測器の姿勢を求め、
前記三次元計測器の姿勢が所定の基準姿勢範囲内に入るように前記三次元計測器を移動させる
工程を有することを特徴とする。
上記姿勢とは、座標系の軸や所定面などの基準に対する傾きや向きを意味する。また、光切断法を実行可能な三次元計測器とは、計測器座標系に対する姿勢が既知であるスリット光を対象物に照射し、該スリット光による対象物の各面への投映線のデータを取得して、該対象物の三次元形状に関する情報を取得可能な計測器をいう。さらに、上記動作空間とは、ロボットの動作点が動作する空間をいう。
本発明に係るアライメント方法では、まず、動作空間座標系における原点に位置する第1基準点、該第1基準点で直交する2つの直線上にそれぞれ位置する第2基準点及び第3基準点のそれぞれにロボットの動作点を移動させてティーチングし、ロボット座標系と動作空間座標系の関係を決定する。つまり、第1基準点及び第2基準点により動作空間座標系の第1軸が規定され、第1基準点及び第3基準点により第2軸が規定され、さらに、これらの二軸に直交する軸として第3軸が規定される。
次に、動作空間座標系を規定する直交三軸のうちの二軸が載る平面に対して平行に板状部材の表面に、該直交三軸のそれぞれに対して各辺が平行になるように固定された直方体状の参照物体に対して、三次元計測器からスリット光を照射して、該スリット光による参照物体の各面への投映線を取得する。そして、取得した投映線のプロファイルに基づいて参照物体に対する三次元計測器の姿勢を求める。この投映線のプロファイルには、参照物体の上面への投映線の長さ、及び該参照物体の上面への投映線と板状部材の面(参照物体が載置されている面)への投映線の間の距離、及び三次元計測器の座標軸に対するそれらの投映線の傾きが含まれる。そして、三次元計測器の姿勢が所定の基準姿勢範囲内に入るように三次元計測器を移動させる。投映線のプロファイルから三次元計測器の姿勢を求める具体的な方法は後述する。
ここで、理解を容易にするため、参照物体が動作空間座標系の二軸(これをX軸及びY軸とする)を含む平面上に、Z軸とも平行になるように配置されており、また、シート状のスリット光が計測器座標系X'軸方向に幅を有してZ'軸方向に照射され、さらに、三次元計測器の姿勢が参照物体に対して略平行となる(即ち、この例ではロボット座標系と計測器座標系の3軸が相互に略平行である)ように基準姿勢範囲が設定されている場合の具体的な一例を説明する。このとき、計測器座標系の三軸が動作空間座標系の三軸と平行に(従って、参照物体の三辺とも平行に)なっていれば、参照物体の上面に照射されるスリット光の長さは該参照物体の上面の幅と一致する。また、参照物体の上面への投映線と板状部材の面(参照物体が載置されている面)への投映線の間の距離は、参照物体の高さに基づく所定の値となる。さらに、これらの投映線は三次元計測器のX'軸に対して平行になる。
一方、計測器座標系が、動作空間座標系のZ軸周りに大きく回転しているほど参照物体の上面に照射されるスリット光の長さが長くなる。また、計測器座標系が前記平面内の一軸(これをY軸とする)周りに動作空間座標系に対して傾いていると、参照物体の上面への投映線と板状部材の表面(参照物体が固定されている面)への投映線の、三次元計測器のX’軸に対する傾きが大きくなる。また、参照物体の側面にスリット光が照射された切断線が現れうる。さらに、計測器座標系が水平方向の別の軸(これをX軸とする)周りに動作空間座標系に対して大きく傾いているほど、参照物体の上面への投映線と板状部材の面への投映線の間の距離が長くなる。従って、これらの情報から、参照物体に対する三次元計測器の姿勢(この例では動作空間座標系の三軸のそれぞれに対する計測器座標系の軸の傾き)が求められる。
そして、いずれかの傾きが予め決められた閾値よりも大きい場合には、該傾きの全てが該閾値を下回るように三次元計測器を移動させる。これは、例えば、ユーザが参照物体に対する三次元計測器の姿勢を視認しつつコントローラを操作して参照物体に対して平行になるように三次元計測器を移動させ、その位置で前記傾きが全て前記閾値を下回っていることを確認することにより行うことができる。これにより、三次元計測器の姿勢が基準姿勢範囲内に入るように(この例では参照物体の三辺が延びる方向と計測器座標系の三軸を平行に)することができる。
上記のとおり、本発明に係るアライメント方法ではプログラミング言語を用いた行列演算を行う必要がないため、熟練者でなくても容易にロボット座標系のアライメントを行うことができる。
上記課題を解決するために成された本発明の別の一態様は、動作点を三次元的に移動するためのロボットの座標系であるロボット座標系と、光切断法を実行可能であり前記動作点に対する位置及び姿勢が不変である三次元計測器の座標系である計測器座標系をアライメントするシステムであって、
前記動作点の動作空間の座標系である動作空間座標系における原点に位置する第1基準点、該第1基準点を通り直交する2つの直線上にそれぞれ位置する第2基準点及び第3基準点に前記動作点を移動させて各基準点の位置をティーチングすることにより、前記動作空間座標系と前記ロボット座標系の関係を決定する動作空間座標系設定部と、
前記動作空間座標系を規定する直交三軸のうちの二軸が載る平面に対して平行に配置された板状部材の表面に、該直交三軸のそれぞれに対して各辺が平行になるように固定された直方体状の参照物体に対し、前記三次元計測器からシート状のスリット光を照射して、該スリット光による前記参照物体のへの投映線を取得する投映線取得部と、
前記投映線のプロファイルに基づいて、前記参照物体に対する前記三次元計測器の姿勢を求める計測器姿勢算出部と、
前記三次元計測器を移動させる計測器移動部と
を備えることを特徴とする。
上記課題を解決するために成された本発明の更に別の一態様は、動作点を三次元的に移動するためのロボットの座標系であるロボット座標系に予め対応付けられた前記動作点の動作空間の座標系である動作空間座標系と、光切断法を実行可能であり前記動作点に対する位置及び姿勢が不変である三次元計測器の座標系である計測器座標系をアライメントするために用いられる装置であって、
前記動作空間座標系を規定する直交三軸のうちの二軸が載る平面に対して平行に配置された板状部材の表面に、該直交三軸のそれぞれに対して各辺が平行になるように固定された直方体状の参照物体に対し、前記三次元計測器からシート状のスリット光を照射して、該スリット光による前記参照物体への投映線を取得する投映線取得部と、
前記投映線のプロファイルに基づいて、前記参照物体に対する前記三次元計測器の姿勢を求める計測器姿勢算出部と、
を備えることを特徴とする。
本発明に係るロボット用の座標系アライメント方法、アライメントシステム、又はアライメント装置を用いることにより、熟練者でなくても容易にロボット座標系のアライメントを行うことができる
本発明に係るロボット用の座標系アライメント装置及びアライメントシステムの一実施例を含むロボットシステムの概略構成図。 本実施例の三次元センサの構成を説明する図。 三次元センサのスリット光照射部とエリアセンサの配置を説明する図。 本発明に係るロボット用の座標系アライメント方法の一実施例に関するフローチャート。 本実施例において用いるアライメント治具について説明する図。 本実施例におけるスリット光によるブロックへの投映線について説明する図。 本実施例において得られる投映線のプロファイルの一例。
本発明に係るロボット用の座標系アライメント方法、アライメントシステム、及びアライメント装置の一実施例について、以下、図面を参照して説明する。図1は、本実施例のロボット用の座標系アライメントシステム及び装置(以下、「アライメントシステム」及び「アライメント装置」と呼ぶ。)を含むロボットシステム1の要部構成図である。
本実施例のロボットシステム1は、ロボット2と、該ロボット2を操作するためのコントローラ3を備えている。
ロボット2は、先端に動作点20が設けられたアーム部21と、該アーム部21を三次元的に移動させるための直動機構22a〜22c及び回転機構23a〜23cを備えている。直動機構22a〜22c及び回転機構23a〜23cは、コントローラ3による制御の下で動作する。コントローラ3は後述するティーチングによって動作空間座標系とロボット座標系の関係を決定するための動作空間座標系設定部31を、機能ブロックとして有している。
アーム部21の動作点20の近傍には、三次元センサ4が着脱可能に取り付けられている。三次元センサ4は、図2に示すように、対象物にスリット光を照射するスリット光照射部41と、該スリット光の対象物への投映線を撮影するエリアセンサ42を備えている。これらには計測器座標系が定義されており、図3に示すように、光照射部41は計測器座標系のX’-Z’平面に対して角度θ1傾いた状態で配置され、エリアセンサ42は、X’-Z’平面を挟んでスリット光照射部41とは反対側に、同平面に対して角度θ2傾いた状態で配置されている。本実施例におけるθ1は0であるが、これは本発明に必須の要件ではなく、θ1の角度が既知でありさえすれば、対象物への投映線がどのようにエリアセンサ42に捉えられるかを把握することができる。従って、該既知の角度に基づく適宜の演算処理によって以降に説明する処理を行うことができる。
本実施例ではスリット光照射部41はX’-Z’平面上に配置され、X’-Z’平面に沿ってスリット光を対象物に照射する。θ2は、例えば、30°から40°の範囲内の適宜の角度に配置される。本実施例では、三次元センサ4として、該センサ4が有する光学系に含まれるレンズによって生じる収差や奥行き収差(カメラを斜め方向に向けたときに画角内で遠近法により生じる収差)を補正するものを使用する。これにより、後述する光切断法において正確な計測が行われ、座標系のアライメント精度が高くなる。
三次元センサ4には、さらに、制御・処理部43が設けられている。制御・処理部43は、記憶部431の他に、機能ブロックとして、投映線取得部432、計測器姿勢算出部433、及び座標系シフト部434を備えている。本実施例の制御・処理部43は三次元センサ4の内部に組み込まれた演算処理機構として構成されている。また、この制御・処理部43は、所定の通信インターフェース44を介して、使用者が適宜の入力指示を行うための入力部6と、計測結果等を表示するための表示部7に接続されている。制御・処理部43は、その他、三次元センサ4と別体で設けられ該三次元センサ4と通信可能に構成された携帯型端末等で構成することもできる。
次に、図4のフローチャートを参照して本実施例のアライメント方法の手順を説明する。
まず、アライメント用の治具を用意する。アライメント用の治具5は、板状部材51と、該板状部材51の上に固定されたブロック52を含む。図5に示すように、板状部材51は、その上面が、ロボット2の動作点20を動作させる空間の座標系である動作空間座標系の二軸(X軸及びY軸)を含む平面と合致する位置に固定される。また、板状部材51の上面の、動作空間座標系の原点に対応する位置に基準点Aを、動作空間座標系のX軸上の所定の位置に基準点Bを、動作空間座標系のY軸上の所定の位置に基準点Cを、それぞれ設定する。即ち、基準点A及びBにより動作空間座標系のX軸方向が規定され、基準点A及びCにより動作空間座標系のY軸が規定される。
ブロック52の大きさは、X軸方向の長さがW(mm)、Y軸方向の長さがL(mm)、Z軸方向の長さがH(mm)である。ブロック52のX軸方向の長さは、エリアセンサ42の視野に入る範囲内で、できるだけ長いことが好ましい。これにより、後述する処理を行う際にブロック52の上面に映るスリット光の投映線が長くなり、ブロック52に対する三次元センサ4の姿勢を求める際の精度が高くなる。
一方、ブロック52のY軸方向の長さは、例えば10〜100mmであり、ロボットの大きさ等を考慮して適宜に決めればよい。ブロック52のY軸方向を長くすることにより、ブロック52にスリット光を照射したときにスリット光の投映線とブロック52の一辺(動作空間座標系のX軸に平行な辺)が平行であるか否かを視認しやすくなるためである。ただし、ブロック52のY軸方向を短くすると、スリット光の投映線がブロック52の一辺(動作空間座標系のX軸に平行な辺)を横切ってしまい、ブロック52の上面を横断する投映線を得ることが難しくなる。
従来の座標系のアライメント方法では、動作点を正確に位置させるために可能な限り先端が尖った治具を用いることがあったが、先端が尖った治具を用いると光の拡散反射が生じやすく、動作点と治具の先端の位置関係を確認する際の撮像が困難になる場合があった。これに対し、本実施例では後述する方法及び装置によって座標系のアライメントを行うため、先端が尖った治具を用いる必要がなく、直方体状のブロック52を用いればよいため拡散反射は生じず、容易かつ正確に後述する投映線等が撮像される。
また、ブロック52の表面には、光の乱反射を抑えるための、つや消し処理が施されている。ブロック52には、例えばつや消しアルマイトからなるものを好適に用いることができる。ブロック52は、動作空間座標系において該ブロック52の底面の中心が予め決められた座標に位置するように、動作空間座標系の三軸に平行に配置される。こうしてアライメント用の治具が設置される(ステップ1。図5参照)。
続いて、コントローラ3によりアーム部21を動かし、動作点20を基準点Aに移動させ、ロボット2に基準点Aの位置をティーチングする。同様に、動作点20を基準点B及びCにも移動させ、それらの位置をロボット2にティーチングする(ステップ2)。このとき、コントローラ3を使用者が自ら操作してもよく、あるいは動作空間座標系設定部31により動作点20を各基準点に移動させてもよい。その後、動作空間座標系設定部31は、基準点A、B、及びCの、動作空間座標系における座標をロボット2に登録し、該ロボット2に予め(例えば出荷時に)登録されているロボット座標系と動作空間座標系の関係を決定する。こうして、ロボット2に動作空間座標系が設定される(ステップ3)。
ロボット2に動作空間座標系を設定した後、コントローラ3によりアーム部21を移動し、図5(ロボット2のうちアーム部21以外の図示を省略)に示すように、三次元センサ4をブロック52の上方に位置させる(ステップ4)。続いて、スリット光照射部41からブロック52に対してスリット光を照射し(ステップ5)、エリアセンサ42によりブロック52への投映線を取得する(ステップ6)。
本実施例におけるスリット光は、三次元センサ4の出力信号の基準となる計測器座標系の一軸(X'軸)方向に幅を持つ光であり、該計測器座標系の別の一軸(Z'軸)方向に発せられる。即ち、計測器座標系のX'-Z'平面に沿ったシート状のスリット光である(図6参照)。本実施例の三次元センサ4は、該センサ4が有する光学系に含まれるレンズによって生じる収差や奥行き収差(カメラを斜め方向に向けたときに画角内で遠近法により生じる収差)を補正する。具体的には、二次元的に配列された画素のどの位置にスリット光が入射しているかを特定し、続いてその位置をキャリブレーションにより補正する。そして補正後の画素の位置から投映線のプロファイルを取得する。
上述のとおり、ブロック52の三辺は動作空間座標系の三軸に平行に配置されており、また、スリット光はX'-Z'平面に沿ったシート状の光である。従って、動作空間座標系のX軸、Y軸、及びZ軸と、計測器座標系のX’軸、Y’軸、及びZ’軸がそれぞれ平行になっていると、ブロック52の上面への投映線は該ブロック52のX軸に平行な一辺の長さWと同一になる。また、ブロック52の上面への投映線と、板状部材51への投映線の間の距離は、ブロック52の高さH(及び三次元センサ4のエリアセンサ42がブロック及び板状部材51を捉える角度)に応じたものとなる。
一方、計測器座標系が動作空間座標系に対して傾いている場合には、上記と異なる長さ及び距離を有する投映線が現れる。そうした場合に現れる、投映線について、図6及び7を参照して説明する。図6は、治具5(板状部材51及びブロック52)を基準にスリット光が斜方から照射された状態を示している。なお、図6では、角度α、β、及びγを分かりやすくするため、これらの角度を実際よりも大きくして投映線を示している。図7は、エリアセンサ42により計測された投映線に基づいて作成された表示例である。
本実施例の場合、エリアセンサ42がX’-Z'平面に対して角度θ2傾いた位置に配置され、斜め上方から投映線を撮影する。そのため、エリアセンサ42により捉えられる、ブロック52の上面への投映線と板状部材51への投映線の間の距離は実際よりも短くなる。そこで、投映線取得部432は、スリット光照射部41及びエリアセンサ42の配置(X’-Z’平面に対する角度θ1及びθ2)及び実際に計測された上記距離に基づいて該距離を補正し測定値hを求める。一方、ブロック52の上面への投映線の長さはそのまま測定値wとする。そして、図7に示すように測定値w, hを表示部7に表示する。
ここで、図6及び7に示すように、ブロック52の上面への投映線の一端(ブロック52の側面への投映線も撮影されている場合は投映線の屈曲点)を通り計測器座標系のZ‘軸に平行な直線と、該一端を通り動作空間座標系のZ軸と平行な直線とがなす角度をα、エリアセンサ42の画角の一方向(横方向)と該エリアセンサ42で捉えられた投映線がなす角度をβ、ブロック52の上面への投映線と、該投映線の一端を通り動作空間座標系のX軸に平行な直線がなす角度をγ、と規定する。
上記のように角度α、β、及びγを規定すると、ブロック52のX軸方向の長さW及びZ軸方向の長さHと、上記測定値w及びhとから、次式により角度α及びγが求められる。
α=cos-1(H/h)…(1)
γ=cos-1(W/w)…(2)
また、角度βは、上記の通りエリアセンサ42画角の横方向と、板状部材51への投映線がなす角度として求められる。
計測器姿勢算出部433は、上記のようにして投映線のプロファイルから上記の角度α、β、及びγを算出し(ステップ7)、表示部7の画面にそれぞれの角度を表示する。
上記角度α、β、及びγを算出すると、計測器姿勢算出部433は、それらの値が全て予め決められた値(所定値)以下であるかを判定する(ステップ8)。この所定値は、動作空間座標系の各軸と計測器座標系の各軸とが実質的に互いに平行であるであるとみなせる値に設定される。所定値は、例えば0.2度である。角度α、β、及びγが全て所定値以下であれば(ステップ8でYES)、後述するステップ10に進む。
一方、いずれかの角度が所定値を上回っている場合には(ステップ8でNO)、使用者がコントローラ3を用いて三次元センサ4の姿勢を調整する(ステップ9)。そして、ステップ5に戻って再びブロック52にスリット光を照射し、上記角度α、β、及びγを算出して表示部7に表示するとともに、それらが全て所定値以下であるかを判定する(ステップ5〜8)。これらの処理は、角度α、β、及びγが全て所定値以下になるまで繰り返し行う。本実施例では、角度α、β、及びγを算出するごとに表示部7にそれらの値が表示されるため、使用者は角度α、β、及びγを確認し、計測器座標と動作空間座標がどの程度ずれているのかを直感的に把握することができる。また、その値の変化を確認しながら、ロボット2を用いて行おうとしている作業に求められる精度を考慮するなどして、どの程度まで両座標を合致させる必要があるかを判断することもできる。
上記角度α、β、及びγが全て所定値以下になると(ステップ8でYES)、座標系シフト部434は、三次元センサからのスリット光をY'軸(動作空間座標系と計測器座標系が相互に平行であるため実質的にY軸と同じ)方向に走査してブロック52全体三次元データを取得し、ブロック52の所定の位置(例えば動作空間座標系のX-Y平面上に位置する、ブロック52の底面の中心)の、計測器座標系における座標位置を求める(ステップ10)。そして、動作空間座標系におけるブロック52の上記所定の位置座標位置と比較して差分(シフト量)を求める(ステップ11)。最後に、計測器座標系を上記シフト量の大きさだけシフトさせることにより、計測器座標系と動作空間座標系を合致させる。
上記実施例で説明した具体的な構成や数値はいずれも一例であって、本発明の趣旨に沿って適宜に変更することができる。
上記実施例では、治具5を使用して両座標系のシフト量を求めた、同座標系をシフトさせて一致させる処理まで行ったが、これらの処理は必須ではない。例えば、実際にロボットを動作させる際に、計測器座標系で取得された位置に上記シフト量を加えて(あるいは減じて)動作空間座標系の位置に変換する処理を、実際にロボットを動作させる毎に行ってもよい。あるいは、動作空間座標系の三軸と計測器座標系の三軸を互いに平行にした後、別の治具を配置し、動作空間座標系と計測器座標系のそれぞれにおける、その治具の所定位置の座標の差からシフト量を求めることもできる。シフト量を求めるために使用する治具は必ずしも直方体状のものである必要はなく、上記所定位置を規定可能な適宜の形状のものを用いることができる。例えば、直方体状のブロック52の全体のプロファイルを取得する際にエッジ部分の形状を正確に計測することが難しい場合には、円筒状のブロックを用いるとよい。また、シフト量の算出に用いる治具はブロックに限らず、所定位置(例えばX-Y平面上に位置する中心と該中心からの高さの座標が既知であり、三次元センサ4によって三次元データを取得可能な、適宜のものを用いることができる。
現在、製造業の現場では、人口の減少により、人力に代わるロボットの普及が急務とされている。しかし、ロボットと三次元計測器を使ったシステムの統合には高度な知識が必要とされるため、現場の作業員にとって必ずしも容易ではない。特に、様々なロボットメーカにより製造されたロボットが用いられる自動車産業などでは、ロボットメーカによって操作性が異なるために、その操作を熟知した専門の技術者の派遣が必要となる場合があり、人材の確保が難しく、また人材の育成も難しい。例えば、ロボットの使用中に、予期しない衝突等が起こり三次元計測器の取り付け位置がずれてしまうことがある。現場では速やかな復旧が求められるため、高度な知識を有することなく様々なロボットメーカにより製造されたロボットに共通して適用可能なアライメント技術が必要とされており、本発明を好適に用いることができる。
1…ロボットシステム
2…ロボット
20…動作点
21…アーム部
22a〜22c…直動機構
23a〜23c…回転機構
3…コントローラ
31…動作空間座標系設定部
4…三次元センサ
41…スリット光照射部
42…エリアセンサ
43…制御・処理部
431…記憶部
432…投映線取得部
433…計測器姿勢算出部
44…通信インターフェース
5…治具
51…板状部材
52…ブロック
6…入力部
7…表示部

Claims (9)

  1. 動作点を三次元的に移動するためのロボットの座標系であるロボット座標系と、光切断法を実行可能であり前記動作点に対する位置及び姿勢が不変である三次元計測器の座標系である計測器座標系をアライメントする方法であって、
    前記動作点の動作空間の座標系である動作空間座標系における原点に位置する第1基準点、該第1基準点で直交する2つの直線上にそれぞれ位置する第2基準点及び第3基準点に前記動作点を移動させて各基準点の位置をティーチングすることにより、前記動作空間座標系と前記ロボット座標系の関係を決定し、
    前記動作空間座標系を規定する直交三軸のうちの二軸が載る平面に対して平行に配置された板状部材の表面に、該直交三軸のそれぞれに対して各辺が平行になるように固定された直方体状の参照物体に対し、前記三次元計測器からシート状のスリット光を照射して、該スリット光による前記参照物体への投映線を取得し、
    前記投映線のプロファイルに基づいて、前記参照物体に対する前記三次元計測器の姿勢を求め、
    前記三次元計測器の姿勢が所定の基準姿勢範囲内に入るように前記三次元計測器を移動させる
    工程を有することを特徴とするロボット用の座標系アライメント方法。
  2. 前記三次元計測器の姿勢が所定の基準姿勢範囲内に入るように前記三次元計測器を移動させたあと、さらに、
    前記参照物体の所定位置の、前記動作空間座標系における座標と、前記計測器座標系における座標を比較して差分を求め、
    前記計測器座標系を前記差分だけシフトさせる
    工程を有することを特徴とする請求項1に記載のロボット用の座標系アライメント方法。
  3. 前記動作空間座標系において、前記第1基準点が原点であり、前記第2基準点及び前記第3基準点が該座標系の軸上の点であることを特徴とする請求項1又は2に記載のロボット用の座標系アライメント方法。
  4. 前記参照物体の三辺が前記動作空間座標系の三軸に平行になるように該参照物体が配置されていることを特徴とする請求項1から3のいずれかに記載のロボット用の座標系アライメント方法。
  5. 前記スリット光が、前記計測器座標系の一軸方向に幅を有し、該計測器座標系の別の一軸方向に発せられる光であることを特徴とする請求項1から4のいずれかに記載のロボット用の座標系アライメント方法。
  6. 動作点を三次元的に移動するためのロボットの座標系であるロボット座標系と、光切断法を実行可能であり前記動作点に対する位置及び姿勢が不変である三次元計測器の座標系である計測器座標系をアライメントするシステムであって、
    前記動作点の動作空間の座標系である動作空間座標系における原点に位置する第1基準点、該第1基準点を通り直交する2つの直線上にそれぞれ位置する第2基準点、及び第3基準点に前記動作点を移動させて各基準点の位置をティーチングすることにより、前記動作空間座標系と前記ロボット座標系の関係を決定する動作空間座標系設定部と、
    前記動作空間座標系を規定する直交三軸のうちの二軸が載る平面に対して平行に配置された板状部材の表面に、該直交三軸のそれぞれに対して各辺が平行になるように固定された直方体状の参照物体に対し、前記三次元計測器からシート状のスリット光を照射して、該スリット光による前記参照物体への投映線を取得する投映線取得部と、
    前記投映線のプロファイルに基づいて、前記参照物体に対する前記三次元計測器の姿勢を求める計測器姿勢算出部と、
    前記三次元計測器を移動させる計測器移動部と
    を備えることを特徴とするロボット用の座標系アライメントシステム。
  7. 動作点を三次元的に移動するためのロボットの座標系であるロボット座標系に予め対応付けられた前記動作点の動作空間の座標系である動作空間座標系と、光切断法を実行可能であり前記動作点に対する位置及び姿勢が不変である三次元計測器の座標系である計測器座標系をアライメントするために用いられる装置であって、
    前記動作空間座標系を規定する直交三軸のうちの二軸が載る平面に対して平行に配置された板状部材の表面に、該直交三軸のそれぞれに対して各辺が平行になるように固定された直方体状の参照物体に対し、前記三次元計測器からシート状のスリット光を照射して、該スリット光による前記参照物体への投映線を取得する投映線取得部と、
    前記投映線のプロファイルに基づいて、前記参照物体に対する前記三次元計測器の姿勢を求める計測器姿勢算出部と、
    を備えることを特徴とするロボット用の座標系アライメント装置。
  8. さらに、
    前記参照物体の所定位置の、前記動作空間座標系における座標と、前記計測器座標系における座標を比較して差分を求め、前記計測器座標系を前記差分だけシフトさせる座標系シフト部
    を備えることを特徴とする請求項7に記載のロボット用の座標系アライメント装置。
  9. さらに、
    前記計測器姿勢算出部によって前記三次元計測器の姿勢が求められる毎に、前記参照物体に対する前記三次元計測器の姿勢を表示する表示部
    を備えることを特徴とする請求項7又は8に記載のロボット用の座標系アライメント装置。
JP2019217775A 2019-12-02 2019-12-02 ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置 Active JP6670974B1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019217775A JP6670974B1 (ja) 2019-12-02 2019-12-02 ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置
PCT/JP2020/042870 WO2021111868A1 (ja) 2019-12-02 2020-11-17 ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置
US17/781,141 US20220410375A1 (en) 2019-12-02 2020-11-17 Coordinate system alignment method, alignment system, and alignment device for robot
JP2021562554A JP7273185B2 (ja) 2019-12-02 2020-11-17 ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置
EP20896987.3A EP4070923A4 (en) 2019-12-02 2020-11-17 COORDINATE SYSTEM ALIGNMENT METHOD, ALIGNMENT SYSTEM AND ALIGNMENT APPARATUS FOR ROBOTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019217775A JP6670974B1 (ja) 2019-12-02 2019-12-02 ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置

Publications (2)

Publication Number Publication Date
JP6670974B1 true JP6670974B1 (ja) 2020-03-25
JP2021088003A JP2021088003A (ja) 2021-06-10

Family

ID=70000783

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019217775A Active JP6670974B1 (ja) 2019-12-02 2019-12-02 ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置
JP2021562554A Active JP7273185B2 (ja) 2019-12-02 2020-11-17 ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021562554A Active JP7273185B2 (ja) 2019-12-02 2020-11-17 ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置

Country Status (4)

Country Link
US (1) US20220410375A1 (ja)
EP (1) EP4070923A4 (ja)
JP (2) JP6670974B1 (ja)
WO (1) WO2021111868A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112873264A (zh) * 2021-03-18 2021-06-01 中国工程物理研究院机械制造工艺研究所 一种工业机器人关节结构、机器人控制系统及方法
US20210373042A1 (en) * 2020-05-29 2021-12-02 Roche Diagnostics Operations, Inc. Module for an automated laboratory system
CN114485427A (zh) * 2022-01-20 2022-05-13 上汽大众汽车有限公司 一种用于车身尺寸测量的测量基准构建方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7277340B2 (ja) * 2019-11-15 2023-05-18 川崎重工業株式会社 マスタスレーブシステム、制御方法及び制御装置
WO2021199168A1 (ja) * 2020-03-30 2021-10-07 日本電気株式会社 撮像システム、撮像方法及び撮像プログラムが格納された非一時的なコンピュータ可読媒体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506683A (en) 1990-04-30 1996-04-09 Kumho & Co., Inc. Non-contact measuring apparatus for the section profile of a tire and its method
JP3138080B2 (ja) * 1992-10-22 2001-02-26 株式会社豊田中央研究所 視覚センサの自動キャリブレーション装置
JP3644991B2 (ja) * 1994-11-08 2005-05-11 ファナック株式会社 ロボット−センサシステムにおける座標系結合方法
US6044308A (en) * 1997-06-13 2000-03-28 Huissoon; Jan Paul Method and device for robot tool frame calibration
JPH1133962A (ja) * 1997-07-18 1999-02-09 Yaskawa Electric Corp ロボットの三次元位置センサのキャリブレーション 方法とその装置
JP2002172575A (ja) * 2000-12-07 2002-06-18 Fanuc Ltd 教示装置
JP2010091540A (ja) 2008-10-13 2010-04-22 Toyota Motor Corp 三次元計測システム及び三次元計測方法
WO2012176262A1 (ja) * 2011-06-20 2012-12-27 株式会社安川電機 3次元形状計測装置およびロボットシステム
US20160243703A1 (en) * 2015-02-19 2016-08-25 Isios Gmbh Arrangement and method for the model-based calibration of a robot in a working space
EP3147086B1 (de) * 2015-09-22 2020-11-04 Airbus Defence and Space GmbH Automatisieren von roboteroperationen im flugzeugbau
JP6848269B2 (ja) * 2016-09-01 2021-03-24 アイシン精機株式会社 パレタイジング装置
JP6888580B2 (ja) 2018-04-05 2021-06-16 オムロン株式会社 情報処理装置、情報処理方法、及びプログラム
CN111504183B (zh) * 2020-04-22 2021-03-09 无锡中车时代智能装备有限公司 线激光三维测量传感器与机器人相对位置的标定方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210373042A1 (en) * 2020-05-29 2021-12-02 Roche Diagnostics Operations, Inc. Module for an automated laboratory system
CN112873264A (zh) * 2021-03-18 2021-06-01 中国工程物理研究院机械制造工艺研究所 一种工业机器人关节结构、机器人控制系统及方法
CN112873264B (zh) * 2021-03-18 2024-02-23 中国工程物理研究院机械制造工艺研究所 一种工业机器人关节结构、机器人控制系统及方法
CN114485427A (zh) * 2022-01-20 2022-05-13 上汽大众汽车有限公司 一种用于车身尺寸测量的测量基准构建方法及系统
CN114485427B (zh) * 2022-01-20 2023-09-22 上汽大众汽车有限公司 一种用于车身尺寸测量的测量基准构建方法及系统

Also Published As

Publication number Publication date
JP2021088003A (ja) 2021-06-10
JPWO2021111868A1 (ja) 2021-06-10
JP7273185B2 (ja) 2023-05-12
EP4070923A4 (en) 2024-01-03
EP4070923A1 (en) 2022-10-12
US20220410375A1 (en) 2022-12-29
WO2021111868A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6670974B1 (ja) ロボット用の座標系アライメント方法及びアライメントシステム並びにアライメント装置
KR102532072B1 (ko) 로봇 모션 용 비전 시스템의 자동 핸드-아이 캘리브레이션을 위한 시스템 및 방법
JP4021413B2 (ja) 計測装置
US20210012532A1 (en) System and method for calibration of machine vision cameras along at least three discrete planes
JP4191080B2 (ja) 計測装置
US10618166B2 (en) Teaching position correction device and teaching position correction method
JP6280525B2 (ja) カメラのミスキャリブレーションの実行時決定のためのシステムと方法
JP3946711B2 (ja) ロボットシステム
JP6025386B2 (ja) 画像計測装置、画像計測方法及び画像計測プログラム
US10571254B2 (en) Three-dimensional shape data and texture information generating system, imaging control program, and three-dimensional shape data and texture information generating method
JP2016185572A (ja) ロボット、ロボット制御装置およびロボットシステム
JP2008021092A (ja) ロボットシステムのシミュレーション装置
US20170339335A1 (en) Finger camera offset measurement
JP6869159B2 (ja) ロボットシステム
JP2019063955A (ja) ロボットシステム、動作制御方法及び動作制御プログラム
US20190255706A1 (en) Simulation device that simulates operation of robot
US20240070910A1 (en) Processing method and processing device for generating cross-sectional image from three-dimensional position information acquired by visual sensor
KR20130075712A (ko) 레이저비전 센서 및 그 보정방법
JP2016187851A (ja) キャリブレーション装置
US20240066701A1 (en) Simulation device using three-dimensional position information obtained from output from vision sensor
KR20110028870A (ko) 레이저 비전 시스템 캘리브레이션 장치 및 이를 이용한 레이저 비전 시스템 캘리브레이션 방법
TW202241660A (zh) 程式生成裝置及機器人控制裝置
CN115397626A (zh) 坐标系设定系统和位置姿势测量系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191202

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200108

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200122

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R150 Certificate of patent or registration of utility model

Ref document number: 6670974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250