JP3637717B2 - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP3637717B2
JP3637717B2 JP01918197A JP1918197A JP3637717B2 JP 3637717 B2 JP3637717 B2 JP 3637717B2 JP 01918197 A JP01918197 A JP 01918197A JP 1918197 A JP1918197 A JP 1918197A JP 3637717 B2 JP3637717 B2 JP 3637717B2
Authority
JP
Japan
Prior art keywords
fuel
air
fuel ratio
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01918197A
Other languages
English (en)
Other versions
JPH10212992A (ja
Inventor
芳樹 中條
義彦 兵道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP01918197A priority Critical patent/JP3637717B2/ja
Publication of JPH10212992A publication Critical patent/JPH10212992A/ja
Application granted granted Critical
Publication of JP3637717B2 publication Critical patent/JP3637717B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の空燃比制御装置に係り、特に、燃料タンクに発生する蒸発燃料を捕獲するキャニスタを備える内燃機関に供給される混合気の空燃比を制御する装置として好適な内燃機関の空燃比制御装置に関する。
【0002】
【従来の技術】
従来より、例えば特開昭61−129454号に開示される如く、燃料タンクに発生する蒸発燃料を捕獲するキャニスタを備える内燃機関が知られている。上記従来の内燃機関は、キャニスタと吸気通路との導通状態を制御するパージ制御弁を備えていると共に、吸気通路内に燃料を噴射する燃料噴射弁、および、排気通路内を流通する排気ガス中の酸素濃度を検出するO2 センサを備えている。
【0003】
内燃機関の運転中は、吸気通路内に吸気負圧が発生する。吸気通路内に発生する吸気負圧は、パージ制御弁が開弁されることによりキャニスタに導かれる。キャニスタに捕獲されている燃料は、キャニスタに吸気負圧が導かれることにより吸気通路内にパージされる。従って、上記従来の内燃機関においては、パージ制御弁の開度に応じた燃料が、キャニスタから吸気通路の内部へパージされる。
【0004】
排気通路を流通する排気ガス中の酸素濃度は、内燃機関に供給される混合気が燃料リッチであるほど希薄となり、その混合気が燃料リーンとなるほど濃厚となる。従って、上記従来の内燃機関によれば、O2 センサの出力信号に基づいて混合気の空燃比を検出することができる。
【0005】
上記従来の内燃機関は、O2 センサの出力信号に基づいて検出される混合気の空燃比が目標の空燃比と一致するように、パージ制御弁および燃料噴射弁を制御する。このため、上記従来の内燃機関によれば、混合気の空燃比を目標の空燃比に一致させながら、キャニスタに捕獲されている燃料を適当にパージさせることができる。
【0006】
【発明が解決しようとする課題】
キャニスタは、付与された容量の燃料を捕獲することで飽和状態となる。キャニスタが飽和状態となると、その後、燃料タンク内で発生する蒸発燃料をキャニスタで捕獲することができなくなる。従って、蒸発燃料を効率良く捕獲して燃料として消費するためには、キャニスタを飽和状態としないことが望ましい。
【0007】
キャニスタを飽和状態としないためには、内燃機関の運転中に、キャニスタに捕獲されている燃料を速やかに吸気通路内にパージさせることが有効である。従って、蒸発燃料を効率良く捕獲して燃料として消費するためには、内燃機関の運転中に多量の燃料がキャニスタからパージされることが望ましい。
【0008】
しかしながら、上記従来の内燃機関においては、燃料噴射弁から噴射される燃料の量と、キャニスタからパージされる燃料の量とを、混合気の空燃比に基づいて同様に増減させる制御手法が用いられている。つまり、上記従来の内燃機関においては、更に多量に燃料をパージすることができる状況下であっても、キャニスタからパージされる燃料と、燃料噴射弁から噴射される燃料とを合わせて目標の空燃比を実現するための燃料を賄う制御手法が用いられている。この点、上記従来の内燃機関は、蒸発燃料の捕獲能力を更に高める余地を残したものであった。
【0009】
本発明は、上述の点に鑑みてなされたものであり、燃料噴射弁によって噴射される燃料に比して、キャニスタからパージされる燃料を優先的に内燃機関に供給することにより、蒸発燃料を捕獲して有効に利用することに関して優れた能力を発揮する内燃機関の空燃比制御装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的は、請求項1に記載する如く、内燃機関に供給される混合気の空燃比を制御する内燃機関の空燃比制御装置において、
内燃機関に対して燃料を噴射する燃料噴射弁と、
燃料タンク内に発生する蒸発燃料を捕獲するキャニスタと、
内燃機関の吸気通路と前記キャニスタとの導通状態を制御するパージ制御弁と、
空気と燃料の混合気の空燃比を検出する空燃比検出手段と、
前記空燃比検出手段によって検出される空燃比に基づいて、内燃機関に供給される混合気の空燃比が所定空燃比となるように、かつ、前記キャニスタに捕獲されている燃料が優先的に内燃機関に供給されるように、前記パージ制御弁および前記燃料噴射弁を制御する空燃比制御手段と、
を備え、
前記空燃比制御手段が、内燃機関に供給される混合気の空燃比が所定空燃比に比してリッチである場合に、前記燃料噴射弁から噴射される燃料の量を、前記キャニスタからパージされる燃料に比して優先的に減量させる噴射量減量手段と、
内燃機関に供給される混合気の空燃比が所定空燃比に比してリーンである場合に、前記キャニスタからパージされる燃料を、前記燃料噴射弁から噴射される燃料の量に比して優先的に増量させるパージ量増量手段と、
を備える内燃機関の空燃比制御装置により達成される。
【0011】
本発明において、燃料タンク内に発生する蒸発燃料は、キャニスタに捕獲された後、内燃機関の運転中に吸気通路にパージされる。キャニスタから吸気通路にパージされる燃料の量は、キャニスタに捕獲されている燃料の量、および、パージ制御弁の開度に応じて変化する。空燃比制御手段は、パージ制御弁と燃料噴射弁とを制御することにより、内燃機関に供給される混合気の空燃比を所定空燃比に制御する。この際、空燃比制御手段は、キャニスタ内の燃料が優先的に内燃機関に供給されるようにパージ制御弁および燃料噴射弁を制御する。具体的には、内燃機関に供給される混合気が燃料リッチである場合は、燃料噴射弁から噴射される燃料を優先的に減量させ、一方、内燃機関に供給される混合気が燃料リーンである場合は、キャニスタからパージされる燃料の量を優先的に増量させる。キャニスタおよび燃料噴射弁が上記の如く制御されると、キャニスタに捕獲されている燃料のパージ量が、空燃比を燃料リッチとしない最大の値に制御されると共に、燃料噴射弁から噴射される燃料の量が、空燃比を燃料リーンとしない最小の値に制御されるので、キャニスタから吸気通路へ、多量の燃料を効率良くパージさせることができる。
【0012】
上記の目的は、請求項2に記載する如く、上記請求項1記載の内燃機関の空燃比制御装置において、
前記空燃比制御手段が、更に、前記パージ制御弁を全開状態としても、該所定空燃比を実現するために必要な量の燃料を前記キャニスタからパージすることができない場合には、前記燃料噴射弁から噴射される燃料の量をその不足分を補う量だけ増量させる噴射量増量手段を備える内燃機関の空燃比制御装置によっても達成される。
【0013】
本発明において、パージ制御弁を全開状態に制御してもそのキャニスタからの燃料では所定空燃比を実現するために必要な量の燃料が不足するときには、燃料噴射弁から噴射される燃料がその不足分を補う量だけ増量される。上記の処理によれば、キャニスタから多量の燃料をパージさせながら、空燃比を精度よく所定空燃比に制御することができる。
【0014】
また、請求項3に記載する如く、上記請求項1および請求項2の何れか1項記載の内燃機関の空燃比制御装置において、
前記空燃比検出手段が、前記吸気通路内に配設され、該吸気通路内を流通する空気の量と、前記キャニスタからパージされる燃料の量との比に応じた信号を出力する吸気側空燃比センサを備える内燃機関の空燃比制御装置は、キャニスタから多量の燃料をパージさせながら、精度良く空燃比を制御するうえで有効である。
【0015】
本発明において、空燃比センサは、吸気通路内に吸入された空気と、キャニスタからパージされる燃料とで生成される混合気の空燃比を検出する。空燃比センサは、吸気通路内に配設されている。このため、空燃比センサは、上記の空燃比を優れた応答性の下に正確に検出する。キャニスタから内燃機関に対して多量の燃料がパージされている場合、そのパージ量の変化に伴って、内燃機関に供給される混合気の空燃比に大きな変化が生ずる。本発明においては、パージ量の変化を速やかに検出して、優れた応答性の下に空燃比制御を行うことができる。
【0016】
【発明の実施の形態】
図1は、本発明の一実施例に対応する空燃比制御装置を搭載する内燃機関10のシステム構成図を示す。内燃機関10は、電子制御ユニット12(以下、ECU12と称す)によって制御されている。内燃機関10は、シリンダブロック14を備えている。シリンダブロック14には、ウォータージャケット16が形成されている。ウォータージャケット16の内部には、内燃機関10の運転中、冷却水が循環する。
【0017】
シリンダブロック14には、また、その先端部がウォータージャケット16に露出するように水温センサ18が配設されている。水温センサ18は、冷却水温THWに応じた電気信号を出力する。水温センサ18の出力信号は、ECU12に供給されている。ECU12は、水温センサ18から供給される信号に基づいて冷却水温THWを演算する。
【0018】
シリンダブロック14の内部にはピストン20が摺動可能に配設されている。また、シリンダブロック14の上部にはシリンダヘッド22が固定されている。内燃機関10の内部には、シリンダブロック14の内壁、ピストン20の上面、およびシリンダヘッド22の底面によって燃焼室24が隔成されている。
【0019】
シリンダヘッド22には、燃焼室24に連通する吸気ポート26および排気ポート24が形成されている。また、シリンダヘッド22には、これら吸気ポート26および排気ポート28を導通状態または遮断状態とする吸気バルブ30および排気バルブ31が組み込まれている。
【0020】
吸気ポート26には、吸気マニホールド32が連通している。吸気マニホールド32には、その内部に燃料を噴射する燃料噴射弁33が配設されている。燃料噴射弁33は、内燃機関10の各気筒に対応して設けられている。燃料噴射弁33には、燃料タンク34から所定の圧力で燃料が供給されている。燃料噴射弁33は、ECU12から駆動信号が供給されている間のみ開弁して、その先端部から吸気マニホールド32の内部に所定圧力で燃料を噴射する。吸気マニホールド32には、燃料噴射弁33の開弁時間、すなわち、ECU12から燃料噴射弁33に供給される駆動信号の時間長に応じた量の燃料が噴射される。以下、この時間長を燃料噴射時間TAUと称す。
【0021】
吸気マニホールド32には、吸気側空燃比センサ35が配設されている。吸気側空燃比センサ35の内部には、酸素濃度に応じた電気信号を出力する酸素濃度センサ、および、酸素濃度センサを加熱するヒータが設けられている。また、吸気側空燃比センサ35には、吸気マニホールド32を流通する空気を酸素濃度センサの周囲に導くための貫通孔(図示せず)が設けられている。
【0022】
吸気側空燃比センサ35のヒータは、内燃機関10の運転中常に、酸素濃度センサを加熱している。このため、酸素濃度センサの周囲に空気と燃料の混合気が導かれると、その混合気は、酸素濃度センサの周囲で燃焼する。酸素濃度センサの周囲で混合気が燃焼すると、酸素濃度センサの周囲には、混合気の空燃比に応じた酸素濃度が発生する。そして、酸素濃度センサは、その酸素濃度に応じた電気信号を出力する。従って、酸素濃度センサの出力信号、すなわち、吸気側空燃比センサ35の出力信号によれば、吸気マニホールド32の内部を流通する混合気の空燃比を検出することができる。吸気側空燃比センサ35の出力信号は、ECU12に供給されている。ECU12は、吸気側空燃比センサ35の出力信号に基づいて、吸気マニホールド32の内部を流通する混合気の空燃比を検出する。
【0023】
吸気マニホールド32は、サージタンク36に連通している。サージタンク36には、パージ通路37が連通している。パージ通路37には、パージ制御弁38が配設されている。パージ制御弁38は、パージ通路37の導通状態を制御する弁機構であり、ECU12によってデューティ駆動される。ECU12は、パージ制御弁38に対して適当なデューティ比を有する駆動信号を供給する。パージ制御弁38は、そのデューティ比に応じた開度を実現する。
【0024】
パージ通路37の他端は、キャニスタ40の燃料パージ孔42に連通している。キャニスタ40は、その内部に活性炭44を備えている。また、キャニスタ40は、活性炭44を挟んで燃料パージ孔42と反対の側に、キャニスタ40の内部空間を大気に開放する大気導入孔46を備えている。更に、キャニスタ40は、活性炭44に対して燃料パージ孔42と同じ側に、ベーパ導入孔48を備えている。ベーパ導入孔48には、燃料タンク34に通じるベーパ通路49が連通している。ベーパ通路49は、常に燃料の液面より上方となる部位において燃料タンク34に連通している。
【0025】
サージタンク36には、吸気管50が連通している。吸気管50の内部には、アクセルペダルと連動して作動するスロットルバルブ52が配設されている。スロットルバルブ52の近傍には、スロットルバルブ52の開度TAに応じた電気信号を出力するスロットル開度センサ54が配設されている。スロットル開度センサ54の出力信号はECU12に供給されている。ECU12は、スロットル開度センサ54から供給される信号に基づいてスロットル開度TAを検出する。また、ECU12は、スロットル開度センサ54から、スロットルバルブ52が全閉であることを表す信号が供給されている場合に、内燃機関10がアイドル運転中であると判断する。
【0026】
吸気管50の端部には、エアフィルタ56が連通している。吸気管50には、エアフィルタ58で濾過された空気が流通する。また、サージタンク36には、その内圧に応じた電気信号を出力する吸気圧センサ58が配設されている。サージタンク36の内部には、吸気管50を通って内燃機関10に吸入される吸入空気量に応じた圧力が発生する。吸気圧センサ58の出力信号は、ECU12に供給されている。ECU12は、吸気圧センサ58の出力信号に基づいて、内燃機関10の吸入空気量Qを検出する。
【0027】
内燃機関10の排気ポート28には、排気マニホールド60が連通している。排気マニホールド60には、O2 センサ62が配設されている。O2 センサ62は、排気ガス中の酸素濃度に応じた電気信号を出力する。排気ガス中の酸素濃度は、内燃機関10に供給される混合気の空燃比A/Fが燃料リッチであるほど希薄となり、かつ、その空燃比A/Fが燃料リーンであるほど濃厚となる。
【0028】
2 センサ62は、内燃機関10に供給される混合気の空燃比A/Fが理論空燃比S−A/Fに比して燃料リッチである場合に0.9V程度のハイ信号を出力し、一方、その空燃比A/Fが理論空燃比S−A/Fに比して燃料リーンである場合に0.1V程度のロー信号を出力する。O2 センサ62の出力信号は、ECU12に供給されている。ECU12は、O2 センサ62の出力信号に基づいて、混合気の空燃比A/Fが燃料リッチであるか、或いは、燃料リーンであるかを判断する。
【0029】
内燃機関10は、クランクシャフトの回転角を検出するクランク角センサ64を備えている。クランク角センサ64は、クランクシャフトの回転角が所定回転角に達する毎に基準信号を発生すると共に、クランクシャフトが所定回転角回転する毎にパルス信号を発生する。クランク角センサ64の出力信号はECU12に供給されている。ECU12は、クランク角センサ64から供給される出力信号に基づいて、機関回転数NEおよび内燃機関10の回転角を検出する。
【0030】
本実施例のシステムにおいて、燃料タンク34の内部には、例えば内燃機関10が停止した直後、車両が高温環境下で停車されている場合、或いは、車両が高温環境下で渋滞路を走行している場合等に蒸発燃料が発生する。燃料タンク34の内部で発生した蒸発燃料は、ベーパ通路49を通ってキャニスタ40に導かれ、その後活性炭44に吸着される。
【0031】
ECU12は、内燃機関10が所定の運転状態で運転されている場合に、パージ制御弁38を適当に開弁させる。内燃機関10の運転中は、サージタンク36の内部に吸気負圧が発生している。従って、上記の如くパージ制御弁38が開弁されると、パージ通路37を介して、キャニスタ40の燃料パージ孔42に吸気負圧が導かれる。
【0032】
キャニスタ40の燃料パージ孔42に吸気負圧が導かれると、キャニスタ40の内圧が負圧となって大気導入孔46からキャニスタ40の内部に空気が吸入される。大気導入孔46から流入した空気は、活性炭44を通過して燃料パージ孔42からパージ通路37へ流通する。活性炭44に吸着されていた燃料は、活性炭44を空気が通過する際に活性炭44から離脱し、空気と共にパージ通路37にパージされる。
【0033】
上記の如くキャニスタ40からパージ通路37に放出された燃料は、サージタンク36に流入した後、エアフィルタ58から吸入された空気と共に燃焼室24に吸入される。従って、本実施例のシステムによれば、燃料タンク34内で発生した蒸発燃料を、一時的にキャニスタ40で捕獲した後、内燃機関10の運転中に燃料として有効に消費することができる。
【0034】
ところで、内燃機関10を搭載する車両が高温環境下で渋滞路を走行しているような状況下では、キャニスタ34に対して、継続的に多量の蒸発燃料が供給され易い。キャニスタ40に捕獲された燃料がパージされることなくこのような状況が継続されると、やがてキャニスタ40が飽和状態となり、蒸発燃料をキャニスタ40で捕獲することができなくなる。従って、蒸発燃料を効率良く捕獲して燃料として消費するためには、キャニスタ40が飽和状態に至るのを防止することが必要である。
【0035】
キャニスタ40を飽和状態としないためには、内燃機関10の運転中に、キャニスタ40に捕獲されている燃料を速やかにパージさせることが有効である。本実施例において、内燃機関10は、その運転中に、燃料噴射弁33から燃料を噴射することに優先してキャニスタ40内の燃料をパージする。このため、内燃機関10によれば、キャニスタ40に捕獲されている燃料を速やかに多量にパージして、キャニスタ40が飽和状態となるのを有効に防止することができる。
【0036】
上記の機能は、ECU12が図2に示す噴射量制御ルーチン、および、図3に示すパージ制御ルーチンを実行することにより実現される。以下、内燃機関10において上記の機能を実現すべくECU12が実行する処理の内容について説明する。
【0037】
図2は、ECU12が燃料噴射時間TAUを演算すべく実行する噴射量制御ルーチンの一例のフローチャートを示す。図2に示すルーチンは、内燃機関10が所定回転角回転する毎に起動されるNE割り込みルーチンである。本ルーチンが起動されると、先ずステップ90の処理が実行される。
【0038】
ステップ90では、内燃機関10の運転状態に基づいて、基準の燃料噴射時間TAUmnが演算される。本ステップ90において、基準の燃料噴射時間TAUmnは、具体的には機関回転数NE、吸気圧PM、冷却水温THW等に基づいて演算される。基準の燃料噴射時間TAUmnは、キャニスタ40から燃料がパージされていない状況下で、燃焼室24に供給される混合気の空燃比を、内燃機関10の運転状態に対応した目標空燃比とするために必要な燃料の量に対応する噴射時間である。本ステップ90の処理が終了すると、次にステップ92の処理が実行される。
【0039】
ステップ92では、燃料噴射時間TAUが演算される。本ステップ92において、燃料噴射時間TAUは、基準の燃料噴射時間TAUmnに噴射時間補正係数Kを乗算することにより演算される。噴射時間補正係数Kは、1.0を上限値とする変数であり、後述するパージ制御ルーチン中で演算される。本ステップ92の処理が終了すると、今回のルーチンが終了される。
【0040】
図3は、ECU12によって実行されるパージ制御ルーチンの一例のフローチャートを示す。図3に示すルーチンは、内燃機関10が所定回転角回転する毎に起動されるNE割り込みルーチンである。図3に示すルーチンが起動されると、先ずステップ100の処理が実行される。
【0041】
ステップ100では、内燃機関10において、所定のパージ条件が成立しているか否かが判別される。本ステップ100では、内燃機関10の冷却水の温度THWが80℃以上であり、かつ、吸気側空燃比センサ35が活性化されている場合にパージ条件が成立していると判別される。ところで、吸気側空燃比センサ35は、内燃機関10が始動された後、内蔵するヒータにより加熱され、活性化されることにより所定値以上の電圧信号を出力する。このため、ECU12は、吸気側空燃比センサ35から所定値以上の電圧信号が出力されている場合に、吸気側空燃比センサ35が活性化されていると判断する。本ステップ100でパージ条件が成立していると判別される場合は、次にステップ102の処理が実行される。
【0042】
ステップ102では、目標値Vtが演算される。目標値Vtは、吸気側空燃比センサ35の周囲を、内燃機関10の運転状態に応じた目標空燃比を有する混合気が流通する場合に、吸気側空燃比センサ35から出力される電圧値と一致する値である。内燃機関10の運転状態に応じた目標空燃比は、機関回転数NEと吸気圧PMとに応じて決定される。従って、目標空燃比に対して一義的に決定される目標値Vtも、機関回転数NEと吸気圧PMとに基づいて決定することができる。
【0043】
図4は、上記ステップ102で、目標値Vtを演算する際に参照されるマップの一例を示す。ECU12は、その内部に、図4に示す目標値Vtに関する2次元マップを記憶している。上記ステップ102では、機関回転数NEと吸気圧PMとに基づいて、図4に示すマップを参照することにより目標値Vtが演算される。上記ステップ102の処理が終了すると、次にステップ104の処理が実行される。
【0044】
ステップ104では、吸気側空燃比センサ35の出力信号Voxが、目標値Vt以上であるか否かが判別される。吸気側空燃比センサ35の出力信号Voxは、その周囲を流通する混合気の空燃比が目標空燃比に比してリーンであるほど大きな値となる。従って、Vox≧Vtが成立する場合は、吸気側空燃比センサ35の周囲を流通する混合気の空燃比が、目標空燃比に比してリーンであると判断することができる。
【0045】
内燃機関10において、吸気側空燃比センサ35の周囲には、エアフィルタ56から吸入された空気と、パージ通路37から吸入される空気および燃料との混合気が流通する。従って、上記ステップ104で、Vox≧Vtが成立する(混合気が燃料リーンである)と判別される場合は、目標空燃比を実現するための燃料の量に対して、キャニスタ40からパージされる燃料の量が不足していると判断できる。この場合、上記ステップ104に次いで、次にステップ106の処理が実行される。
【0046】
ステップ106では、パージ制御弁38に供給されている駆動信号のデューティ比DUTYが100%以上であるか否か、すなわち、パージ制御弁38が既に全開状態とされているか否かが判別される。その結果、DUTY≧100%が成立すると判別される場合は、キャニスタ40からパージされる燃料の量が、既に最大値に達していると判断することができる。この場合、以後、ステップ108の処理が実行される。
【0047】
ステップ108では、駆動信号のデューティ比DUTYを100%とする処理が実行される。本ステップ108の処理が終了すると、次にステップ110の処理が実行される。
ステップ110以降の処理は、上述の如く、キャニスタ40からパージされる燃料の量が最大値に達しており、かつ、その燃料の量が目標空燃比を実現するための燃料の量に不足している状況下で実行される。かかる状況下で、燃焼室24に供給される混合気の空燃比を目標空燃比とするためには、燃料の不足分を燃料噴射弁33によって補うことが必要である。
【0048】
ステップ110では、上記の機能を実現すべく、先ず吸気側空燃比センサ35の出力信号Voxと目標値Vtとの偏差ΔV=Vox−Vtが演算される。本ステップ110の処理が終了すると、次にステップ112の処理が実行される。
図5は、吸気側空燃比センサ35の周囲を流通する混合気の空燃比と、上記ステップ110で演算される偏差ΔVとの関係を示す。図5に示す如く、偏差ΔVは、吸気側空燃比センサ35の周囲を流通する混合気の空燃比が目標空燃比に比してリーンであるほど、すなわち、キャニスタ40からパージされる燃料の量が、目標空燃比を実現するための燃料の量に対して不足しているほど大きな値となる。従って、偏差ΔVは、目標空燃比を実現するために燃料噴射弁33から噴射すべき燃料の量の特性値と把握することができる。
【0049】
ステップ112では、偏差ΔVに基づいて、噴射時間補正係数Kの演算処理が実行される。噴射時間補正係数Kは、上述の如く、燃料噴射時間TAUを演算する際に基準の燃料噴射時間TAUmnに乗算される係数である。本ステップ112において、噴射時間補正係数Kは、具体的には図6に示すマップを参照して演算される。
【0050】
図6は、偏差ΔVとの関係で噴射時間補正係数Kを定めたマップの一例を示す。図6に示す如く、噴射時間補正係数Kは、偏差ΔVがその最大値“VoxMAX −Vt”に近づくほど最大値“1.0”に近づくように定められている。尚、VoxMAX は、吸気側空燃比センサ35から出力される電圧信号の最大値、すなわち、吸気側空燃比センサ35の周囲を空気が流通する際に、吸気側空燃比センサ35が出力する電圧信号の値である。
【0051】
噴射時間補正係数Kが図6に示すマップに従って演算されると、偏差ΔVが大きいほど、基準の燃料噴射時間TAUmnを上限値として燃料噴射時間TAUを長時間に設定することができる。また、偏差ΔVが小さいほど、燃料噴射時間TAUを短時間に設定すること、すなわち、燃料噴射弁33から噴射される燃料の量を少量とすることができる。
【0052】
ステップ114では、今回の処理サイクル時に設定された駆動デューティ比DUTYでパージ制御弁38を駆動する処理が実行される。上述した処理ルーチンによれば、本ステップ114が実行されることにより、パージ制御弁38が全開状態に制御される。本ステップ114の処理が終了すると、今回のルーチンが終了される。
【0053】
このように、内燃機関10によれば、パージ制御弁38を全開状態としても、目標空燃比を実現するために必要な量の燃料をキャニスタ40からパージすることができない場合に、燃料噴射弁33からその不足分を補う量の燃料が噴射されるように、燃料噴射時間TAUを設定することができる。このため、内燃機関10によれば、かかる状況下であっても燃焼室24に吸入される混合気の空燃比を精度良く目標空燃比に制御することができる。
【0054】
本ルーチン中、上記ステップ106で、DUTY≧100%が成立しないと判別される場合は、パージ制御弁38の開度を更に増大させることにより、すなわち、キャニスタ40からパージされる燃料の量を更に増量させることにより、燃料噴射弁33から燃料を噴射することなく、目標空燃比を実現するための燃料を確保できる可能性があると判断できる。この場合、次にステップ116の処理が実行される。
【0055】
ステップ116では、パージ制御弁38の駆動デューティ比DUTYを、所定値ΔDだけ増加させる処理が実行される。本ステップ116の処理が終了すると、次にステップ118の処理が実行される。
ステップ118では、噴射時間補正係数Kを“0”とする処理が実行される。噴射時間補正係数Kが“0”とされると、燃料噴射時間TAUは、上記図2に示す噴射量制御ルーチンにおいて“0”と演算される。このため、本ステップ118の処理が実行されると、以後、燃料噴射弁33による燃料の供給が停止される。本ステップ118の処理が実行されると、次に上記ステップ114の処理が実行される。
【0056】
ステップ114では、上記の如く所定値ΔDだけ増加した駆動デューティ比DUTYでパージ制御弁38が制御される。上記の処理によれば、キャニスタ40からパージされる燃料の量を、目標空燃比を実現するための燃料の量に向けて増量することができる。
【0057】
このように、内燃機関10によれば、パージ制御弁38が全開状態でない状況下で混合気がリーンであると判別された場合は、燃料噴射弁33から燃料を噴射させることなく、パージ制御弁38の開度を増加させることにより、燃料の増量を図る。このため、内燃機関10によれば、キャニスタ40に捕獲されている燃料を、内燃機関10の運転中に、速やかに、かつ、多量にパージすることができる。
【0058】
本ルーチン中、上記ステップ104で、Vox≧Vtが成立しないと判別される場合は、吸気側空燃比センサ35の周囲を流通する混合気の空燃比が、目標空燃比に比してリッチである、すなわち、キャニスタ40からパージされている燃料の量が、目標空燃比を実現するうえで過剰であると判断することができる。この場合、目標空燃比を実現するためには、燃料噴射弁33からの燃料噴射を停止しつつ、キャニスタ40からパージされる燃料の量を減少させることが必要である。この場合、本ルーチンでは、上記ステップ104に次いでステップ120の処理が実行される。
【0059】
ステップ120では、パージ制御弁38の駆動デューティ比DUTYを、所定値ΔDだけ減少させる処理が実行される。本ステップ120の処理が終了すると、以後、上記ステップ118および114の処理が実行された後、今回のルーチンが終了される。
【0060】
上記の処理によれば、パージされる燃料の量が過剰である場合に、燃料噴射弁33からの燃料噴射を停止しつつ、パージされる燃料の量が適量となるまでパージ制御弁38の開度を減少させることができる。従って、内燃機関10によれば、キャニスタ40の内部に多量の燃料が捕獲されている場合に、燃焼室24に供給される混合気の空燃比を精度良く目標空燃比に制御しつつ、キャニスタ40に捕獲されている燃料を速やかに、かつ、多量にパージすることができる。
【0061】
本ルーチン中、上記ステップ100でパージ条件が成立していないと判別された場合は、キャニスタ40から燃料をパージすべきでないと判断することができる。この場合、ECU12は、ステップ100に次いでステップ122の処理を実行する。
【0062】
ステップ122では、駆動デューティ比DUTYを“0”とする処理が実行される。本ステップ122の処理が終了すると、次にステップ124の処理が実行される。
ステップ124では、噴射時間補正係数Kを最大値“1.0”とする処理が実行される。本ステップ124の処理が実行されると、上記図2に示す噴射量制御ルーチンにおいて、基準の燃料噴射時間TAUmnが燃料噴射時間TAUとして演算される。本ステップ124の処理が終了すると、以後、上記ステップ114の処理が実行された後、今回のルーチンが終了される。
【0063】
上記の処理によれば、パージ条件が成立していない場合には、パージ制御弁38を全閉状態として、目標空燃比を実現するために必要な燃料の全てを燃料噴射弁33から供給することができる。
上述の如く、内燃機関10によれば、燃焼室24に供給される混合気の空燃比が目標空燃比となるように、かつ、燃料噴射弁33から燃料が噴射されるのに優先してキャニスタ40に捕獲されている燃料がパージされるように、燃料噴射弁33およびパージ制御弁38を制御する。このため、内燃機関10によれば、キャニスタ40に捕獲されている燃料を効率良くパージして、キャニスタ40が飽和状態となるのを有効に防止することができる。
【0064】
本実施例において、パージ制御弁38の駆動デューティ比DUTY、および、噴射時間補正係数Kは、上述の如く吸気側空燃比センサ35の出力信号に基づいて演算される。内燃機関10のように排気マニホールド60側にもO2 センサを備えるシステムにおいては、そのO2 センサ60の出力信号を用いて駆動デューティ比DUTYおよび噴射時間補正係数Kを演算することも可能である。
【0065】
しかしながら、キャニスタ40に捕獲されている燃料が内燃機関10に向けてパージされる部位、すなわち、パージ通路37がサージタンク36に開口する部位とO2 センサ62とは、大きく離間している。このため、キャニスタ40からパージされる燃料の量が変化した後、その変化の影響がO2 センサ62の出力信号に反映されるまでには、ある程度の遅延時間が存在する。
【0066】
一方、吸気側空燃比センサ35は、パージ通路37がサージタンク35に開口する部位の近傍に配設されている。このため、キャニスタ40からパージされる燃料の量が変化すると、その変化は、速やかにO2 センサ62の出力信号に反映される。従って、本実施例のシステムのように、吸気側空燃比センサ35の出力信号に基づいて駆動デューティ比DUTYおよび噴射時間補正係数Kを演算することによれば、優れた応答性の下に空燃比制御を行うことができる。
【0067】
上述の如く、O2 センサ62は、燃焼室24に供給される混合気が理論空燃比S−A/Fに比してリーンであるかリッチであるかに応じて、ハイレベル信号またはローレベル信号を出力する。従って、O2 センサ62によれば、混合気が燃料リーンであるか燃料リッチであるかを、吸気側空燃比センサ35に比して更に正確に判断することができる。本実施例において、ECU12は、吸気側空燃比センサ35の出力信号に基づいて上記図3に示すルーチンを実行しつつ、O2 センサ62の出力信号を、燃料噴射弁33の制御、および、パージ制御弁38の制御にフィードバックしている。このため、内燃機関10によれば、燃焼室24に供給される混合気の空燃比を、極めて精度良く制御することができる。
【0068】
ところで、本実施例においては、目標空燃比を実現するための燃料が、キャニスタ40からパージされる燃料だけでは賄いきれない場合に、その不足分を燃料噴射弁33によって補填することとしているが、不足分の補填方法はこれに限定されるものではない。例えば、燃料タンク34の内部にヒータを配設して、パージ燃料が不十分である場合に、ヒータ加熱によって燃料タンク34の内部に多量の蒸発燃料を発生させることとしてもよい。また、内燃機関10と燃料タンク34とを直接連通する連通ラインを設けて、パージ燃料が不十分である場合に、連通ラインより直接的に蒸発燃料を吸引することとしてもよい。
【0069】
尚、上記の実施例においては、吸気側空燃比センサ35が前記請求項1記載の「空燃比検出手段」に相当していると共に、ECU12が上記図2に示す噴射量制御ルーチンおよび上記図3に示すパージ制御ルーチンを実行することにより前記請求項1記載の「空燃比制御手段」が実現されている。また、上記の実施例においては、ECU12が、上記ステップ106〜112の処理を実行することにより前記請求項2記載の「噴射量減量手段」が、上記ステップ106,116の処理を実行することにより前記請求項2記載の「パージ量増量手段」が、それぞれ実現されている。
【0070】
次に、図7を参照して、本発明の第2実施例について説明する。本実施例のシステムは、上記図1に示すシステム構成において、ECU12に、上記図2に示す噴射量制御ルーチンを実行させると共に、上記図3に示すルーチンに代えて、図7に示すパージ制御ルーチンを実行させることにより実現される。
【0071】
図7に示すルーチンは、本実施例のシステムにおいて、パージ制御弁38を制御し、かつ、噴射時間補正係数Kを演算すべくECU12が実行する制御ルーチンの一例のフローチャートを示す。図7に示す制御ルーチンは、内燃機関10が所定回転角回転する毎起動されるNE割り込みルーチンである。尚、図7において、上記図3に示すステップと同一の処理を実行するステップについては、同一の符号を付してその説明を省略する。
【0072】
図7に示すルーチンにおいては、ステップ100でパージ条件が成立すると判別された場合、次にステップ130の処理が実行される。一方、ステップ100でパージ条件が成立しないと判別された場合は、その後、後述するステップ122以降の処理が実行される。
【0073】
ステップ130では、飽和フラグfに“1”がセットされているか否かが判別される。飽和フラグfは、後述の如く、キャニスタ40の内部に、キャニスタ40を飽和状態とする程度に多量の燃料が捕獲されていると推定される場合に“1”がセットされるフラグである。飽和フラグfは、内燃機関10の始動時にイニシャル処理により“0”にリセットされる。従って、内燃機関10の始動直後は、飽和フラグfに“1”がセットされていないと判別される。この場合、以後、ステップ102以降の処理が実行される。
【0074】
図7に示すルーチン中ステップ104で、Vox≧Vtが成立すると判別される場合、すなわち、キャニスタ40からパージされている燃料の量が、目標空燃比を実現するための燃料に比して不足していると判別される場合は、以後、上記図3に示すルーチンと同様の処理が実行される。一方、ステップ104で、Vox≧Vtが成立しない、すなわち、キャニスタ40からパージされている燃料の量が、目標空燃比を実現するための燃料に比して過剰であると判別された場合は、ステップ120の処理が終了した後、ステップ132の処理が実行される。
【0075】
ステップ132では、パージ制御弁38の駆動デューティ比DUTYが所定値α%に比して大きいか否かが判別される。キャニスタ40の内部に多量の燃料が捕獲されている場合は、パージ制御弁38を僅かに開弁させるだけで、キャニスタ40から内燃機関10へ多量の燃料がパージされる。また、内燃機関10が、例えばアイドル状態等の低負荷運転中である場合は、目標空燃比を実現するために必要な燃料が極少量となる。このため、キャニスタ40に多量の燃料が捕獲されており、かつ、内燃機関10が低負荷運転中である場合は、目標空燃比を実現するためにパージ制御弁38に付与すべき駆動信号のデューティ比DUTYが、極めて小さい値となることがある。
【0076】
上記ステップ132において判定値として用いられるα%は、パージ制御弁38を精度良く駆動することのできる最小のDUTYである。従って、駆動デューティ比DUTYが所定値αを超える場合には、パージ制御弁38の開度を正確に制御して、キャニスタ40からパージされる燃料の量を正確に制御することができる。このため、上記ステップ132でDUTY>αが成立すると判別された場合は、以後、第1実施例の場合と同様にステップ118および114の処理が実行される。
【0077】
一方、駆動デューティ比DUTYがα%以下である場合は、パージ制御弁38の開度を正確に制御することができない。従って、かかる状況下では、パージ制御弁38を制御することで、キャニスタ40から内燃機関10にパージされる燃料の量を正確に制御することができない。本実施例では、上記ステップ132でDUTY>αが成立しないと判別された場合は、次にステップ134の処理が実行される。
【0078】
ステップ134では、キャニスタ40が飽和状態であることを表すべく、飽和フラグfに“1”がセットされる。本ステップ134の処理が終了すると、以後、上記ステップ122および124の処理が実行さえた後、今回のルーチンが終了される。
【0079】
上記の処理によれば、キャニスタ40が飽和状態であり、かつ、内燃機関10が低負荷運転中である場合に、キャニスタ40から燃料がパージされるのを禁止しつつ、燃料噴射弁33から内燃機関10に対して適正に燃料を供給することが可能となる。このため、本実施例のシステムによれば、かかる状況下においても、内燃機関10の運転状態を適正な状態に維持することができる。
【0080】
上記ステップ134で飽和フラグfに“1”がセットされた後、本ルーチンが起動されると、上記ステップ130において、f=1が成立すると判別される。この場合、上記ステップ130に次いでステップ136の処理が実行される。
ステップ136では、内燃機関10において、所定の高速高負荷条件が満たされているか否かが判別される。本ステップ136では、内燃機関10が、所定量を超える燃料を要求する状態で運転している場合に、所定の高速高負荷条件が満たされていると判別される。
【0081】
上記の判別の結果、所定の高速高負荷条件が満たされていないと判別される場合は、要求される燃料をパージするための駆動デューティ比DUTYが極小さな値となると判断できる。この場合、未だパージ制御を再開すべきではないと判断され、以後、上記ステップ122以降の処理が実行された後、今回のルーチンが終了される。
【0082】
一方、上記ステップ136で高速高負荷条件が満たされていると判別された場合は、要求される燃料をパージするための駆動デューティ比DUTYが十分に大きな値となると判断できる。この場合、パージ制御を再開すべく、次にステップ138の処理が実行される。
【0083】
ステップ138では、上記ステップ136で高速高負荷条件が成立すると判別された後、所定時間が経過しているか否か、すなわち、パージ制御が再開された後、所定時間が経過しているか否かが判別される。その結果、所定時間が経過していないと判別される場合は、キャニスタ40内に未だ多量の燃料が捕獲されている、すなわち、キャニスタ40の飽和状態が解消されていないと判断することができる。この場合、上記ステップ138に次いで、上記ステップ102以降の処理が実行される。
【0084】
一方、上記ステップ138で、所定時間が経過していると判別された場合は、パージ制御が再開されたことにより、キャニスタ40の飽和状態が既に再開されたと判断することができる。この場合、次にステップ140の処理が実行される。
【0085】
ステップ140では、飽和フラグfを“0”にリセットする処理が実行される。本ステップ140の処理が実行された後、再度本ルーチンが起動された際には、上記ステップ130で、f=1が不成立であると判別される。本ステップ140の処理が終了すると、以後、上述したステップ102以降の処理が実行される。
【0086】
上述した処理によれば、▲1▼内燃機関10が低負荷運転中であっても、キャニスタ40が飽和状態でない場合には、正確なパージ制御を実行することができる。また、▲2▼内燃機関10が低負荷運転中であり、かつ、キャニスタ40が飽和状態である場合には、不正確なパージ制御が実行されるのを禁止し、燃料噴射弁33を用いて燃料を供給することができる。更に、▲3▼キャニスタ40が飽和状態となった後、内燃機関10が高速高負荷条件を満たす場合に、正確なパージ制御を実行しつつ、キャニスタ40の飽和状態を解消することができる。従って、本実施例のシステムによれば、内燃機関10の運転状態に関わらず、常に空燃比を正確に制御しつつ、広い運転領域において効率よくキャニスタ40内の燃料をパージさせることができる。
【0087】
尚、上記の実施例においては、ECU12が上記図2に示す噴射量制御ルーチンと共に、上記図7中ステップ100〜124の処理を実行することにより前記請求項1記載の「空燃比制御手段」が実現されている。また、上記の実施例においては、ECU12が、上記ステップ106〜112の処理を実行することにより前記請求項2記載の「噴射量減量手段」が、上記ステップ106,116の処理を実行することにより前記請求項2記載の「パージ量増量手段」が、それぞれ実現されている。
【0088】
【発明の効果】
上述の如く、請求項1記載の発明および請求項2記載の発明によれば、キャニスタに捕獲されている燃料を、多量に、かつ、効率良くパージさせることができる。このため、本発明に係る空燃比制御装置によれば、キャニスタが飽和状態となるのを有効に防止することができる。
【0089】
また、請求項3記載の発明によれば、キャニスタから吸気通路に向けて多量の燃料をパージしつつ、そのパージ量を正確に、かつ、優れた応答性の下に検出することができる。従って、本発明に係る空燃比制御装置によれば、キャニスタから内燃機関に多量の燃料をパージしつつ、優れた精度で空燃比を制御することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例に対応する内燃機関のシステム構成図である。
【図2】本発明の第1実施例に対応する内燃機関において実行される噴射量制御ルーチンの一例のフローチャートである。
【図3】本発明の第1実施例に対応する内燃機関において実行されるパージ制御ルーチンの一例のフローチャートである。
【図4】図3に示すパージ制御ルーチンの実行中に参照される目標値Vtのマップの一例である。
【図5】吸気側空燃比センサの出力信号Voxと目標値Vtとの偏差ΔVを目標空燃比に対する混合気の濃度との関係で表した特性図である。
【図6】図3に示すパージ制御ルーチンの実行中に参照される噴射時間補正係数Kのマップの一例である。
【図7】本発明の第2実施例に対応する内燃機関において実行されるパージ制御ルーチンの一例のフローチャートである。
【符号の説明】
10 内燃機関
12 電子制御ユニット(ECU)
35 吸入側空燃比センサ
38 パージ制御弁
40 キャニスタ
34 燃料タンク
TAU 燃料噴射時間
TAUmn 基準の燃料噴射時間
K 噴射時間補正係数
DUTY パージ制御弁の駆動デューティ比
Vt 目標値
Vox 吸入側空燃比センサの出力値
ΔV 偏差
α パージ制御弁を正確に制御することのできるDUTYの下限値

Claims (3)

  1. 内燃機関に供給される混合気の空燃比を制御する内燃機関の空燃比制御装置において、
    内燃機関に対して燃料を噴射する燃料噴射弁と、
    燃料タンク内に発生する蒸発燃料を捕獲するキャニスタと、
    内燃機関の吸気通路と前記キャニスタとの導通状態を制御するパージ制御弁と、
    空気と燃料の混合気の空燃比を検出する空燃比検出手段と、
    前記空燃比検出手段によって検出される空燃比に基づいて、内燃機関に供給される混合気の空燃比が所定空燃比となるように、かつ、前記キャニスタに捕獲されている燃料が優先的に内燃機関に供給されるように、前記パージ制御弁および前記燃料噴射弁を制御する空燃比制御手段と、
    を備え、
    前記空燃比制御手段が、内燃機関に供給される混合気の空燃比が所定空燃比に比してリッチである場合に、前記燃料噴射弁から噴射される燃料の量を、前記キャニスタからパージされる燃料に比して優先的に減量させる噴射量減量手段と、
    内燃機関に供給される混合気の空燃比が所定空燃比に比してリーンである場合に、前記キャニスタからパージされる燃料を、前記燃料噴射弁から噴射される燃料の量に比して優先的に増量させるパージ量増量手段と、
    を備えることを特徴とする内燃機関の空燃比制御装置。
  2. 請求項1記載の内燃機関の空燃比制御装置において、
    前記空燃比制御手段が、更に、前記パージ制御弁を全開状態としても、該所定空燃比を実現するために必要な量の燃料を前記キャニスタからパージすることができない場合には、前記燃料噴射弁から噴射される燃料の量をその不足分を補う量だけ増量させる噴射量増量手段を備えることを特徴とする内燃機関の空燃比制御装置。
  3. 請求項1および請求項2の何れか1項記載の内燃機関の空燃比制御装置において、
    前記空燃比検出手段が、前記吸気通路内に配設され、該吸気通路内を流通する空気の量と、前記キャニスタからパージされる燃料の量との比に応じた信号を出力する吸気側空燃比センサを備えることを特徴とする内燃機関の空燃比制御装置。
JP01918197A 1997-01-31 1997-01-31 内燃機関の空燃比制御装置 Expired - Fee Related JP3637717B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01918197A JP3637717B2 (ja) 1997-01-31 1997-01-31 内燃機関の空燃比制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01918197A JP3637717B2 (ja) 1997-01-31 1997-01-31 内燃機関の空燃比制御装置

Publications (2)

Publication Number Publication Date
JPH10212992A JPH10212992A (ja) 1998-08-11
JP3637717B2 true JP3637717B2 (ja) 2005-04-13

Family

ID=11992181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01918197A Expired - Fee Related JP3637717B2 (ja) 1997-01-31 1997-01-31 内燃機関の空燃比制御装置

Country Status (1)

Country Link
JP (1) JP3637717B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5769077B2 (ja) * 2011-08-29 2015-08-26 三菱自動車工業株式会社 ガスセンサの被水防止装置
JP5811446B2 (ja) * 2011-09-05 2015-11-11 三菱自動車工業株式会社 ガスセンサの被水防止装置
JP5709053B2 (ja) * 2011-09-14 2015-04-30 三菱自動車工業株式会社 内燃機関のガスセンサ被水防止構造

Also Published As

Publication number Publication date
JPH10212992A (ja) 1998-08-11

Similar Documents

Publication Publication Date Title
US6227177B1 (en) Apparatus for controlling internal combustion engine equipped with evaporative emission control system
JP4366706B2 (ja) 内燃機関の燃料性状判定装置
EP1676999A2 (en) Internal combustion engine and control method thereof
US4389996A (en) Method and apparatus for electronically controlling fuel injection
JPH08177590A (ja) 内燃機関の燃料供給装置
JP2615285B2 (ja) 内燃エンジンの蒸発燃料制御装置
JPH06229330A (ja) 内燃機関の蒸発燃料制御装置
JP3637717B2 (ja) 内燃機関の空燃比制御装置
US6176217B1 (en) Fuel vapor processing apparatus and method of internal combustion engine
JP3644416B2 (ja) 内燃機関の空燃比制御装置および制御法
JP2017180377A (ja) エンジンの制御装置
JP2013113143A (ja) 内燃機関の蒸発燃料処理装置
JP3620210B2 (ja) 内燃機関の制御装置
JPH06317228A (ja) 内燃機関の燃料供給装置
JP3061277B2 (ja) 空燃比学習制御方法及びその装置
JPH1018890A (ja) 内燃機関の電子制御燃料噴射装置
JP4052710B2 (ja) エンジンの空燃比制御方法および空燃比制御装置
JP3919536B2 (ja) 蒸発燃料処理装置
JP2572975Y2 (ja) 内燃機関の蒸発燃料制御装置
JPH11218044A (ja) 酸素センサの加熱制御装置
JP3751507B2 (ja) 空燃比センサの活性判定装置
JP3862934B2 (ja) 内燃機関の蒸発燃料処理装置
JP3716531B2 (ja) 内燃機関の空燃比制御装置
JP3906970B2 (ja) 内燃機関の空燃比制御装置
JP3564945B2 (ja) 内燃機関の燃料供給制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees