JP3635727B2 - 半導体発光ダイオード - Google Patents

半導体発光ダイオード Download PDF

Info

Publication number
JP3635727B2
JP3635727B2 JP22167295A JP22167295A JP3635727B2 JP 3635727 B2 JP3635727 B2 JP 3635727B2 JP 22167295 A JP22167295 A JP 22167295A JP 22167295 A JP22167295 A JP 22167295A JP 3635727 B2 JP3635727 B2 JP 3635727B2
Authority
JP
Japan
Prior art keywords
layer
emitting diode
light emitting
active layer
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22167295A
Other languages
English (en)
Other versions
JPH08306956A (ja
Inventor
泰之 坂口
重雅 中村
泰男 細川
豊 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP22167295A priority Critical patent/JP3635727B2/ja
Publication of JPH08306956A publication Critical patent/JPH08306956A/ja
Application granted granted Critical
Publication of JP3635727B2 publication Critical patent/JP3635727B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は化合物半導体発光ダイオードに係わり、特に発光効率の高い黄色ないし橙色の発光をする(AlxGa1-x)yIn1-yP(ただし、0≦x≦1、0<y<1)ダブルヘテロ構造を有する半導体発光ダイオードに関するものである。
【0002】
【従来の技術】
化合物半導体基板上に形成したエピタキシャル成長層を利用した発光ダイオード(Light Emitting Diode :LED)は、低消費電力、長寿命、高発光効率、高信頼性が得られる等の特性を有しており、各種表示装置光源として広く利用されている。各種の III−V族化合物半導体のうち、GaAs単結晶基板上にエピタキシャル成長させたこれと格子整合する(AlxGa1-x)yIn1-yP混晶は、直接遷移型でしかも最大のバンドギャップエネルギーを有するため、緑色から赤色の範囲にわたり高輝度の発光が得られるので利用範囲が急速に広がっている。
【0003】
図12に従来の(AlxGa1-x)yIn1-yPダブルヘテロ(DH)構造を有するLEDの一例を示す。図中1はGaAs基板、2はバッファー層、5〜7は(AlxGa1-x)yIn1-yPDH構造部分、9はコンタクト層、10、11は電極である。このような(AlxGa1-x)yIn1-yPLEDでは、電極から注入された電流を拡げて発光する領域を拡大するために、コンタクト層9の下にAlGaAsからなる厚さ2μm以上の電流拡散層を設けたり、基板側へ向かった光を有効に取り出すためにDH構造と基板との間に反射層を設ける試みもなされている(特開平4−212479参照)。
【0004】
【発明が解決しようとする課題】
最近LEDの屋外での使用が増え、より輝度の高い物が求められている。特に波長550〜650nmの発光領域での高輝度LEDが望まれている。このため表面にいわゆるウインド層を載置したLEDが開発されているが、未だ充分ではない。また、GaAlAsからなる電流拡散層やウインド層は発光した光に対して透明にするため、Alの混晶比を0.7〜0.8と大きくとるのでAlが酸化され易く、使用中に劣化が進む欠点があった。また、Al濃度の高いエピタキシャル成長層を得ようとすると結晶の格子ミスマッチが大きく、格子欠陥が出易いので高発光効率が得られない欠点があった。
【0005】
【課題を解決するための手段】
本発明は上記欠点を解消するために成されたものであって、主として波長550〜650nmの領域において高発光効率を有するLEDを得ることを目的としている。このため本発明では発光部分に(AlxGa1-x)yIn1-yP混晶のDH構造を使用し、電流拡散層やウインド層といった特別な層を敢えて使用することなく、DH構造のうち上部クラッド層の厚さを厚くして、かつ特定の特性を具備させることにより目的を達成させることとした。
本発明のLEDの構成を順を追って説明する。
【0006】
まず、基板としてはDH部分との電気的接触が得られ、以下に述べる上部層の形成に悪影響を与えなければ特に制限は無い。以下にGaAs単結晶基板を用いた例を掲げる。DH部分が III−V族結晶であるためその物性上の特性からも基板結晶としても III−V族結晶が望ましい。さらに、本発明が発光波長領域として550〜650nmの4元系を用いるため、格子整合の見地から最も適した材料はGaAs単結晶基板である。基板の電導型はn型であってもp型であっても良い。n型基板の場合は、結晶性の良好な活性層を容易に得ることができる。キャリア濃度も特に規定は無いが最も一般的に得られるキャリア濃度は(0.5〜20)×1017cm-3である。一方p型基板を用いると、本発明の主な要点である厚膜の上部クラッド層はn型となる。4元系においては、添加不純物濃度はn型の方が容易に高められること、および電子移動度がホール移動度より大幅に大きいため、厚膜クラッド層の効果である電流拡散効果はn型の厚膜クラッド層の場合にp型のそれよりより大きくなる。p型基板のキャリア濃度についても特に制限はないが、一般的に得られるp型GaAs基板では(4〜10)×1018cm-3である。基板の面方位は、基本的に(100)を用いるが特に制限はない。さらに、そのオフ角度の基板についても使用可能である。
【0007】
基板の上には基板からの不純物の拡散を防止し、結晶欠陥の影響を排除するため、GaAsのバッファー層を載置する。厚さは、一般的には(0.1〜1)μm、キャリア濃度は一般的なものとしてn型基板を用いた時は(0.5〜1)×1018cm-3、p型基板を用いた時は(1〜6)×1018cm-3である。
【0008】
次に(AlxGa1-x)yIn1-yPダブルヘテロ構造を形成する。ここでx、yは、0≦x≦1、0<y<1の範囲をとる。4元系の物性値は組成x、yの関数となるが、特にバンドギャップエネルギー(従って屈折率)は主にxの関数、格子定数は主にyの関数となることが知られている。なお、組成範囲についてyは使用する基板に応じて格子整合のとれる範囲で選択することができるが、y=0ではAlが含まれず、DHのバンド構造を形成できなくなるために除かれる。またy=1はAlX Ga1-X P混晶を示し、この混晶系は全組成領域で間接遷移半導体となる。このため高輝度LED用としてこの混晶系を活性層に使用することは意味が無く、またこの混晶系をクラッド材として用いた場合、活性層にはInが付加されなければならず、先にも述べたように格子不整合を誘発するため信頼性の高い素子性能は期待できなくなる。このため4元系の組成範囲はyについては0<y<1となる。DH部分には格子ミスマッチが無いことが結晶性を向上し素子の発光効率を増加させるために効果的である。このため例えばGaAs(100)基板を用いた場合は、y=0.5程度とするのが良い。
【0009】
(AlxGa1-x)yIn1-yPダブルヘテロ構造は、下部クラッド層、活性層、上部クラッド層から構成され、活性層よりもバンドギャップエネルギーの大きなクラッド層で活性層を挟んだ構造とする。(AlxGa1-x)yIn1-yP活性層の混晶比yは上述したように格子整合の見地からクラッド層と同様に設定されるが、xは目標とする発光波長に応じて設定する。たとえば、活性層とクラッド層の組み合わせは、AlGaInP のみから構成するもの、AlGaInP 及び GaInPから構成するもの、AlInP 及びAlGaInP から構成するもの等が利用できる。クラッド層のバンドギャップエネルギーは活性層よりも大きくする必要がある。何故ならば、少なくとも活性層のバンドギャップエネルギー以下では、クラッド層は内部のキャリアのバンド間遷移により発光した光に対して吸収体となるためである。ただし、クラッド層による活性層内のキャリアの閉じこめ効果を高めるためには、室温での使用を考えた場合、活性層に対しクラッド層のバンドギャップエネルギーは、好ましくは0.1eV以上大きくするのが良い。それには、Al混晶比xを活性層のAl混晶比より高くなるように調整する。GaAs(100)基板を用いた場合について目標とする発光波長に対する活性層及びクラッド層の組成またはその範囲を例示すると、以下の表1のようになる。
【0010】
【表1】
Figure 0003635727
【0011】
xの範囲については、目標発光波長によって決められる。ただし、4元系のバンドギャップはxと共に増加し、あるxの値以上では4元系は間接遷移領域に入りそのような組成の4元系を活性層に用いた場合も高輝度の素子を得ることは期待できなくなる。活性層に用いることができるxの範囲としては0≦x≦0.7となる。x=0はGaInP混晶であり、GaAs(100)基板と格子整合する組成ではその発光波長は650nm(赤)となる。同様にx=0.7の時には550nm(緑)であり、GaAs(100)基板に格子整合する条件で用いられる4元系活性層の組成xの上限となる。ただし、この場合も発光層ではないクラッド材として用いる場合にはさらに組成xを高め、x=1とすることもできる。
【0012】
ダブルヘテロ構造の各層の厚さは、活性層へのキャリアの閉じこめ効果が高く、かつ活性層でのキャリアの再結合数が大きくなる(すなわち素子輝度が高くなる)様に決める。DH構造におけるクラッド層は活性層とのバンドギャップエネルギーによって活性層中にキャリアを閉じこめる作用を持つ。従ってキャリアのトンネリングによるすり抜けを防止するために、一般的に0.5μm以上が用いられる場合が多い。一方、活性層の厚さは薄くなることで内部に注入されたキャリア(電子及びホール)の再結合確率は増加する反面、体積の減少により存在できるキャリアの数が減少し、厚くすると活性層中のキャリア数は増加するが再結合確率は減少する。従って活性層の厚さの最適値は素子構造等にも依存する。しかし、実施上はその厚さは0.1〜2μm程度であり、本発明にとっては活性層の厚さは制限要件とはならない。
【0013】
ここで、上部クラッド層の厚さは3〜50μmが必要である。これは、上述のキャリアの閉じ込め効果と電流の拡散効果を発揮させるためである。図12に示す様な従来の電極構造を有する面発光LEDでは上部電極から注入されるキャリアが活性層の広い面積に広がり、発光面積を拡大することが発光効率を高め素子輝度を高める上で重要である。この波長領域で使用される4元系混晶材料はキャリア移動度が低いため電流が拡散しにくいことから、従来からAlGaAs等が電流拡散層の材料として用いられてきた。しかし、素子表面層としてAlGaAsを用いることにより、ヘテロ界面が増え、界面のエネルギーバンドに生じるノッチによりキャリアの注入効率を著しく阻害する(すなわち駆動電圧の上昇を招く)こととなる。そこで本発明では、クラッド層を3〜50μmの厚膜構造にすることにより、電流拡散効果を持たせこの問題を解決した。図2に示すようにクラッド層の厚膜化の効果は膜厚の増加と共に徐々に増加する。従来素子の輝度(素子出力:15[任意単位])との比較から、電流拡散層に代えて厚膜クラッド層にして同等の輝度の素子が得られるためには上部クラッド層の厚さは最低でも3μmが必要で、さらに高輝度と見なせるためには従来の同一発光波長素子の約3割り増し程度の輝度増加が必要と考えられ、上部クラッド層の厚さは望ましくは5μm以上の厚さが必要である。また、おそらくは上部クラッド結晶中の格子欠陥によると思われる吸収の増加により、50μm以上の厚さではかえって従来素子よりも輝度が低下してしまう。また従来素子との比較からの最大輝度と作成コストの面からは厚さの上限は望ましくは10μm程度である。
【0014】
AlGaInP系材料を使用することによる第一の効果は素子の劣化の改良である。AlGaAsは本質的に4元系よりバンドギャップエネルギーが小さく、活性層からの発光に対して透明にするためにはそのAl混晶比を高めなければならない。この結果、高温高湿環境下での劣化が起き易く図3に示すように信頼性試験の結果では、従来の上部クラッド1μmとAlGaAsウィンド層4μmを有する素子は、AlGaInP上部クラッド層のみを有し、その厚さを5μmとしたの本発明の厚膜クラッド素子に比較して、時間経過に対する発光強度の低下が大きく、明らかに信頼性が劣っている。第二はより短波長発光の素子に対するウィンド効果である。4元系混晶はそれを活性層として用いた場合、550nm(緑)発光までの可能性を有する。しかし、ウィンド層としてAlGaAsを用いると、そのバンドギャップを極限まで高めたAlAsでもバンドギャップエネルギーは2.16eV(発光波長は574nmに相当)で吸収体となり、同一技術での電流拡散層として使用できなくなる。本発明の厚膜クラッド構造の技術思想によれば、DH構造が得られる限り同様の構造によりLEDを構成することができる。
【0015】
上部クラッド層のバンドギャップエネルギーを、厚さの関数として変化させることも有効である。先に述べたように、活性層のキャリア閉じこめ効果を高めるためにはクラッド層のバンドギャップエネルギーは大きい方がよい。しかし、上部クラッド層の底から上部に向かい徐々にそのバンドギャップエネルギーを減少させることにより以下のような効果が得られる。第一にバンド勾配を持つことにより、その上のコンタクト層から上部クラッド層へのキャリア注入を効率よく行えること。コンタクト層はそのオーム性電極の形成し易さから多くの場合バンドギャップエネルギーの小さな材質(例えばGaAs等)が用いられるが、この結果コンタクト層と上部クラッド層との間のエネルギー差が大きくなり、電流の注入効率を阻害する。そこで図5(b)に示すように活性層の発光波長を吸収しない範囲で上部クラッド層のバンドギャップエネルギーをコンタクト層に向かって徐々に減少させることにより、コンタクト層界面でのエネルギー差を小さく押さえることができる。従来のAlGaAs電流拡散層にはこのような効果もあったと考えられるが、素子の信頼性や形成されるエネルギーノッチの大きさから見ても、本発明での組成勾配クラッド層の方が優れている。
【0016】
第二の効果はバンドギャップエネルギーに依存する屈折率が変化することによる表面電極の見込み角の減少である。物質の屈折率はそのバンドギャップエネルギーとほぼ反比例して減少する。上に述べたようなバンドギャップエネルギープロファイルを有する上部クラッド層では、屈折率は上部クラッド層の底から上に向かって増加する。この結果、活性層から上部電極を覗くと光線(光学的最短線)は電極の外に向かって曲がることになり、上部電極の見かけの大きさは実寸よりも小さくなる。従って、上部電極により覆われる活性層の面積は小さくなる。この効果を実現するために従来から発光部(DH構造にあっては活性層、SHまたはホモ接合にあっては接合深さ)の素子表面からの深さを増加させることが行われてきた。しかし、これは作成コストを著しく増加させるため本発明の方が優位である。なお、この様な効果を有するにもかかわらず、クラッド層のバンドエネルギーの減少はキャリアの閉じ込め効果を減少させる。先に述べたようにキャリア閉じ込め効果を低下させないために、バンドギャップエネルギーが活性層より0.1eV以上大きな組成部分が、活性層との界面すなわち上部クラッド層の底から少なくとも0.5μm以上存在することが望ましい。この様なバンドギャップエネルギー勾配は4元系混晶における組成xを上部クラッドの底から上層に向かって変化させることにより、例えばMOCVD法等によれば容易に作成することができる。
【0017】
上部クラッド層のドーパントとしては、p型不純物としてはSi、Zn、Mg、Cd等が利用できる。また、n型不純物としてはSi、Se、Te等が利用できる。これらのうちでSiは両性不純物であり、成長温度によってp型不純物にもなる。また深い準位を作るため光の吸収が起こる原因となる。このような不都合を回避するためには、n型不純物としてはSe又はTeが適する。
クラッド層のキャリア濃度としては一般に1×1016cm-3〜2×1018cm-3が用いられるが、ダブルヘテロ構造の上部クラッド層のキャリア濃度を深さの関数として変化させることも有効である。活性層の導電型及びそのキャリア濃度については本発明は特に限定を与えない。ただし、上部クラッド層部分については、活性層に近くなるにつれてそのキャリア濃度を減少させることで以下のような効果を期待できる。第一にこの様なキャリア濃度プロファイルにより活性層近傍での比抵抗が増加する。特に上部クラッド層でこの様なプロファイルを取ることにより、上部電極からの活性層へのキャリア注入面積を増加させ、素子の発光効率が増加する効果が期待できる。第二に特にp型クラッド層側にこの様なキャリアプロファイルを採用することにより活性層への添加不純物の拡散を防止できる。一般にp型不純物として用いられている亜鉛は熱拡散しやすい。また、過剰の亜鉛原子は III−V族化合物半導体の結晶性を阻害することが知られている。発光効率を高めるために、良好な結晶性が要求される活性層界面付近での亜鉛濃度を下げるようなキャリア濃度プロファイルはきわめて有効となる。
【0018】
さらに、バンドギャップエネルギー勾配とキャリア濃度勾配を共に適用すると、双方の効果の相乗効果が期待できる。4元系混晶ではxが増加するにつれ特にp型不純物の添加が困難になるが、上記の方法によりバンドギャップエネルギーを減少させれば、すなわちxを減少させれば、これによりp型不純物のドープ量が増加しキャリア濃度勾配も得られることになる。この結果、上記のバンドギャップエネルギーの深さ勾配とキャリア濃度の深さ勾配の双方の効果が得られることになる。 以上のように構成することにより、電極からの注入電流が十分に広がり、高い発光効率が達成される。
【0019】
更に発光強度を高めるために、バッファー層とダブルヘテロ構造との間に反射層を設けると効果的である。反射層は互いに屈折率の異なるエピタキシャル成長層を交互に積層したものを用いる。高い反射率を得るための条件としては、対象波長に対して吸収が少ないような材料を反射層の構成層として選択することと、それらの屈折率差をなるべく大きく取ることである。各エピタキシャル成長層の厚さは、目標の発光波長のそれぞれ1/4の光学長(対象とする層の屈折率をn、目標発光波長をλとして、層の厚さはλ/4n)として、10〜25組程度積層する。例えば、Al混晶比の異なるAlGaAsで構成した場合、目標発光波長が620nmであれば、Al組成0.4及び0.95のAlGaAs層をそれぞれ厚さを41.9及び49.3nmとして25組積層することにより波長領域600〜640μmの範囲で90%以上の反射率を得ることができる。同様に効果を持つ多層膜の構成としては4元系でのx=0〜0.5及び0.5〜1の範囲の組成を持つ層の組み合わせが利用可能である。
【0020】
さらに基板と反対側の光取出し側の電極下部にも反射層を設けると、一層発光強度を増すことができる。この場合の反射層は下部反射層と同様な考え方で良い。
【0021】
コンタクト層については、その上の金属電極とオーム性接触を取りやすいことを目安に選ぶ。厚さは通常0.1〜1μmであり、成長の基板と同一の材料を用いるのが一般的である。基板としてGaAsを用いた場合については、基板と反対の電導型を有するGaAsを用いる。上部電極をオーム性とし易くするために、そのキャリア濃度は高めに設定され、n型では(0.5〜5)×1018cm-3、p型では1×1019cm-3以上が必要となる。
金属電極は、代表的なものとしてn型ではAu/Au−Ge、p型に対してはAu/Au−Beが用いられる。
【0022】
さて、本発明において基板及びコンタクト層の電導型については特に制限するものではないが、基板にp型のGaAsを用いた場合キャリア注入に対する抵抗が著しく高くなる場合がある。これは、GaAs基板と下部クラッド層間のバンドオフセットによりp型半導体の主なキャリアである有効質量の大きなホールの下部クラッド層への移動が妨げられるためである。このような場合、GaAs基板と下部クラッド層の間に双方の構成元素であるAl、Ga、In、As、Pを含み、その組成が基板組成から下部クラッド組成に向かって連続的に変化する組成勾配層を挟むことで素子の電気抵抗を下げることもできる。基板がp型GaAsで下部クラッド層(AlxGa1-x)yIn1-yPがx=0.7、y=0.5である場合、この組成勾配層Ala Gab In1-a-b As1-pp においてAl組成aは0から0.35まで、Ga組成bは1から0.35まで、In組成(1−a−b)は0から0.5まで、As組成(1−p)は1から0まで、P組成pは0から1まで、基板のGaAs界面から下部クラッド層界面に向かって変化させる。基板と下部クラッド層の間に前述の多層膜反射層を挟んだ場合には、基板と反射層の間及び反射層と下部クラッド層の間にそれぞれ同様の中間層を挿入することが有効である。
【0023】
上記のような半導体多層膜の作成方法については本発明は特に規定するものではないが、現実的な作成方法としてはMOCVD、ガスソースMBE等が挙げられる。LPE法は現在のところ4元系に対しては実績がなく、また多層膜反射層の層厚の制御性に対しても有効性は小さいと考える。ガスソースMBEは4元系レーザ等で一部実績が報告されているがLED用としては生産性の面で問題がある。LEDの作成方法として最も実現性の高いものはMOCVDとなるであろう。その際には使用原料として、エチル系、メチル系の各種アルキル金属(Al、Ga、In、Zn、Mg等)、V族元素等の水素化物(アルシン、ホスフィン、セレン化水素、シラン、ジシラン、硫化水素等)または有機V族化合物(TBAs、TBP等)等が挙げられる。
【0024】
【作用】
この発明は、(AlxGa1-x)yIn1-yPダブルヘテロ構造を有するLEDにおいて、窓層や電流拡散層を設ける代りに、上部クラッド層の厚さを厚くして、その特性を特定範囲に限定することにより電流の拡散を良くし、エピタキシャル成長界面を減じて良質の結晶を成長させて、発光効率の向上を計ったものである。
【0025】
【実施例】
次に、本発明の実施例を示す。
(実施例1)
GaAs基板上に(Al0.17Ga0.83)0.5In0.5 P発光層をもつDH構造を有するLEDを作った。断面構造を図4に示す。基板1としてはSiドープのn型GaAs単結晶を使用した。キャリア濃度は2.0 ×1018cm-3である。面方位は(100)4度オフとした。この基板上にMO−CVDを利用してエピタキシャル層を成長させた。原料ガスとしては、TMAl、TMGa、TMIn、DEZn、アルシン、ホスフィン、セレン化水素を使用し、ガスの混合比を変えることにより成長させる結晶の組成を変化させた。先ず、基板1上にGaAsバッファー層2を成長させた。バッファー層2はSeドープでキャリア濃度は1×1018cm-3、厚さは 0.5μmとした。
【0026】
つぎに、(AlxGa1-x)yIn1-y Pダブルヘテロ構造を形成した。下部クラッド層5の混晶比はx= 0.7、y= 0.5としてSeドープのn型(Al0.7Ga0.3)0.5In0.5 Pとした。キャリア濃度は1×1018cm-3、厚さは1μmとした。活性層6の混晶比はx=0.17、y= 0.5としてアンドープの(Al0.17Ga0.83)0.5In0.5 Pとした。キャリア濃度は1×1016cm-3、厚さは0.5μmとした。上部クラッド層7の混晶比はx= 0.7、y= 0.5としてZnドープのp型(Al0.7Ga0.3)0.5In0.5 Pとした。キャリア濃度は1×1017cm-3、厚さは6μmとした。この結果、ダブルヘテロ構造部のバンドギャップエネルギーは下部クラッド層5ではEg =2.29eV、活性層6ではEg =2.00eV、上部クラッド層7ではEg =2.29eVであった。上部クラッド層7のバンドギャップエネルギーのプロファイルを図5(a)に示す。また、上部クラッド層7のキャリア濃度プロファイルを図6(a)に示す。
【0027】
最後に、Znドープのp型GaAs層9を厚さ0.3μm成長させた。キャリア濃度は1×1018cm-3とした。この上に(Au−Be)/Auを蒸着し、オーミック電極10を形成した。又、基板裏面には(Au−Ge)/Auでオーミック電極11を形成してLEDを得た。
このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は20a.u.(arbitrary unit:任意単位, 特定の測定器で測定した値)であり、従来の厚さ1μmの上部クラッド層の場合の7a.u.に比較して、大幅に輝度が向上していた。
【0028】
(実施例2)
実施例1において、上部クラッド層7のバンドギャップエネルギーを変化させた。各層の構成は図4と同様である。実施例1では上部クラッド層7の組成は全厚さにわたってほぼ一定であるが、本実施例では厚さ方向に対して濃度勾配を設けた。即ち、上部クラッド層7の活性層6との界面近傍では混晶比はx= 0.7、y= 0.5で、キャリア濃度は1×1017cm-3、バンドギャップエネルギーは2.29eVであった。活性層6との界面から0.5μmの点では混晶比はx= 0.65 、y= 0.5で、キャリア濃度は1×1017cm-3、バンドギャップエネルギーは2.25eVであった。また、コンタクト層9との界面近傍では混晶比はx= 0.3、y= 0.5で、キャリア濃度は1×1017cm-3、バンドギャップエネルギーは2.1eVであった。
この結果、実施例2におけるダブルヘテロ構造の上部クラッド層7のバンドギャップエネルギーのプロファイルは、図5(b)に示すとおり活性層6より約0.3eV高い地点から上部クラッド層の厚さ方向に従って徐々に減少するプロファイルを示した。また、上部クラッド層7のキャリア濃度は図6(a)に示すとおり上部クラッド層内でほぼ一定となった。
【0029】
このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は22a.u.であり、従来の厚さ1μmの上部クラッ層の場合の7a.u.に比較して、大幅に輝度が向上していた。
【0030】
(実施例3)
実施例1において上部クラッド層7のキャリア濃度を厚さ方向に従って変化させた。各層の構成は図4と同様である。実施例1では上部クラッド層7のキャリア濃度は全厚さにわたってほぼ一定であるが、本実施例では厚さ方向に従って増加させた。即ち、上部クラッド層7の活性層6との界面近傍では混晶比はx= 0.7、y= 0.5で、キャリア濃度は7×1016cm-3、バンドギャップエネルギーは2.29eVであった。コンタクト層との界面近傍では混晶比はx= 0.7、y= 0.5で、キャリア濃度は1×1018cm-3、バンドギャップエネルギーは2.29eVであった。この結果、実施例3におけるダブルヘテロ構造の上部クラッド層7のキャリア濃度プロファイルは、図6(b)に示すとおり活性層との界面近傍から遠のくに従って徐々に増加するプロファイルを示した。また、上部クラッド層7のバンドギャップエネルギーは図5(a)に示すとおり、全厚にわたってほぼ一定であった。このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は24a.u.であった。
【0031】
(実施例4)
実施例1においてバッファ−層2と下部クラッド層5の間に下部反射層3を挿入した。断面構造を図7に示す。下部反射層3の構成はSeドープ、厚さ41.9nmのAl0.4Ga0.6As層3aと、Seドープ、厚さ49.3nmのAl0.95Ga0.05As層3bとを、25組積層させて構成した。キャリア濃度は2種の層の平均で1.5×1018cm-3であった。他の構成は実施例1と同じとした。
このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は40a.u.であった。
【0032】
(実施例5)
実施例4においてさらに上部クラッド層7とコンタクト層9との間に上部反射層8を挿入した。断面構造を図1に示す。上部反射層8の構成はZnドープ、厚さ41.9nmのAl0.4Ga0.6As層8aと、Znドープ、厚さ49.3nmのAl0.95Ga0.05As層8bとを、7組積層させて構成した。キャリア濃度は2種の層の平均で1×1018cm-3であった。他の構成は実施例4と同じとした。
このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は42a.u.であった。
【0033】
(実施例6)
実施例4において上部クラッド層7のバンドギャップエネルギーとキャリア濃度を厚さ方向に従って変化させた。各層の構成は図7と同様である。実施例4では上部クラッド層7の組成及びキャリア濃度は全厚さにわたってほぼ一定であるが、本実施例では厚さ方向に対してAl組成xを減少させ、キャリア濃度を厚さ方向に従って増加させた。即ち、上部クラッド層7の活性層6との界面近傍では混晶比はx= 0.7、y= 0.5で、キャリア濃度は7×1016cm-3、バンドギャップエネルギーは2.29eVであった。活性層6との界面から0.5μmの点では混晶比はx= 0.65 、y= 0.5で、キャリア濃度は9×1016cm-3、バンドギャップエネルギーは2.25eVであった。また、コンタクト層9との界面近傍では混晶比はx= 0.3、y= 0.5で、キャリア濃度は1×1018cm-3、バンドギャップエネルギーは2.1eVであった。
【0034】
この結果、実施例6におけるダブルヘテロ構造の上部クラッド層7のバンドギャップエネルギーのプロファイルは、図5(b)に示すとおり活性層6より約0.3eV高い地点から上部クラッド層の厚さ方向に従って徐々に減少するプロファイルを示し、キャリア濃度プロファイルは、図6(b)に示すとおり活性層との界面近傍から遠のくに従って徐々に増加するプロファイルを示した。
このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は52a.u.であった。
【0035】
(実施例7)
実施例6においてさらに上部クラッド層7とコンタクト層9との間に上部反射層8を挿入した。各層の構成は図1と同様である。上部反射層8の構成はZnドープ、厚さ41.9nmのAl0.4Ga0.6As層8aと、Znドープ、厚さ49.3nmのAl0.95Ga0.05As層8bとを、7組積層させて構成した。キャリア濃度は2種の層の平均で1×1018cm-3であった。他の構成は実施例6と同じとした。
このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は54a.u.であった。
【0036】
(実施例8)
実施例1では活性層6はAlGaInP であるが、本実施例ではGaInP を用いた。各層の構成は図4と同様である。即ち活性層6の混晶比はx= 0、y= 0.5としてアンドープのGa0.5In0.5Pとした。キャリア濃度は1×1015cm-3、厚さは0.5μmとした。この結果、ダブルヘテロ構造部のバンドギャップエネルギーは下部クラッド層5ではEg =2.29eV、活性層6ではEg =1.9eV、上部クラッド層7ではEg =2.29eVであった。他の構成は実施例1と同じとした。このようにして得たLEDの特性を評価したところ、波長650nm、電流20mAでの発光出力は31a.u.であり、活性層がGaInP であり上部クラッド層の厚さが従来の1μmの場合の9a.u.に比較して、大幅に輝度が向上していた。
【0037】
(実施例9)
実施例1では下部クラッド層5と上部クラッド層7にはAlGaInP を用いたが、本実施例ではAlInP を用いた。各層の構成は図4と同様である。即ち、下部クラッド層5の混晶比はx= 1、y= 0.5としてSeドープのn型Al0.5In0.5Pとした。キャリア濃度は1×1018cm-3、厚さは1μmとした。活性層6の混晶比はx=0.17、y= 0.5としてアンドープの(Al0.17Ga0.83)0.5In0.5 Pとした。キャリア濃度は1×1015cm-3、厚さは0.5μmとした。上部クラッド層7の混晶比はx= 1、y= 0.5としてZnドープのp型Al0.5In0.5Pとした。キャリア濃度は5×1016cm-3、厚さは6μmとした。
この結果、ダブルヘテロ構造部のバンドギャップエネルギーは下部クラッド層5ではEg =2.35eV、活性層6ではEg =2.00eV、上部クラッド層7ではEg =2.35eVとなった。他の構成は実施例1と同じとした。 このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は30a.u.であり、下部クラッド層及び上部クラッド層としてAlInP を用い、上部クラッド層の厚さが従来の1μmの場合の10a.u.に比較して、大幅に輝度が向上していた。
【0038】
(実施例10)
p型GaAs基板上にAlGaInPダブルヘテロ構造からなる発光層を有するLEDを作った。各層の構成は図4と同様である。基板1としてはZnドープのp型GaAs単結晶を使用した。キャリア濃度は5.0 ×1018cm-3である。面方位は(100)4゜offとした。基板上にMO−CVDを利用してエピタキシャル層を成長させた。
先ず、基板1上にGaAsバッファー層2を成長させた。バッファー層2はZnドープでキャリア濃度は1×1018cm-3、厚さは 0.5μmとした。
【0039】
つぎに、(AlxGa1-x)yIn1-y Pダブルヘテロ構造を形成した。下部クラッド層5の混晶比はx= 0.7、y= 0.5としてZnドープのp型(Al0.7Ga0.3)0.5In0.5 Pとした。キャリア濃度は1×1017cm-3、バンドギャップエネルギーは2.29eV、厚さは1μmとした。活性層6の混晶比はx=0.17、y= 0.5としてアンドープの(Al0.17Ga0.83)0.5In0.5 Pとした。キャリア濃度は1×1016cm-3、バンドギャップエネルギーは2.0eV、厚さは0.5μmとした。
上部クラッド層7の混晶比はx= 0.7、y= 0.5として、Seドープのn型(Al0.7Ga0.3)0.5In0.5 Pとした。キャリア濃度は7×1016cm-3、バンドギャップエネルギーは2.29eV、厚さは6μmとした。
【0040】
最後に、Seドープのn型GaAs層9を厚さ0.3μm成長させた。キャリア濃度は1×1018cm-3とした。この上に(Au−Ge)/Auを蒸着し、オーミック電極10を形成した。又、基板裏面には(Au−Be)/Auでオーミック電極11を形成してLEDを得た。
このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は25a.u.であり、従来の厚さ1μmの上部クラッ層の場合の7a.u.に比較して、大幅に輝度が向上していた。
【0041】
(実施例11)
実施例10においてバッファー層2と下部クラッド層5の間に反射層3を挿入した。各層の構成を図8に示す。反射層3の構成はZnドープ、厚さ41.9nmのAl0.4Ga0.6As層3aと、Znドープ、厚さ49.3nmのAl0.95Ga0.05As層3bとを12組積層させて構成した。キャリア濃度は2種の層の平均で1.5×1018cm-3であった。
さらに、本実施例においては、反射層3と下部クラッド層5の間に組成勾配層4を挿入した。反射層3の最上層はAl0.4Ga0.6As層3a、下部クラッド層5は(Al0.7Ga0.3)0.5In0.5 Pであったため、この組成勾配層Ala Gab In1-a-b As1-pp においてAl組成aは0.4から0.35まで、Ga組成bは0.6から0.15まで、In組成(1−a−b)は0から0.5まで、As組成(1−p)は1から0まで、P組成pは0から1まで、反射層3aとの界面から下部クラッド層5の界面に向かって変化させた。組成勾配層4の厚さは0.1μm、平均キャリア濃度は1.5×1018cm-3であった。他の構成は実施例10と同じとした。
【0042】
このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は50a.u.であった。さらに、注入電流20mAを得るための印加電圧として、実施例10においては、約7Vが必要であったのに対し、本実施例11においては2V以下の印加電圧で充分であった。
【0043】
(実施例12)
実施例11において、上部クラッド層7の厚さを10μmとした以外は実施例11と同じとした。各層の構成は図8の通りである。
このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は49a.u.であり、上部クラッド層7の厚さの増加によっても輝度の増加は見られなくなった。
【0044】
(実施例13)
実施例11において上部クラッド層7のバンドギャップエネルギーとキャリア濃度を厚さ方向に従って変化させた。各層の構成は図8と同様である。実施例11では上部クラッド層7の組成及びキャリア濃度は全厚さにわたってほぼ一定であるが、本実施例では厚さ方向に対してAl組成xを減少させ、キャリア濃度を厚さ方向に従って増加させた。即ち、上部クラッド層7の活性層6との界面近傍では混晶比はx= 0.7、y= 0.5で、キャリア濃度は5×1016cm-3、バンドギャップエネルギーは2.29eVであった。活性層6との界面から0.5μmの点では混晶比はx= 0.65 、y= 0.5で、キャリア濃度は7×1016cm-3、バンドギャップエネルギーは2.25eVであった。また、コンタクト層9との界面近傍では混晶比はx= 0.3、y= 0.5で、キャリア濃度は1×1018cm-3、バンドギャップエネルギーは2.1eVであった。
【0045】
この結果、実施例13におけるダブルヘテロ構造のバンドギャップエネルギーのプロファイルは、図10(b)に示すとおり活性層6より約0.3eV高い地点から上部クラッド層の厚さ方向に従って徐々に減少するプロファイルを示し、キャリア濃度プロファイルは、図11(b)に示すとおり活性層との界面近傍から遠のくに従って徐々に増加するプロファイルを示した。
他の構成は実施例11と同じとした。
このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は52a.u.であった。
【0046】
(実施例14)
実施例13においてさらに上部クラッド層7とコンタクト層9との間に上部反射層8を挿入した。各層の構成を図9に示す。上部反射層8の構成はSeドープ、厚さ41.9nmのAl0.4Ga0.6As層8aと、Seドープ、厚さ49.3nmのAl0.95Ga0.05As層8bとを、7組積層させて構成した。キャリア濃度は2種の層の平均で1x1018cm-3であった。他の構成は実施例13と同じとした。
このようにして得たLEDの特性を評価したところ、波長620nm、電流20mAでの発光出力は54a.u.であった。
【0047】
【発明の効果】
本発明によれば、赤色から緑色のまで広範囲の領域にわたって高輝度のLEDが得られ、屋外での用途拡大に寄与する点が大である。特に波長550〜650nmの波長領域では、従来にくらべて3〜4倍の輝度のLEDが得られるので、交通標識等への使用が期待される。
【図面の簡単な説明】
【図1】本発明の実施例5、7の断面構造を説明する図である。
【図2】本発明の上部クラッド層膜厚と素子発光出力の関係を示す図である。
【図3】従来のAlGaAsウィンドウ層を有する素子と本発明の素子との信頼性の比較図である。
【図4】本発明の実施例1〜3及び実施例8〜10の断面構造を説明する図である。
【図5】本発明のバンドギャップエネルギープロファイルを示す図で、(a)は実施例1、3の場合、(b)は実施例2の場合を示す。
【図6】本発明のキャリア濃度プロファイルを示す図で、(a)は実施例1、2の場合を示し、(b)は実施例3の場合を示す。
【図7】本発明の実施例4、6の断面構造を説明する図である。
【図8】本発明の実施例11、12の断面構造を説明する図である。
【図9】本発明の実施例13の断面構造を説明する図である。
【図10】本発明のバンドギャップエネルギープロファイルを示す図で、(a)は実施例10の場合、(b)は実施例13の場合を示す。
【図11】本発明のキャリア濃度プロファイルを示す図で、(a)は実施例10の場合、(b)は実施例13の場合を示す。
【図12】従来の(AlxGa1-x)yIn1-yPダブルヘテロ構造LEDの断面構造を説明する図である。
【符号の説明】
1 GaAs基板
2 バッファー層
3 下部反射層
4 中間層
5 下部クラッド層
6 活性層
7 上部クラッド層
8 上部反射層
9 コンタクト層
10 オーミック電極
11 オーミック電極

Claims (11)

  1. 化合物半導体基板上に(AlGa1−xIn1−yP(ただし、0≦x≦1、0<y<1)からなるダブルヘテロ構造を有し、該ダブルヘテロ構造の活性層の光取り出し側に、バンドギャップエレルギー(Eg)が活性層のバンドギャップエネルギーよりも0.1eV以上大きく、かつ厚さが3〜50μmの上部クラッド層を具備し、さらに該上部クラッド層は活性層の光取り出し側から厚さ方向に従って、バンドギャップエネルギーが徐々に減少しており、かつキャリア濃度分布が徐々に増加していることを特徴とする半導体発光ダイオード。
  2. 化合物半導体がp型GaAsであり、上部クラッド層がSe又はTeドープのn型(AlGa1−xIn1−yP(ただし、0≦x≦1、0<y<1)であることを特徴とする請求項1に記載の半導体発光ダイオード。
  3. 上部クラッド層のキャリア濃度が、活性層との界面において(1〜10)×1010cm−3であって、光取り出し側で(1〜10)×1017cm−3であることを特徴とする請求項1または2に記載の半導体発光ダイオード。
  4. ダブルヘテロ構造が、AlGaInPからなることを特徴とする請求項1〜のいずれか1項に記載の半導体発光ダイオード。
  5. ダブルヘテロ構造が、AlGaInP及びGaInPからなることを特徴とする請求項1〜のいずれか1項に記載の半導体発光ダイオード。
  6. ダブルヘテロ構造が、AlInP及びAlGaInPからなることを特徴とする請求項1〜のいずれか1項に記載の半導体発光ダイオード。
  7. 上部クラッド層の厚さが5〜10μmであることを特徴とする請求項1〜のいずれか1項に記載の半導体発光ダイオード。
  8. MOCVD法により、化合物半導体基板上に(AlGa1−xIn1−yP(ただし、0≦x≦1、0<y<1)からなるダブルヘテロ構造を形成し、該ダブルヘテロ構造の活性層の光取り出し側に、バンドギャップエレルギー(Eg)が活性層のバンドギャップエネルギーよりも0.1eV以上大きく、かつ厚さが3〜50μmの上部クラッド層を形成し、さらに該上部クラッド層が活性層の光取り出し側から厚さ方向に従って、バンドギャップエネルギーが徐々に減少しており、かつキャリア濃度分布が徐々に増加していることを特徴とする半導体発光ダイオードの製造方法。
  9. 化合物半導体がp型GaAsであり、上部クラッド層がSe又はTeドープのn型(AlGa1−xIn1−yP(ただし、0≦x≦1、0<y<1)であることを特徴とする請求項に記載の半導体発光ダイオードの製造方法。
  10. 上部クラッド層のキャリア濃度が、活性層との界面において(1〜10)×1016cm−3であって、光取り出し側で(1〜10)×1017cm−3であることを特徴とする請求項8または9に記載の半導体発光ダイオードの製造方法。
  11. 請求項1ないしのいずれか1項に記載の半導体発光ダイオードから製作した表示装置。
JP22167295A 1994-08-30 1995-08-30 半導体発光ダイオード Expired - Fee Related JP3635727B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22167295A JP3635727B2 (ja) 1994-08-30 1995-08-30 半導体発光ダイオード

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP20532394 1994-08-30
JP7-50107 1995-03-09
JP6-205323 1995-03-09
JP5010795 1995-03-09
JP22167295A JP3635727B2 (ja) 1994-08-30 1995-08-30 半導体発光ダイオード

Publications (2)

Publication Number Publication Date
JPH08306956A JPH08306956A (ja) 1996-11-22
JP3635727B2 true JP3635727B2 (ja) 2005-04-06

Family

ID=27293847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22167295A Expired - Fee Related JP3635727B2 (ja) 1994-08-30 1995-08-30 半導体発光ダイオード

Country Status (1)

Country Link
JP (1) JP3635727B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692286B2 (en) * 2007-12-14 2014-04-08 Philips Lumileds Lighing Company LLC Light emitting device with bonded interface
JP2010067903A (ja) 2008-09-12 2010-03-25 Toshiba Corp 発光素子

Also Published As

Publication number Publication date
JPH08306956A (ja) 1996-11-22

Similar Documents

Publication Publication Date Title
US5656829A (en) Semiconductor light emitting diode
JP3635757B2 (ja) AlGaInP発光ダイオード
JP3063756B1 (ja) 窒化物半導体素子
US7947994B2 (en) Nitride semiconductor device
US6838705B1 (en) Nitride semiconductor device
JP3551101B2 (ja) 窒化物半導体素子
JP3063757B1 (ja) 窒化物半導体素子
US6608328B2 (en) Semiconductor light emitting diode on a misoriented substrate
US5153889A (en) Semiconductor light emitting device
JP3656456B2 (ja) 窒化物半導体素子
JP4629178B2 (ja) 窒化物半導体素子
JP3890930B2 (ja) 窒化物半導体発光素子
JP3643665B2 (ja) 半導体発光素子
US7449720B2 (en) Epitaxial wafer for semiconductor light-emitting devices, and semiconductor light-emitting device
JPH0621511A (ja) 半導体発光素子
JPH10223929A (ja) AlGaInP発光素子用基板
JP2002305323A (ja) n型窒化物半導体積層体およびそれを用いる半導体素子
US6163037A (en) Double heterojunction light emitting device possessing a dopant gradient across the N-type layer
JP2000286451A (ja) 窒化物半導体素子
KR19990035944A (ko) 반도체발광소자 및 그 제조방법
JP2001298215A (ja) 発光素子
JP3635727B2 (ja) 半導体発光ダイオード
JPH11220172A (ja) 窒化ガリウム系化合物半導体発光素子
JPH0997920A (ja) AlGaInP発光ダイオード及びその製造方法
JP2004297060A (ja) 発光ダイオード素子とその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees