JP3644185B2 - アクティブマトリクス基板の製造方法 - Google Patents

アクティブマトリクス基板の製造方法 Download PDF

Info

Publication number
JP3644185B2
JP3644185B2 JP7624297A JP7624297A JP3644185B2 JP 3644185 B2 JP3644185 B2 JP 3644185B2 JP 7624297 A JP7624297 A JP 7624297A JP 7624297 A JP7624297 A JP 7624297A JP 3644185 B2 JP3644185 B2 JP 3644185B2
Authority
JP
Japan
Prior art keywords
region
tft
storage capacitor
active matrix
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7624297A
Other languages
English (en)
Other versions
JPH10268341A (ja
Inventor
裕幸 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7624297A priority Critical patent/JP3644185B2/ja
Publication of JPH10268341A publication Critical patent/JPH10268341A/ja
Application granted granted Critical
Publication of JP3644185B2 publication Critical patent/JP3644185B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜トランジスタ(以下、TFTという。)を用いたアクティブマトリクス基板、およびその製造方法、並びに液晶表示装置に関するものである。さらに詳しくは、画素領域に画素用のTFTと保持容量とを備えるタイプのアクティブマトリクス基板において各素子を最適な特性に製造するための技術に関するものである。
【0002】
【従来の技術】
液晶表示装置のアクティブマトリクス基板では、図1に示すように、X方向に延設された複数の走査線4、および走査線4に対して直交するY方向に延設された複数のデータ線3によって画素領域5が区画され、各画素領域5には、データ線3および走査線4に接続するTFT10このTFT10に接続する液晶容量6、および保持容量50が構成されている。図2に示すように、保持容量50は、TFT10の製造工程を援用して形成され、TFT10の能動層と同一の層間に形成された半導体領域を第1の電極層51とし、ゲート電極15(走査線4)と同一の層間に形成された電極層を第2の電極層55とし、これらの第1の電極層51と第2の電極層55との間にはゲート絶縁膜14と同一の層間に形成された誘電体膜54を有している。
【0003】
以下、本願明細書では、X方向およびY方向でその向きを特定する必要がある場合には、以下のように±の符合を付す。すなわち、X方向のうち、図面に向かって右方向および左方向をそれぞれ+X方向、−X方向とし、Y方向のうち、図面に向かって上方向および下方向をそれぞれ+Y方向、−Y方向とする。
【0004】
このように構成されたアクティブマトリクス基板2では、図9に示すように、各画素領域5に形成されたシリコン膜30のうち、図面に向かって画素領域5の隅の部分がTFT10を形成するのに用いられる。これに対して、シリコン膜30のうち、TFT10の形成領域から+X方向に延びた後、走査線4から−Y方向に直角に張り出した延設部分40に沿って折れ曲がって+Y方向に延び、しかる後に、隣接する画素領域に向けて+X方向に延びて、隣接する画素領域5のTFT10の形成領域にX方向において重なっている部分が保持容量50の第1の電極層51として用いられる。
【0005】
このように構成したアクティブマトリクス基板2においては、基板としてガラス基板を用いることができるよう低温プロセスによってTFT10を製造することが望まれている。しかし、TFT10のチャネル領域等を形成するのに必要なシリコン膜は、アモルファスシリコン膜であれば低温プロセスによって成膜できるものの、移動度が低いという欠点がある。
【0006】
そこで、基板上に形成したアモルファスのシリコン膜30にレーザ光を照射して溶融結晶化するレーザ溶融結晶化法が検討されており、この方法では、たとえばY方向に長い照射領域を有するレーザ光のラインビームLBをアモルファスのシリコン膜30に照射し、それを+X方向に走査して、シリコン膜30全体を結晶化する。ここで、レーザ光のエネルギー強度はアモルファスシリコンが多結晶シリコンに転移するのに十分なレベルに設定されるが、その強度が高いほどシリコン膜30の結晶性が向上して移動度の高いTFT10を製造できる。但し、エネルギー強度が高すぎるとシリコン膜30が微結晶化してしまうことから、シリコン膜30が微結晶化するよりわずかに低いレベルにエネルギー強度を設定するのが一般的である。
【0007】
一方、保持容量50の第1の電極層51を構成するためのシリコン膜30も、TFT10を構成するためのシリコン膜30と同様な強度でレーザ光が照射され、多結晶シリコンに転移する。
【0008】
【発明が解決しようとする課題】
しかしながら、従来のように、移動度の高いTFT10を製造することを目的に、シリコン膜30に微結晶化が起きる寸前の高い強度でのレーザ光照射を行うと、保持容量50に耐電圧の低下が生じ、液晶表示装置の信頼性が低下するという問題点がある。その理由としては、シリコン膜30に高い強度でのレーザ光照射を行うほど、シリコン膜30の表面に粗れが発生し、それが耐電圧を低下させているものと考えられる。
【0009】
そこで、本発明の課題は、TFTの製造工程を援用しながら保持容量を形成していくあたって、これらの素子のレイアウトを改善することによって、各領域毎に最適な条件でエネルギー光を照射し、移動度が高いTFTと耐電圧の高い保持容量を形成することのできるアクティブマトリクス基板、それを用いた液晶表示装置、およびその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明のアクティブマトリクス基板の製造方法は、複数の走査線、および複数のデータ線の交叉に対応して設けられた薄膜トランジスタと、該薄膜トランジスタに接続する画素電極と、前記薄膜トランジスタのソース・ドレイン領域と同一の層に形成された半導体領域を第1の電極とし、前記走査線と同一の層に形成された第2の電極を有する保持容量とを備えるアクティブマトリクス基板の製造方法において、前記薄膜トランジスタのソース・ドレイン領域および前記保持容量の前記第1の電極を構成すべき半導体膜を形成した後、該半導体膜のうち、前記薄膜トランジスタを形成すべき領域にはエネルギー強度の高い第1エネルギー光を照射し、前記保持容量の前記第1の電極を形成すべき領域には前記第1エネルギー光に比較してエネルギー強度の低い第2エネルギー光を照射することを特徴とする。
さらに、前記半導体膜に照射するエネルギー光としてレーザ光のラインビームを用い、前記ラインビームの長尺方向において、前記薄膜トランジスタの形成領域と前記保持容量領域が重ならないことを特徴とする。
さらに、前記ラインビームの走査ピッチを該ラインビームの走査方向における幅寸法よりも狭くして該ラインビームを同一の領域に対して重畳しながら照射していくことを特徴とする。
【0011】
このようにレイアウトしたアクティブマトリクス基板であれば、それを製造する際には、前記TFTのソース・ドレイン領域および前記保持容量の第1の電極を構成すべき半導体膜を形成した後、該半導体膜に対してX方向に沿ってエネルギー光を照射していく際には、前記半導体膜のうち、前記TFTを形成すべき第1の領域にはエネルギー強度の高いエネルギー光を照射し、前記保持容量を形成すべき第2の領域には前記第1の領域に比較してエネルギー強度の低いエネルギー光を照射することができる。
【0012】
この場合には、たとえば、前記半導体膜に照射するエネルギー光として照射領域がY方向に延びたレーザ光のラインビームを用い、このラインビームをX方向に走査していく。
【0013】
上記形態とは反対に、X方向に延設された複数の走査線、および該走査線に対して直交するY方向に延設された複数のデータ線によって区画された各画素領域に、該データ線および前記走査線に接続するTFTと、該TFTに接続する画素電極と、前記TFTのソース・ドレイン領域と同一の層間に形成された半導体領域を第1の電極層とし、前記走査線と同一の層間に形成された電極層を第2の電極層とする保持容量とを有するアクティブマトリクス基板において、前記TFTの形成領域と前記保持容量の形成領域とはY方向にずれている構成でもよい。
【0014】
このようにレイアウトしたアクティブマトリクス基板であれば、それを製造する際には、前記TFTのソース・ドレイン領域および前記保持容量の第1の電極を構成すべき半導体膜を形成した後、該半導体膜に対してY方向に沿ってエネルギー光を照射していく際には、前記半導体膜のうち、前記TFTを形成すべき第1の領域にはエネルギー強度の高いエネルギー光を照射し、前記保持容量を形成すべき第2の領域には前記第1の領域に比較してエネルギー強度の低いエネルギー光を照射することができる。
【0015】
この場合には、たとえば、前記半導体膜に照射するエネルギー光として照射領域がX方向に延びたレーザ光のラインビームを用い、このラインビームをY方向に走査していく。
【0016】
このように、本発明では、上記のいずれの形態でも、TFTの形成領域と保持容量の形成領域とをX方向またはY方向にずらしてあるので、X方向またはY方向に沿って半導体膜にエネルギー光を照射していく際には、それに最適なエネルギー強度の光を照射できる。すなわち、TFTを形成するための半導体膜についてはエネルギー強度の高い光を照射して半導体膜の結晶性を最大限にまで高めることによって、高い移動度のTFTを製造することができる。一方、保持容量の第1の電極を形成するための半導体膜についてはそれよりエネルギー強度の低い光を照射し、半導体膜の結晶性をやや抑え気味にして表面が粗れるのを防止することによって、耐電圧の高い保持容量を製造できる。
【0017】
本発明では、上記のいずれの形態であっても、前記第2の電極層は前段のゲート線の一部、またはゲート線に並列配置された容量線の一部のいずれかが用いられる。
【0018】
ここで、ラインビームを用いる場合には、走査ピッチをラインビームの走査方向における幅寸法よりも狭くして、該ラインビームを同一の領域に対して重畳しながら照射していくことが好ましい。
【0019】
このように構成したアクティブマトリクス基板は、移動度が高くて、耐電圧の高い保持容量を有しているので、それを用いて液晶表示装置を製造した場合には、表示の品位が高くて、かつ、信頼性も高いという効果が得られる。
【0020】
【発明の実施の形態】
本発明の各実施の形態を説明する前に、各形態で共通なアクティブマトリクス基板の基本的な構成、およびそれにTFTと保持容量とを同時に形成していく基本的な工程を説明しておく。
【0021】
[アクティブマトリクス基板の基本構成]
図1(A)は、液晶表示装置のアクティブマトリクス基板の構成を模式的に示す説明図である。
【0022】
この図において、液晶表示装置1は、そのアクティブマトリクス基板2上に、X方向に延びる複数の走査線4、およびこれらの走査線4と直交するY方向に延びるデータ線3で区画形成された画素領域5を有し、そこには、画素用のTFT10を介して画像信号が入力される液晶セルの液晶容量6が構成されている。データ線3に対しては、シフトレジスタ71、レベルシフタ72、ビデオライン73、アナログスイッチ74を備えるデータドライバ部7が構成され、走査線4に対しては、シフトレジスタ81およびレベルシフタ82を備える走査ドライバ部8が構成されている。なお、画素領域5には、前段の走査線4、またはこの走査線4と並列配置される容量線(図示せず。)との間に保持容量50が形成されている。この保持容量50は液晶容量6の保持特性を向上させるためのものである。
【0023】
データドライバ部7や走査ドライバ部8では、図1(B)に2段のインバータを例示するように、N型のTFTn1、n2と、P型のTFTp1、p2とによって構成されたCMOS回路などが高密度に形成される。但し、アクティブマトリクス部9のTFT10と、データドライバ部7のTFTn1、n2やP型のTFTp1、p2とは、基本的な構造が同じであり、基本的には同じ工程中で製造される。また、保持容量50は、詳しくは後述するが、TFT10の製造工程を最大限援用して製造される。
【0024】
アクティブマトリクス基板2としては、アクティブマトリクス部9だけが基板上に構成されたもの、アクティブマトリクス部9と同じ基板上にデータドライバ部7が構成されたもの、アクティブマトリクス部9と同じ基板上に走査ドライバ部8が構成されたもの、アクティブマトリクス部9と同じ基板上にデータドライバ部7および走査ドライバ部8の双方が構成されたものがある。また、ドライバ内蔵型のアクティブマトリクス基板2であっても、データドライバ部7に含まれるシフトレジスタ71、レベルシフタ72、ビデオライン73、アナログスイッチ74等の全てがアクティブマトリクス基板2上に構成された完全ドライバ内蔵タイプと、それらの一部がアクティブマトリクス基板2上に構成された部分ドライバ内蔵タイプとがあるが、いずれに対しても本発明を適用できる。
【0025】
図2は、アクティブマトリクス基板2の画素領域5に形成されているTFT10および保持容量50を模式的に示す断面図である。
【0026】
これらの図において、いずれの画素領域5でも、TFT10は、基板20上において、データ線3に対して層間絶縁膜16のコンタクトホール17を介して電気的接続するソース領域11、画素電極19に対して層間絶縁膜16のコンタクトホール18を介して電気的接続するドレイン領域12、ドレイン領域12とソース領域11との間にチャネルを形成するためのチャネル領域13、およびチャネル領域13に対してゲート絶縁膜14を介して対峙するゲート電極15から構成されている。ゲート電極15は走査線4の一部として構成されている。なお、基板20の表面側には、シリコン酸化膜からなる下地保護膜21が形成されている。
【0027】
また、保持容量50の側では、TFT10の能動層(ソース領域11、チャネル領域13、およびドレイン領域12)を構成する半導体膜と同時形成された半導体膜から形成されて、これらの領域と同一の層間に位置する第1の電極層51、この表面側にゲート絶縁膜14と同時形成されて、この絶縁膜と同一の層間に位置する誘電体膜54と、この表面側にゲート電極15や走査線4と同時形成されて、これらの電極や配線と同一の層間に位置する第2の電極層55とが構成されている。
【0028】
[アクティブマトリクス基板2の製造方法の基本構成]
図3を参照して、TFT10および保持容量50の製造方法の基本的な工程を説明しておく。
【0029】
(下地保護膜形成工程)
図3(A)において、まず、300mm角の無アルカリガラス板などからなる基板20の表面に、ECR−PECVD法により250℃〜300℃の温度条件下で、下地保護膜21となる膜厚が200nmのシリコン酸化膜を形成する。シリコン酸化膜は、APCVD法でも形成でき、この場合には、基板20の温度を250℃から450℃までの範囲に設定した状態で、モノシラン及び酸素を原料ガスとしてシリコン酸化膜を形成する。
【0030】
(半導体膜堆積工程)
次に、下地保護膜21の表面に真性のシリコン膜30(半導体膜)を50nm程度堆積する。本例では、高真空型LPCVD装置を用いて、原料ガスであるジシランを200SCCM流しながら、425℃の堆積温度でアモルファスのシリコン膜30を堆積する。なお、シリコン膜30の形成にあたっては、PECVD法やスパッタ法を用いてもよく、これらの方法によれば、その成膜温度を室温から350℃までの範囲に設定することができる。
【0031】
(レーザ溶融結晶化法によるアニール工程)
次に、図3(B)に示すように、アモルファスのシリコン膜30にレーザ光を照射してアモルファスのシリコン膜30を多結晶シリコンに改質する。本例では、たとえば、キセノン・クロライド(XeCl)のエキシマ・レーザ(波長が308nm)を照射する。この工程において、レーザ照射は、基板20を室温(25℃)とし、真空雰囲気中または不活性ガス雰囲気中で行なう。
【0032】
本発明では、このアニール工程を行う際に、基板20の全面に形成したシリコン膜30のうち、TFT10の形成領域TAと保持容量50の形成領域CAとの間で、異なるエネルギー強度でレーザ光の照射を行うが、その詳細な説明は実施の形態毎に後述する。
【0033】
なお、アニール工程を行うにあたっては、上記の例では基板20に形成されたシリコン膜30の全面にレーザ光を照射したが、TFT10の形成領域TAおよび保持容量50の形成領域CAだけに選択的にレーザ照射を行い、レーザアニール時間を短縮してもよい。
【0034】
(シリコン膜のパターニング工程)
次に、図3(C)に示すように、アニール工程を行なったシリコン膜30を、フォトリソグラフィ技術を用いてパターニングを行い、TFT10の形成領域TA、および保持容量50の形成領域CAに島状のシリコン膜30をそれぞれ形成する。なお、前記のアニール工程をこのパターニング工程を行った後に行ってもよい。
【0035】
(ゲート絶縁膜の形成工程)
次に、図3(D)に示すように、ECR−PECVD法により250℃〜300℃の温度条件下で、シリコン膜30に対してシリコン酸化膜からなるゲート酸化膜14および誘電体膜54を形成する。
【0036】
(保持容量50の第1の電極層51の形成工程)
次に、TFT10の形成領域TAの側のシリコン膜30をレジストマスク33で覆い、この状態で保持容量50の形成領域CAのシリコン膜30に対して高濃度の不純物を導入してそれを導電化し、第1の電極層51とする。
【0037】
(ゲート電極形成工程)
次に、ゲート酸化膜14の表面側に膜厚が600nmのタンタル薄膜をスパッタ法により形成した後、図3(E)に示すように、それをフォトリソグラフィ技術を用いてパターニングし、ゲート電極15および第2の電極層55を形成する。本例では、タンタル薄膜を形成する際に、基板温度を180℃に設定し、スパッタガスとして窒素ガスを6.7%含むアルゴンガスを用いる。このように形成したタンタル薄膜は、結晶構造がα構造であり、その比抵抗が小さい。
【0038】
(不純物導入工程)
次に、バケット型質量非分離型のイオン注入装置(イオンドーピング装置)を用いて、ゲート電極15をマスクとしてTFT10の形成領域TAの側のシリコン膜30に不純物イオンを打ち込む。Nチャネル型のTFTを形成する場合には、原料ガスとして、水素ガスで濃度が5%となるように希釈したホスフィンなどを用いる。その結果、ゲート電極15に対してセルフアライン的にソース領域11およびドレイン領域12が形成される。このとき、シリコン膜30のうち、不純物イオンが打ち込まれなかった部分がチャネル領域13となる。
【0039】
なお、Pチャネル型のTFTを形成する場合には、原料ガスとして、水素ガスで濃度が5%となるように希釈したジボランなどを用いる。
【0040】
(層間絶縁膜の形成工程)
次に、図3(F)に示すように、PECVD法により250℃〜300℃の温度条件下で、層間絶縁膜16としての膜厚が50nmのシリコン酸化膜を形成する。このときの原料ガスは、TEOSと酸素とである。基板温度は、250℃〜300℃である。
【0041】
(活性化工程)
次に、酸素雰囲気下で300℃、1時間の熱処理を行ない、注入したリンイオンの活性化と、層間絶縁膜16の改質とを行なう。
【0042】
(配線工程)
次に、層間絶縁膜16にコンタクトホール17、18を形成する。しかる後に、コンタクトホール17、18を介して、図2に示すように、ソース電極(データ線3)をソース領域11に電気的に接続し、ドレイン電極(画素電極19)をドレイン領域12に電気的に接続し、TFT10を形成する。
【0043】
なお、上記の製造方法は、TFT10をセルフアライン構造として製造する例であったが、TFT10をLDD構造あるいはオフセットゲート構造で製造する場合でも本発明を適用できる。この場合の構造や製造方法についての説明を省略するが、レジストマスクやサイドウォールを利用して、ソース・ドレイン領域のうち、ゲート電極15の端部に対峙する部分には低濃度ソース・ドレイン領域(LDD領域)、あるいはオフセット領域を形成する。
【0044】
[レーザ照射時のエネルギー強度と膜質]
本発明の実施の形態を説明する前に、図3(C)を参照して説明したアニール工程において、アモルファスのシリコン膜30に照射したレーザ光のエネルギー密度(エネルギー強度)と、レーザ照射後の膜質との関係を、図4ないし図6を参照して説明しておく。
【0045】
本発明のいずれの形態でも、後述するように、アモルファスのシリコン膜をレーザ溶融結晶化法により多結晶化させるが、このレーザ溶融結晶化法では、図4に示すように、エネルギー密度Eを増加させていくと、「▲」および一点鎖線L1で示すEc 以上でシリコン膜に溶融凝固が起きて多結晶化する。ここで、エネルギー密度Eを増加させるほど、その多結晶化が進むが、エネルギー密度Eが「□」および点線L2で示すEa を越えるとシリコン膜は微結晶化し、移動度の低下が起きてしまう。また、シリコン膜の膜厚が薄い場合には、エネルギー密度EがEa を越えなくても、エネルギー密度Eが「○」および二点鎖線L3で示すEbを越えると、アモルファスシリコン膜に戻ってしまう。なお、エネルギー密度Eが「□」および実線L4で示すEdを越えると、シリコン膜は蒸発してしまう。
【0046】
また、パルス発振レーザ光のエネルギー密度Eを変えたときのシリコン膜の結晶性を図5に「○」および実線L13で示す。図5の縦軸は、ラマンピークの半値幅であるから、その値が小さいほど、結晶性が高いことを表す。これらの結果を比較してわかるように、レーザ溶融結晶化では、エネルギー密度Eの最高値を上限値Ea にかなり近い値に設定すれば、その結晶性を高めることができる。なお、ラマンピークの半値幅が上限値Ea をわずかに越えた付近で跳ね上がっているのは、シリコン膜に微結晶化が起きているためである。
【0047】
同じく、エネルギー密度Eを変化させたときのシリコン膜表面の粗さを、図6に「○」および実線L23で示す。ここで、図6の縦軸は、測定領域内の平均面における最大値と最小値の差であるから、その値が大きいほど、表面が粗れていることを表す。これらの結果を比較してわかるように、エネルギー密度を高めるほど、シリコン膜の表面に粗れが発生する。そして、微結晶化を起こすと、表面の粗れはおさまるが、シリコン膜は一度、溶融しており、その間に一部、蒸発したシリコンがアニール装置の光学部品に悪影響を及ぼす。
【0048】
ここで、アモルファスのシリコン膜からTFT10および保持容量50(図2および図3を参照。)を形成するには、TFT10の方では、シリコン膜30の表面に粗れが発生しても、結晶性を可能な限り高め、高い移動度を得たい。これに対して、保持容量50の方では、結晶性が多少低くても、表面の粗れを抑えて、高い耐電圧を得たい。しかるに、図9に示した従来のレイアウトでは、TFT10の形成領域TAと保持容量50の形成領域CAがX方向およびY方向のいずれの方向においても重なっているため、各領域毎にレーザ光照射時のエネルギー強度を変えることができない。
【0049】
そこで、本発明では、以下に各形態を説明するように、TFT10の形成領域TAと保持容量50の形成領域CAをX方向またはY方向にずらすことよって、各領域毎に最適なエネルギー強度でレーザ光を照射できるようにしてある。
【0050】
[実施の形態1]
図7は、本形態のアクティブマトリクス基板2において画素領域5が形成されているアクティブマトリクス部の一部を拡大して示す平面図であり、この図では、シリコン膜30(半導体膜)および走査線4の形成領域を分かりやすくするため、データ線や画素電極を省略してある。
【0051】
図7において、本形態のアクティブマトリクス基板2では、X方向に延設された複数の走査線4、および該走査線4に対して直交するY方向に延設された複数のデータ線(図示せず。)によって区画された各画素領域5には、データ線および走査線4に接続するTFT10と、このTFT10に接続する画素電極(図示せず。)とが形成されている。
【0052】
また、各画素領域5には、TFT10のソース領域11およびドレイン領域12と同一の層間に形成されたシリコン膜からなる第1の電極層51と、走査線4から−Y方向に張り出した延設部分40からなる第2の電極層55との重なり部分によって保持容量50が形成されている。
【0053】
ここで、ソース領域11、チャネル領域13、ドレイン領域12、および第1の電極層51を構成するシリコン膜30は、TFT10の形成領域TAから+X方向に延びた後、走査線4から直角に張り出した第2の電極層55(延設部分40)に沿って直角に折れ曲がって+Y方向に延び、しかる後に、隣接する画素領域5に向かって+X方向に延びている。但し、シリコン膜30は、隣接する画素領域5に向かって+X方向に延びているといっても、隣接する画素領域5のTFT10のソース領域11とはX方向において重なっていない。
【0054】
すなわち、X方向におけるTFT10の形成領域TAの範囲は矢印TXで表され、X方向における保持容量50の形成領域CAの範囲は矢印CXで表され、これらの形成領域TA、CAはX方向において完全にずれている。
【0055】
そこで、本形態のアクティブマトリクス基板2では、図3(A)を参照して説明した半導体膜堆積工程において、TFT10のソース領域11、チャネル領域13、ドレイン領域12、および保持容量50の第1の電極層51を構成すべきアモルファスのシリコン膜30を形成した後、このアモルファスのシリコン膜30に対して、図3(B)を参照して説明したアニール工程を行う際には、まず、アモルファスのシリコン膜30に対して+X方向に沿って順次、レーザ光を照射していく。このとき、シリコン膜30のうち、TFT30の形成領域TAにはエネルギー強度の高いレーザ光を照射し、保持容量50の形成領域CAにはTFT30の形成領域TAに比較してエネルギー強度の低いレーザ光を照射する。
【0056】
ここで照射するレーザ光はいずれのエネルギー強度であっても、図4に示す関係において、アモルファスのシリコン膜30を多結晶シリコンに転移可能なエネルギー強度であって、かつ、TFT30の形成領域TAには図4中(H)と記した高エネルギーレベルのレーザ光を照射し、保持容量50の形成領域CAには図4中(L)と記した低エネルギーレベルのレーザ光を照射する。
【0057】
このようにしてレーザ光の照射を行うにあたっては、たとえば、図7に示すように、アモルファスのシリコン膜30に対してY方向に延びたレーザ光のラインビームLBを照射し、それを+X方向に走査していく際に、TFT30の形成領域TAを照射する際にはレーザ光源の出力を高め、保持容量50の形成領域CAを照射する際にはレーザ光源の出力を低くする。ここで、ラインビームLBの走査ピッチを該ラインビームLBの走査方向における幅寸法(X方向における幅)よりも狭くして該ラインビームを同一の領域に対して重畳しながら照射していく。このように照射すると、アモルファスのシリコン膜30は隙間なく均一に多結晶シリコンとなる。
【0058】
このように、本形態では、TFT10の形成領域TAと保持容量50の形成領域CAとをX方向にずらしてあるため、各領域に最適なエネルギー強度のレーザ光を照射できるので、TFT10を形成するためのアモルファスのシリコン膜30についてはエネルギー強度の高いレーザ光を照射してシリコン膜30の結晶性を最大限にまで高めることにより、高い移動度のTFT10を製造することができる。一方、保持容量50の第1の電極層51を形成するためのアモルファスのシリコン膜30についてはそれよりエネルギー強度の低いレーザ光を照射してシリコン膜30の結晶性をやや抑え気味にし、表面が粗れるのを防止することにより、耐電圧の高い保持容量50を製造できる。それ故、本形態に係るアクティブマトリクス基板2は、移動度が高いTFT10と、耐電圧の高い保持容量50とが構成されているので、それを用いて液晶表示装置1を製造した場合には表示の品位が高く、かつ、信頼性も高い。
【0059】
[実施の形態2]
図8は、本形態のアクティブマトリクス基板において画素領域が形成されているアクティブマトリクス部の一部を拡大して示す平面図であり、この図でも、シリコン膜30(半導体膜)、走査線4、および容量線の形成領域を分かりやすくするため、データ線や画素電極を省略してある。なお、本形態では、実施の形態1と基本的な構造が同一であるため、対応する部分には同一の符合を付して、それらの説明を省略する。
【0060】
図8において、本形態のアクティブマトリクス基板2でも、各画素領域5に、データ線および走査線4に接続するTFT10と、このTFT10に接続する画素電極(図示せず。)とが形成されている。また、各画素領域5には、TFT10のソース領域11およびドレイン領域12と同一の層間に形成されたシリコン膜(半導体膜)からなる第1の電極層51と、容量線4AおよびそれからY方向に張り出した延設部分40Aからなる第2の電極層55との重なり部分によって保持容量50が形成されている。ここで、容量線4Aは、走査線4と全く同一の方法で形成され、走査線4に対して並列配置されている。
【0061】
本形態では、各画素領域5において、ソース領域11、チャネル領域13、ドレイン領域12、および第1の電極層51を構成するシリコン膜30は、TFT10の形成領域TAから+Y方向にわずかに延びた後、容量線4に沿って+X方向に延び、しかる後に、容量線4から直角に張り出した延設部分4Aに沿って直角に折れ曲がって+Y方向に延びている。ここで、容量線4およびその延設部分4Aのうち、シリコン膜30と重なっている部分が保持容量50の第2の電極層55に相当する。
【0062】
このように形成した画素領域5において、Y方向におけるTFT10の形成領域TAの範囲は矢印TYで表され、Y方向における保持容量50の形成領域CAの範囲は矢印CYで表され、これらの形成領域TA、CAはY方向において完全にずれている。
【0063】
そこで、本形態のアクティブマトリクス基板2では、図3(A)を参照して説明した半導体膜堆積工程において、TFT10のソース領域11、チャネル領域13、ドレイン領域12、および保持容量50の第1の電極層51を構成すべきアモルファスのシリコン膜30を形成した後、このアモルファスのシリコン膜30に対して、図3(B)を参照して説明したアニール工程を行う際には、アモルファスのシリコン膜30に対して−Y方向に沿って順次、レーザ光を照射していく。このとき、シリコン膜30のうち、TFT30の形成領域TAにはエネルギー強度の高いレーザ光を照射し、保持容量50の形成領域CAにはTFT30の形成領域TAに比較してエネルギー強度の低いレーザ光を照射する。
【0064】
ここで照射するレーザ光はいずれのエネルギー強度であっても、図4に示す関係において、アモルファスのシリコン膜30を多結晶シリコンに転移可能なエネルギー強度であって、かつ、TFT30の形成領域TAには図4中(H)と記した高エネルギーレベルのレーザ光を照射し、保持容量50の形成領域CAには図4中(L)と記した低エネルギーレベルのレーザ光を照射する。
【0065】
このようにしてレーザ光の照射を行うにあたっては、たとえば、図8に示すように、アモルファスのシリコン膜30に対してX方向に延びたレーザ光のラインビームLBを照射し、それを−Y方向に走査していく際に、TFT30の形成領域TAを照射する際にはレーザ光源の出力を高め、保持容量50の形成領域CAを照射する際にはレーザ光源の出力を低くする。ここで、ラインビームLBの走査ピッチを該ラインビームLBの走査方向における幅寸法(Y方向における幅)よりも狭くして該ラインビームを同一の領域に対して重畳しながら照射していく。このように照射すると、アモルファスのシリコン膜30は隙間なく均一に多結晶シリコンとなる。
【0066】
このように、本形態では、TFT10の形成領域TAと保持容量50の形成領域CAとをY方向にずらしてあるため、各領域に最適なエネルギー強度のレーザ光を照射できるので、実施の形態1と同様、高い移動度のTFT10と耐電圧の高い保持容量50とを製造できる。それ故、本形態に係るアクティブマトリクス基板2は、移動度が高いTFT10と、耐電圧の高い保持容量50とが構成されているので、それを用いて液晶表示装置1を製造した場合には表示の品位が高く、かつ、信頼性も高い。
【0067】
[その他の実施の形態]
なお、上記のように各画素領域が完全な格子状に配置されていなくても、あくまでTFTの形成領域と保持容量の形成領域とがX方向またはY方向にずれておれば、本発明を適用できる。また、エネルギー光を照射する半導体膜としてはアモルファスのシリコン膜に限らず、結晶化シリコン膜にエネルギー光を照射して再結晶化させ、その結晶性を高めるのに本発明を適用してもよい。エネルギー光としてはレーザ光に限らず、急速熱処理用のランプ光を用いる場合に本発明を適用してもよい。
【0068】
【発明の効果】
以上説明したように、本発明に係るアクティブマトリクス基板では、各画素領域においてTFTの形成領域と保持容量の形成領域とをX方向またはY方向にずらしてあるので、X方向またはY方向に沿って半導体膜にエネルギー光を照射していく際には、それに最適なエネルギー強度の光を照射できる。すなわち、TFTを形成するための半導体膜についてはエネルギー強度の高い光を照射して半導体膜の結晶性を最大限にまで高めることによって、高い移動度のTFTを製造することができる。一方、保持容量の第1の電極を形成するための半導体膜についてはそれよりエネルギー強度の低い光を照射し、半導体膜の結晶性をやや抑え気味にして表面が粗れるのを防止することによって、耐電圧の高い保持容量を製造できる。
【図面の簡単な説明】
【図1】(A)は、液晶表示装置のアクティブマトリクス基板を模式的に示す説明図、(B)は、その駆動回路に用いたCMOS回路の説明図である。
【図2】アクティブマトリクス基板の画素領域に形成したTFTおよび保持容量の断面図である。
【図3】図2に示すTFTおよび保持容量の製造方法を示す工程断面図である。
【図4】レーザ溶融結晶化におけるエネルギー密度とシリコン膜に起きる変化との関係を示す説明図である。
【図5】レーザ溶融結晶化におけるエネルギー密度と結晶性の関係を示すグラフである。
【図6】レーザ溶融結晶化におけるエネルギー密度と表面粗さの関係を示すグラフである。
【図7】本発明の実施の形態1に係るアクティブマトリクス基板上の画素領域を拡大して、TFTと保持容量の配置関係を模式的に示す平面図である。
【図8】本発明の実施の形態2に係るアクティブマトリクス基板上の画素領域を拡大して、TFTと保持容量の配置関係を模式的に示す平面図である。
【図9】従来のアクティブマトリクス基板上の画素領域を拡大して、TFTと保持容量の配置関係を模式的に示す平面図である。
【符号の説明】
1 液晶表示装置
2 アクティブマトリクス基板
3 データ線
4 走査線
4A 容量線
5 画素領域
6 液晶容量
9 アクティブマトリクス部
10 TFT
11 ソース領域
12 ドレイン領域
13 チャネル領域
14 ゲート絶縁膜
15 ゲート電極
30 シリコン膜(半導体膜)
50 保持容量
51 第1の電極層
54 誘電体膜
55 第2の電極層
TA TFTの形成領域
CA 保持容量の形成領域
LB ラインビーム(レーザ光)

Claims (3)

  1. 複数の走査線、および複数のデータ線の交叉に対応して設けられた薄膜トランジスタと、該薄膜トランジスタに接続する画素電極と、前記薄膜トランジスタのソース・ドレイン領域と同一の層に形成された半導体領域を第1の電極とし、前記走査線と同一の層に形成された第2の電極を有する保持容量とを備えるアクティブマトリクス基板の製造方法において、
    前記薄膜トランジスタのソース・ドレイン領域および前記保持容量の前記第1の電極を構成すべき半導体膜を形成した後、該半導体膜のうち、前記薄膜トランジスタを形成すべき領域にはエネルギー強度の高い第1エネルギー光を照射し、前記保持容量の前記第1の電極を形成すべき領域には前記第1エネルギー光に比較してエネルギー強度の低い第2エネルギー光を照射することを特徴とするアクティブマトリクス基板の製造方法。
  2. 請求項1において、前記半導体膜に照射するエネルギー光としてレーザ光のラインビームを用い、
    前記ラインビームの長尺方向において、前記薄膜トランジスタの形成領域と前記保持容量領域が重ならないことを特徴とするアクティブマトリクス基板の製造方法。
  3. 請求項2において、前記ラインビームの走査ピッチを該ラインビームの走査方向における幅寸法よりも狭くして該ラインビームを同一の領域に対して重畳しながら照射していくことを特徴とするアクティブマトリクス基板の製造方法。
JP7624297A 1997-03-27 1997-03-27 アクティブマトリクス基板の製造方法 Expired - Fee Related JP3644185B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7624297A JP3644185B2 (ja) 1997-03-27 1997-03-27 アクティブマトリクス基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7624297A JP3644185B2 (ja) 1997-03-27 1997-03-27 アクティブマトリクス基板の製造方法

Publications (2)

Publication Number Publication Date
JPH10268341A JPH10268341A (ja) 1998-10-09
JP3644185B2 true JP3644185B2 (ja) 2005-04-27

Family

ID=13599722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7624297A Expired - Fee Related JP3644185B2 (ja) 1997-03-27 1997-03-27 アクティブマトリクス基板の製造方法

Country Status (1)

Country Link
JP (1) JP3644185B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058310A3 (en) * 1999-06-02 2009-11-18 Sel Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101820776B1 (ko) 2010-02-19 2018-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치

Also Published As

Publication number Publication date
JPH10268341A (ja) 1998-10-09

Similar Documents

Publication Publication Date Title
US6492213B1 (en) Semiconductor device, thin film transistor and method for producing the same, and liquid crystal display apparatus and method for producing the same
US5508216A (en) Thin film transistor, solid device, display device and manufacturing method of a thin film transistor
JP3870420B2 (ja) アクティブマトリクス基板の製造方法、エレクトロルミネッセンス装置の製造方法、表示装置の製造方法、及び電子機器の製造方法
JP4032443B2 (ja) 薄膜トランジスタ、回路、アクティブマトリクス基板、液晶表示装置
JP4436469B2 (ja) 半導体装置
US20010052598A1 (en) Display device and semiconductor device having laser annealed semiconductor elements
US7011911B2 (en) Mask for polycrystallization and method of manufacturing thin film transistor using polycrystallization mask
JP3325992B2 (ja) 半導体装置の作製方法
US7223504B2 (en) Crystallization mask, crystallization method, and method of manufacturing thin film transistor including crystallized semiconductor
JPH09107102A (ja) 薄膜トランジスタ及びその製造方法
US20030143377A1 (en) Display apparatus having a light shielding layer
JP3477969B2 (ja) アクティブマトリクス基板の製造方法及び液晶表示装置
JP3644185B2 (ja) アクティブマトリクス基板の製造方法
US20020158248A1 (en) Thin-film transistor and its manufacturing method
US20050148119A1 (en) Method of manufacturing thin film transistor, method of manufacturing flat panel display, thin film transistor, and flat panel display
JP3840697B2 (ja) 半導体装置の製造方法、アクティブマトリクス基板の製造方法、および液晶表示装置の製造方法
JP3580104B2 (ja) アクティブマトリクス基板およびその製造方法、並びに液晶表示装置
JP3528577B2 (ja) 半導体装置の製造方法及びアニール装置
JP2000340503A (ja) 半導体膜の製造方法、薄膜トランジスタの製造方法、アクティブマトリクス基板
JP3861997B2 (ja) 薄膜トランジスタの製造方法
JPH0927624A (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法及び液晶ディスプレイ
JPH0974201A (ja) 薄膜トランジスタの製造方法及び液晶ディスプレイ
JP3645100B2 (ja) 相補型回路、周辺回路、アクティブマトリックス基板及び電子機器
JPH09199417A (ja) 半導体膜の結晶化方法、アクティブマトリクス基板、液晶表示装置及びアニール装置
JPH11160736A (ja) アクティブマトリクス装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees