JP3635715B2 - 冷房装置用蒸発器 - Google Patents

冷房装置用蒸発器 Download PDF

Info

Publication number
JP3635715B2
JP3635715B2 JP11844795A JP11844795A JP3635715B2 JP 3635715 B2 JP3635715 B2 JP 3635715B2 JP 11844795 A JP11844795 A JP 11844795A JP 11844795 A JP11844795 A JP 11844795A JP 3635715 B2 JP3635715 B2 JP 3635715B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
channel
evaporator
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11844795A
Other languages
English (en)
Other versions
JPH08159607A (ja
Inventor
聡也 長澤
恵津夫 長谷川
伸治 梯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP11844795A priority Critical patent/JP3635715B2/ja
Priority to US08/539,525 priority patent/US5609036A/en
Publication of JPH08159607A publication Critical patent/JPH08159607A/ja
Application granted granted Critical
Publication of JP3635715B2 publication Critical patent/JP3635715B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、冷凍サイクルに使用される冷房装置用蒸発器に関し、特に複数の冷媒流路を並列に接続した冷房装置用蒸発器に関するものである。
【0002】
【従来の技術】
従来より、この種の冷房装置用蒸発器として、次のようなものが知られている。すなわち、流入流路と流出流路とを複数の冷媒流路により並列に接続した蒸発部と、冷凍サイクルの減圧弁と連通する被冷却流路と上記流出流路に連通し冷媒を出口に導く冷却流路との間で熱交換可能に形成された熱交換部と、上記被冷却流路の冷媒を減圧して上記流入流路に導く減圧手段と、上記熱交換部および上記減圧手段を迂回して上記蒸発部の流入流路に冷媒を導くバイパス流路と、を備えたものがそれである。
【0003】
この種の冷房装置用蒸発器では、冷凍サイクルの凝縮器で凝縮され減圧弁により一旦減圧された冷媒は、熱交換部にて更に冷却される。続いて、減圧手段にて更に減圧された後蒸発部にて蒸発し、周囲の空気から蒸発熱を吸収して熱交換部の冷却流路に導入される。冷却流路に導入された冷媒は被冷却流路の冷媒よりも低温化しており、被冷却流路の冷媒から熱を奪って冷凍サイクルに還元される。このように、この種の冷房装置用蒸発器では、熱交換部(いわゆるスーパークール)を持たせたことにより、蒸発部に導入される冷媒の乾き度(冷媒の気体成分の割合)を低減して、熱交換効率を向上させることができる。
【0004】
また、この種の冷房装置用蒸発器は、熱交換部および減圧手段を迂回して蒸発部の流入流路に冷媒を導くバイパス流路を有しており、次のような効果が得られる。冬期などの低温時や、冷房装置の試運転時のように、減圧弁上流の冷媒圧力が低くなる場合、熱交換部の被冷却流路の冷媒温度が冷却流路の冷媒温度以下となる。この場合、被冷却流路の冷媒が冷却流路の冷媒によって暖められるいわゆる逆熱交換が起こる。すると、被冷却流路の冷媒の気化が促進され、冷媒が熱交換部を流れ難くなってしまう。このとき、上記バイパス流路を通った冷媒は逆熱交換を受けることなく蒸発部に達することができる。このため、前述のように減圧弁上流の冷媒圧力が低い場合にも、熱交換効率を保持することができる。
【0005】
更に、この種の冷房装置用蒸発器では、例えば、特開平6−185831号公報に記載のように、バイパス流路に、減圧弁上流の冷媒圧力が低下したときに開弁する弁体を設けることが考えられている。このような弁体を設けた場合、減圧弁上流の冷媒圧力が充分に高く、熱交換部に導入しても逆熱交換が起こらないのであれば、弁体を閉弁してバイパス流路を閉鎖し、全冷媒を熱交換部に導入することができる。すると、冷媒の乾き度を一層低くして一層熱交換効率を向上させることができる。また、減圧弁上流の冷媒圧力きわめて低くが逆熱交換の起こる可能性があれば、弁体を開いてバイパス流路を開き、逆熱交換を防止することができる。
【0006】
【発明が解決しようとする課題】
ところが、減圧弁上流の冷媒圧力がきわめて低下したときにはじめて上記弁体が開弁するようにすると、熱交換部で逆熱交換が起ってもバイパス流路が開かず冷房装置用蒸発器の熱交換効率が低下する可能性がある。また、減圧弁上流の冷媒圧力が少し低下しただけで上記弁体が開弁するようにすると、次のような課題が発生する。すなわち、逆熱交換が起こらない限りバイパス流路を介して蒸発部に導入される冷媒の乾き度は、熱交換部を介して導入される冷媒の乾き度に比べて高い。このため、蒸発部に導入される冷媒の乾き度が高くなり、蒸発部の各冷媒流路に冷媒が充分均一に供給されなくなる可能性がある。すると、蒸発部での熱交換効率を充分に向上させることができない。
【0007】
そこで、本発明は、蒸発部に接続された熱交換部と、その熱交換部を迂回して蒸発部に冷媒を導入するバイパス流路とを備えた冷房装置用蒸発器において、バイパス流路の開閉を適切に制御して熱交換効率を向上させることを目的としてなされた。
【0008】
【課題を解決するための手段】
上記目的を達するためになされた請求項1記載の発明は、
流入流路と流出流路とを複数の冷媒流路により並列に接続した蒸発部と、
冷凍サイクルの減圧弁と連通する被冷却流路と、上記蒸発部の流出流路に連通し冷媒を出口に導く冷却流路との間で熱交換可能に形成された熱交換部と、
上記被冷却流路の冷媒を減圧して上記流入流路に導く減圧手段と、
上記熱交換部および上記減圧手段を迂回して上記蒸発部の流入流路に冷媒を導くバイパス流路と、
を備えた冷房装置用蒸発器において、
上記バイパス流路に、上記減圧弁上流の冷媒圧力が、上記熱交換部に導入しても上記被冷却流路の冷媒温度が上記冷却流路の冷媒温度以下となることなく、かつ、上記熱交換部へ導入せずに上記蒸発部の冷媒圧力まで直接減圧しても冷媒の乾き度が所定値以下となる所定圧以下となったときに開弁する弁体を設けたことを特徴とする冷房装置用蒸発器を要旨としている。
【0009】
また、請求項2記載の発明は、
上記冷媒がHFC−134aであり、上記蒸発部の冷媒圧力が約0.3MPa(絶対圧:以下、圧力は全て絶対圧で表示する)であり、上記所定圧が0.7±0.1MPaであることを特徴とする請求項1記載の冷房装置用蒸発器を要旨としている。
【0010】
更に、請求項3記載の発明は、
上記弁体が、上記減圧弁上流の冷媒圧力をパイロット圧として開閉する定圧弁であることを特徴とする請求項1または2記載の冷房装置用蒸発器を要旨としている。
【0011】
【作用および発明の効果】
このように構成された請求項1記載の発明は、バイパス流路に、上記減圧弁上流の冷媒圧力が、熱交換部に導入しても被冷却流路の冷媒温度が冷却流路の冷媒温度以下となる(すなわち、逆熱交換が起こる)ことなく、かつ、熱交換部へ導入せずに蒸発部の冷媒圧力まで直接減圧しても冷媒の乾き度が所定値以下となる所定圧以下となったときに開弁する弁体を備えている。
【0012】
蒸発部の各冷媒流路に冷媒がほぼ均一に供給される上限となる乾き度の所定値は、冷媒によりほぼ一定している。そして、減圧弁上流の冷媒圧力がある圧力(以下圧力Aという)以下であれば、冷媒を熱交換部へ導入せずに蒸発部の冷媒圧力まで直接減圧しても冷媒の乾き度は上記所定値以下となる。また、減圧弁上流の冷媒圧力がある圧力(以下圧力Bという)以下であれば、冷媒を熱交換部へ導入したとき逆熱交換が起こることが知られている。
【0013】
本発明では、減圧弁上流の冷媒圧力がB〜Aの所定圧以下となったとき、弁体が開弁してバイパス流路を開く。このため、熱交換部で逆熱交換が起こるのを防止すると共に、蒸発部へ導入される冷媒の乾き度を上記所定値以下とすることができる。従って、減圧弁上流の冷媒圧力がどのような値であっても、熱交換効率を良好に向上させることができる。
【0014】
また、請求項2記載の発明は、冷媒としてHFC−134aを使用している。この場合、乾き度を0.2以下に収めると蒸発部の冷媒流路に冷媒が均一に分配されることが経験的に知られている。また、本願出願人は、冷媒としてHFC−134aを使用した冷却装置用蒸発器では、蒸発部の冷媒圧力が約0.3MPaの場合、減圧弁上流の冷媒圧力が約0.8MPa以下であれば、冷媒を熱交換部へ導入せずに蒸発部の冷媒圧力まで直接減圧しても冷媒の乾き度が0.2以下となること、および、減圧弁上流の冷媒圧力が約0.6MPa以下であると冷媒を熱交換部へ導入したとき逆熱交換が起こることを発見した。本発明では、上記所定圧を0.7±0.1MPaとしているので、減圧弁上流の冷媒圧力がどのような値であっても、熱交換効率を良好に向上させることができる。
【0015】
更に、請求項3記載の発明では、上記弁体を、減圧弁上流の冷媒圧力をパイロット圧として開閉する定圧弁によって構成している。このため、減圧弁上流の冷媒圧力をセンサなどで検出して弁体を開閉駆動する場合に比べて、部品点数が少なくて済み構成が簡略化する。従って、本発明では、請求項1または2記載の発明の効果に加えて、構成を簡略化して製造コストを低減することができる。
【0016】
【実施例】
以下本発明の実施例を図面に基づいて詳細に説明する。
図1は本発明の第1実施例である冷房装置用蒸発器を適用した冷凍サイクルの概略構成図である。1はコンプレッサで、車両用に適用された場合にはコンプレッサ1は図示しない内燃機関で回転駆動され、コンプレッサ1はガス状の冷媒(本実施例ではHFC−134aを使用した)を圧縮して凝縮器2に送り、凝縮器2はこの冷媒を外部の空気により冷却して液状の冷媒としてレシーバ4に送るように接続されている。
【0017】
レシーバ4は冷媒を一時蓄えると共に、冷媒中の塵や水分を取り除くものである。そして、レシーバ4を出た冷媒は、膨張弁6に送られ、膨張弁6は、送られてきた冷媒を減圧させるものである。また、この膨張弁6は、図2に示すように、弁7の移動により、その開度を調節可能な構成のものである。なお、本実施例では、膨張弁6が減圧弁として働くが、減圧弁は開度が調節可能なものに限らず、固定絞り弁であっても実施可能である。
【0018】
膨張弁6は、弁7が、ばね10により閉弁方向に付勢力Ps により付勢されると共に、弁7の一端がダイヤフラム12に係合している。更に、後述する冷房装置用蒸発器(以下、単に蒸発器という)16の下流側に設けられた感温筒8を備え、蒸発器16の下流側の冷媒温度が上昇すると、感温筒8内の圧力Pf が上昇し、すなわち冷房負荷が増加すると、この圧力Pf がキャピラリチューブ14を介してダイヤフラム12の一側に作用して、弁7を開弁方向に移動して、冷媒の量を大きくするように開度が調節されるよう構成されている。
【0019】
また、膨張弁6には、蒸発器16の下流側の冷媒圧力P0 をダイヤフラム12の他側に導入する外均管17が設けられており、弁7による開度は、上記ばね10の付勢力Ps と外均管17からの圧力P0 およびキャピラリチューブ14からの圧力Pf の釣合(Pf =Ps +P0 )により、蒸発器16の下流側での冷媒圧力と冷媒温度を補償するように構成されている。
【0020】
上記膨張弁6から出た冷媒は、蒸発器16に送られた後、ガス状の冷媒となってコンプレッサ1に吸い込まれるように接続されている。蒸発器16は、図3に示すように蒸発部18と熱交換部20とを備えており、蒸発部18は、図4に示すように、流入流路22と流出流路24とを備えている。そして、両流路22,24は複数の並列に接続された冷媒流路26により連通されており、冷媒流路26を通る冷媒と、車室内に供給される空気との間で熱交換が行われるように構成されている。
【0021】
一方、熱交換部20は、入口孔27を介して上記膨張弁6と連通する複数の被冷却流路28を備え、この被冷却流路28の下流側は合流した後、減圧手段としての絞り部30(図1)を介して流入流路22と連通している。また、熱交換部20は、蒸発部18の流出流路24に連通する複数の冷却流路32を備えており、冷却流路32の他端は合流した後、出口孔34を介して排出流路36(図1)に連通している。熱交換部20では、被冷却流路28と冷却流路32とが交互に配設され、各流路28,32内の冷媒の間で熱交換が可能にされている。
【0022】
図2に戻って、排出流路36には、上記感温筒8、および外均管17が取り付けられており、図1に示すように、排出流路36は出口孔34から排出された冷媒をコンプレッサ1に導入するように接続されている。
更に、レシーバ4と熱交換部20との間の流路に、バイパス流路38の一端が接続されて分岐されており、このバイパス流路38の他端は、絞り部30の下流側に連通している。また、バイパス流路38の入口には、定圧弁40が設けられている。この定圧弁40は、膨張弁6上流の冷媒圧力をパイロット圧として、その圧力が0.7±0.1MPa以下となったときに開弁するものである。また、定圧弁40は、前述の入口孔27,出口孔34と共に、一つのブロックジョイント41(図4)に収められている。
【0023】
次に、前述した蒸発器16の具体的な構成について図4〜9によって説明する。図4に示すように、冷媒流路26を形成する複数のコアプレート42,43がフィン44を挟んで交互に積層されて蒸発部18が形成されている。また、側板46とセンタプレート48との間に複数組の第1,第2プレート50,52が積層されており、1組の両プレート50,52は対称の形状をしている。
【0024】
第1,第2プレート50,52には、図5に示すように、被冷却流路28および冷却流路32を形成する波型の凹凸が多数形成されており、更に、第1,第2プレート50,52の上部には、入口孔27と各被冷却流路28とを連通する冷媒流路を形成する上側流入孔54、定圧弁40と連通し後述のキャピラリプレート56に至る冷媒流路を形成するバイパス孔58、および、出口孔34と各冷却流路32とを連通する上側流出孔60が形成されている。また、第1,第2プレート50,52の下部には、各被冷却流路28とキャピラリプレート56とを連通する下側流入孔62、キャピラリプレート56と流入流路22とを連通する一対の貫通孔64,66、および流出流路24と各冷却流路32とを連通する下側流出孔68が形成されている。
【0025】
側板46には、図6に示すように、ブロックジョイント41の入口孔27,出口孔34,定圧弁40と対向する位置に、それぞれ貫通孔70,72,74が形成され、第1,第2プレート50,52の貫通孔64,66と対向する位置にはボルト76によって封止される検査孔78が、下側流出孔68と対向する位置には補強用リブ80が、それぞれ形成されている。
【0026】
センタプレート48は平板状に形成され、図7に示すように、バイパス孔58,下側流入孔62,下側流出孔68,および貫通孔64,66と対向する位置に、それぞれ貫通孔82,84,86,88,90が形成されている。
センタプレート48を挟んで第1,第2プレート50,52と対向配置されるキャピラリプレート56は、図8に示すように構成されている。すなわち、センタプレート48を介して第1,第2プレート50,52の下側流入孔62と対向する部分から、センタプレート48を介して貫通孔64と対向する部分に至って細溝94により絞り部30が形成されている。センタプレート48を介してバイパス孔58と対向する部分からセンタプレート48を介して貫通孔64と対向する部分に至って広幅の凹部96が形成され、この凹部96表面には多数の補強用リブ98が形成されている。なお、凹部96と細溝94との合流位置は、凹部96の補強用リブ98配設位置より下流側(貫通孔64側)に配設されている。
【0027】
このため、キャピラリプレート56をセンタプレート48に接合すると、細溝94とセンタプレート48との間に絞り部30としてのキャピラリ流路100(図4)が形成され、凹部96とセンタプレート48との間に前述のバイパス流路38が形成される。なお、凹部96には補強用リブ98が形成されているので、バイパス流路38を広幅に形成しても充分な強度を保持することができる。また、バイパス流路38とキャピラリ流路100との合流位置は、補強用リブ98の配設位置より下流側に配設される。このため、キャピラリ流路100を介して冷媒のジェット噴流200が形成されても、そのジェット噴流200が補強用リブ98に衝突して騒音を発生したりしない。
【0028】
更に、キャピラリプレート56の下部には、センタプレート48の貫通孔90および第1,第2プレート50,52の貫通孔66と蒸発部18の流入流路22とを連通する貫通孔102、並びに、センタプレート48の貫通孔86および第1,第2プレート50,52の下側流出孔68と蒸発部18の流出流路24とを連通する貫通孔104がそれぞれ形成されている。
【0029】
キャピラリプレート56と蒸発部18との間に配設される補強プレート106には、図9に示すように、凹部96や細溝94の形状に応じた凹凸が形成されている。このため、この補強プレート106をキャピラリプレート56と接合することにより、バイパス流路38やキャピラリ流路100を補強することができる。また、補強プレート106は他のプレート46,48,50,52,56より短く形成され、蒸発部18の流入流路22,流出流路24とキャピラリプレート56の貫通孔102,104とは、補強プレート106の下部を通って連通している。
【0030】
蒸発部18を形成するコアプレート42,43は、図10に示すように構成されている。すなわち、各コアプレート42,43の下側には、流入孔112と流出孔114とが形成されており、両コアプレート42,43は対称の形状である。この流入孔112により流入流路22が形成されると共に、流出孔114により流出流路24が形成される。各コアプレート42,43には、流入孔112と流出孔114とを連通する逆U字状の凹部116が形成され、この凹部116を対向させてコアプレート42,43を接合することにより、前述の冷媒流路26が形成される。本実施例の蒸発器16は、これらの各プレート42,43,46,48,50,52,56,106をろう付けにより接合して作成される。
【0031】
次に、前述した本実施例の蒸発器16の動作について、冷凍サイクルの動作と共に説明する。
まず、夏期における冷凍サイクルを、図11に例示するモリエル線図と共に説明する。コンプレッサ1の駆動により、ガス状の冷媒が吸入されて圧縮され(f点−g点間)、凝縮器2に送られる。凝縮器2では、冷媒と空気との間で熱交換を行い、高温の冷媒を空気により冷却して(g点−a点間)、液状の冷媒としてレシーバ4に送る。
【0032】
レシーバ4に送られた冷媒は、一時蓄えられて、定圧弁40および膨張弁6に送られる。夏期には膨張弁6上流(g点−a点間)の冷媒圧力P1 が通常0.7MPaより充分に高くなるので、定圧弁40はほぼ閉弁している。このため、ほぼ全量の冷媒が膨張弁6に流入する。膨張弁6は、蒸発器16の下流側のキャピラリチューブ14を介して検出される感温筒8の圧力Pf と、ばね10の付勢力Ps および外均管17を介して検出される蒸発器16の下流の冷媒圧力P0 との釣合により、その開度が調節される。
【0033】
膨張弁6を通過した冷媒は、その開度に応じて流量が調節されると共に減圧されて(a点−b点間)、蒸発器16の入口孔27に送られる。冷媒は、被冷却流路28を介して更に冷却され、下側流入孔62を介してキャピラリ流路100に達する(b点−c点間)。その後、キャピラリ流路100を介して減圧され、貫通孔64,66を介して蒸発部18の流入流路22に送られる(c点−d点間)。流入流路22に送られた冷媒は、各冷媒流路26に分岐される。冷媒が冷媒流路26内にあるときには、冷媒と空気との間で各コアプレート42,43およびフィン44を介して熱交換が行われて、車室内へ供給される空気が冷却される(d点−e点間)。
【0034】
各冷媒流路26を通って流出流路24に送られた冷媒は、下側流出孔68を介して冷却流路32を通り、被冷却流路28の冷媒から熱を奪った後、上側流出孔60,出口孔34を介して排出流路36に排出される(e点−f点間)。すなわち、冷媒が冷却流路32を流れる際、被冷却流路28内の冷媒との間で熱交換が行われる。このため、冷却流路32を通過する冷媒は加熱されて(e点−f点間)過熱蒸気となり、また、被冷却流路28を通過する冷媒は冷却されて(b点−c点間)、膨張弁6の通過により気液二相状態となっている冷媒が、液状の冷媒にされる。
【0035】
これにより、被冷却流路28を流れる冷媒の液化が促進され液状の単相の冷媒となって、キャピラリ流路100を介して蒸発部18の流入流路22に送られる。このため、図11のd点における冷媒の乾き度xが0.2以下となる。ここで、冷媒としてHFC−134aを使用した場合、x≦0.2とすると、各冷媒流路26に冷媒が均等に分配されることが経験的に知られている。このため、各コアプレート42,43の間を通る空気に冷却むらが生じるのが防止される。すなわち、冷媒はほぼ液状の単相の状態であり、分配のための絞り等を設けなくても、流入流路22から各冷媒流路26に冷媒がほぼ均等に分配される。
【0036】
そして、冷却流路32から出口孔34に送られた冷媒は、排出流路36からコンプレッサ1に送られる。なお、図11の例では、凝縮器2の圧力P1 =1.0MPa、蒸発部18の圧力P3 =0.3MPaとしており、このとき、被冷却流路28の圧力P2 は0.6MPaとなる。
【0037】
一方、近年の車両の空調にあっては、冬期であっても、冷凍サイクルを実行し、空気を除湿した後、図示しないヒータにより加熱する。冬期の場合のように、凝縮器2を通過する空気温度が0〜10℃と低い場合には、コンプレッサ1で圧縮(f点−g点間)された冷媒は、凝縮器2に送られ、熱交換により冷却されて液状の冷媒となる(g点−a点間)。しかし、凝縮器2では外気温度が低いために液化が促進され、冷媒が溜る傾向になる。このため、凝縮器2の出口の圧力P1 が低くなる。すると、図12のモリエル線図に例示するように、レシーバ4から供給された冷媒を、熱交換部20へ導入せず、定圧弁40にて直接P3 まで減圧しても冷媒の乾き度xは0.2以下となる(a点−d点間)。このため、全量の冷媒をバイパス流路38を介して蒸発部18に導入しても良好な熱交換効率が得られる。
【0038】
また、凝縮器2の圧力P1 が更に低下したとき、冷媒が熱交換部20を通過すると、次のような逆熱交換が起こる。すなわち、図13のモリエル線図に例示するように、液化された冷媒はレシーバ4を通り、膨張弁6により減圧され(a点−b点間)、熱交換部20の被冷却流路28に送られる。その後、絞り部30(キャピラリ流路100)を介して蒸発部18の流入流路22に送られる(c点−d点間)。この際、供給される冷媒の圧力が低く、冷媒の量も少ない。そして、流入流路22に送られた冷媒は、各冷媒流路26に分配されて、空気との間で熱交換を行う。図示しないヒータにより加熱されている室内の空気温度は、例えば25℃と高く、冷媒は過熱蒸気となって、流出流路24に送られる(d点−e点間)。
【0039】
そして、流出流路24から熱交換部20の冷却流路32に送られた冷媒は、被冷却流路28の冷媒との間で熱交換を行うが、その際、冷却流路32の冷媒の温度の方が高く、被冷却流路28の冷媒は加熱されてしまう(b点−c点間)。また、冷却流路32の冷媒は冷却されてしまう(e点−f点間)。
【0040】
被冷却流路28の冷媒が加熱されると、冷媒の気化が促進され、被冷却流路28を通過し難くなる。なお、冷却流路32の冷媒は冷却されるため、感温筒8により検出される冷媒温度が低下し、膨張弁6の開度が減少して流量が低下する。このような逆熱交換が起こると、冷凍サイクルの熱交換効率が低下してしまう。なお、このような現象は低温時に限らず、試運転時のように冷媒量が少ないために圧力P1 が低くなる場合にも同様の逆熱交換が起こる。
【0041】
冷媒としてHFC−134aを使用した蒸発器16では、蒸発部18の冷媒圧力が約0.3MPaの場合、P1 ≦0.8MPaであれば、図12に例示した状態が生じる。すなわち、冷媒を熱交換部20へ導入せずに蒸発部18の冷媒圧力P3 まで直接減圧してもx≦0.2となることが判明している。また、P1 ≦0.6MPaであると図13に例示した状態が生じる。すなわち、冷媒を熱交換部20へ導入したとき逆熱交換が起こることが判明している。
【0042】
本実施例では、P1 ≦0.7±0.1MPaとなったときに定圧弁40を開弁してバイパス流路38を開き、それ以上の圧力では定圧弁40を閉弁して全量の冷媒を熱交換部20へ導入している。このため、熱交換部20で逆熱交換が起こるのを防止すると共に、蒸発部18へ導入される冷媒の乾き度xを0.2以下とすることができる。従って、圧力P1 がどのような値となっても、熱交換効率を良好に向上させることができる。
【0043】
また、本実施例では、キャピラリプレート56の凹部96に補強用リブ98を形成しており、これによって、充分な強度を保持したままバイパス流路38の流路面積を拡大することができる。このため、定圧弁40が開弁したときに冷媒がバイパス流路38を円滑に流通し、熱交換効率を一層向上させることができる。
【0044】
更に、本実施例では、キャピラリプレート56に、凹部96,補強用リブ98と共に、細溝94をプレス加工により形成し、これを平板状のセンタプレート48に接合することによりバイパス流路38およびキャピラリ流路100を形成している。このため、バイパス流路38およびキャピラリ流路100をきわめて簡単に作成することができる。従って、製造工程を簡略化して、製造コストを低く押さえることができる。
【0045】
なお、上記実施例では、絞り部30(キャピラリ流路100)を減圧手段として使用し、被冷却流路28の冷媒を減圧しているが、減圧手段としては、この他種々の構成を採用することができる。
図14は、第2実施例の蒸発器316の構成を表す分解斜視図である。なお、本実施例において、第1実施例と同様に構成した部分には、第1実施例で使用したものと同一の符号を使用して構成の詳細な説明を省略する。
【0046】
本実施例では、側板46とセンタプレート348との間に、複数組の第1〜第4プレート350a,352a,350b,352bが順次積層されている。第1プレート350aは、第1実施例の第1プレート50において上側流入孔54を塞いだ形状に形成されており、第2プレート352aは第2プレート52において上側流入孔54を塞いだ形状に、第3プレート350bは第1プレート50において下側流入孔62を塞いだ形状に、第4プレート352bは第2プレート52において下側流入孔62を塞いだ形状に、それぞれ形成されている。また、センタプレート348は、図15に示すように、貫通孔84に代えて、上側流入孔54と対向する位置に貫通孔384が形成された点でセンタプレート48と異なる。
【0047】
図14に戻って、キャピラリプレート56に対応する第5プレート356は、絞り部30(キャピラリ流路100)を形成する細溝94を有しておらず、バイパス流路38(図16)を形成する凹部396と、それを補強する補強用リブ398とが形成されている。更に、第5プレート356の下部には、第1〜第4プレート350a〜352bの貫通孔66と蒸発部18の流入流路とを連通する貫通孔402、および、第1〜第4プレート350a〜352bの下側流出孔68と蒸発部18の流出流路とを連通する貫通孔404がそれぞれ形成されている。
【0048】
このように構成された蒸発器316の熱交換部320は、第1〜第4プレート350a〜352bの間に、一つ置きに被冷却流路328(図では、配置および方向を概略的に表示)が形成される点では第1実施例と同様である。ところが、その被冷却流路328は、第1プレート350aと側板46との間、および第4プレート352bと第1プレート350aとの間では、全体として下に向かって形成され、第2プレート352aと第3プレート350bとの間では、全体として上に向かって形成される。しかも、その被冷却流路328は全体で連続した一本の流路となっている。
【0049】
このため、被冷却流路328を流動する際に冷媒に加わる流動抵抗は、第1実施例の被冷却流路28に比べてきわめて大きくなる。従って、この流動抵抗によって、冷媒の圧力が上記P3 まで低下する。すなわち、本実施例では、被冷却流路328が減圧手段の機能を兼ね備えているのである。
【0050】
図16は、本実施例の蒸発器316を適用した冷凍サイクルの概略構成図である。図16に示すように、蒸発器316は減圧手段としての絞り部30(図1)を有しておらず、冷媒が被冷却流路328を通過する際に減圧がなされる。従って、その冷凍サイクルの夏期におけるモリエル線図は、図17に例示するようになる。すなわち、被冷却流路28を通過する際、冷媒には、冷却と減圧とが同時になされる(b点−d点間)。このため、本実施例では、細溝94などの構成によりキャピラリ流路100を設けることなく、第1実施例と略同様の機能を達成することができる。
【0051】
但し、第1実施例の絞り部30のように、減圧手段として、被冷却流路と蒸発部の流入流路との間に設けた絞り部を適用する場合は、熱交換部における熱交換効率を向上させ、コンパクトにして熱交換性能の高い冷房装置用蒸発器を得ることができ、一方、第2実施例の被冷却流路328のように、被冷却流路自体が減圧手段を兼ねる場合は、部品の種類を減らして製造コストを低減することができるといった、各々独特の作用・効果が生じる。
【0052】
また、上側流入孔54から下側流入孔62に至るまでの被冷却流路を長くすることによっても、上記第2実施例と同様に、被冷却流路に減圧手段の機能を付与することもできる。図18は、第3実施例の蒸発器516の構成を表す分解斜視図である。なお、本実施例において、第1実施例または第3実施例と同様に構成した部分には、第1実施例または第3実施例で使用したものと同一の符号を使用して構成の詳細な説明を省略する。
【0053】
図18に示すように、本実施例では、側板46とセンタプレート48との間に、複数組の第1,第2プレート550,552が積層されている。そして、側板46は、第3実施例と同様の第5プレート356を介して蒸発部18に積層されている。ここで、本実施例では、第1,第2プレート550,552表面に形成される被冷却流路528の折り返し部556を増やしている。このため、同一の第1,第2プレート550,552間の、上側流入孔54から下側流入孔62に至るまでの被冷却流路528が長くなる。従って、被冷却流路528全体としての冷媒への流動抵抗が増加し、第2実施例と同様に、被冷却流路528に減圧手段としての機能を付与することができる。また、本実施例を適用した冷凍サイクルの夏期におけるモリエル線図も、図17と略同様になる。
【0054】
更に、本発明は上記各実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の態様で実施することができる。
例えば、上記各実施例では、膨張弁6上流の冷媒圧力P1 をパイロット圧とする定圧弁40により、バイパス流路38の開閉を切り換えているが、上記冷媒圧力P1 を圧力センサなどで電気的に検出し、この検出結果に応じて電磁弁などを駆動してバイパス流路38を開閉してもよい。上記各実施例では、定圧弁40を使用したことにより、このように圧力センサなどを使用する場合に比べ、部品点数が少なくて済み構成が簡略化し、延いては、製造コストを低減することができる。これに対して、このように圧力センサなどを使用する場合は、圧力P1 に応じて電磁弁の開閉デューティを変化させ、精密な制御を実行することができる。
【0055】
また、上記各実施例では、膨張弁6の上流側からバイパス流路38を分岐させているが、膨張弁6の下流側から分岐させる構成としてもよい。但し、この場合、膨張弁6は大流量の冷媒が通過できるように弁径の大きなタイプを使用する必要がある。なお、上記各実施例のようにバイパス流路38を膨張弁6の上流から分岐させた場合は流量制御弁である膨張弁6の弁7の径は小さくてすみ制御が容易である。バイパス流路38を膨張弁6の下流から分岐させた場合は、定圧弁40は開閉のみを行えばよく構成が単純であるといった独特の効果が生じる。
【0056】
更に、上記各実施例では冷媒としてHFC−134aを使用しているが他の冷媒を使用してもよい。但し、この場合、定圧弁40の開閉を切り換える圧力を使用冷媒に応じて変更する必要がある。
【図面の簡単な説明】
【図1】第1実施例の冷房装置用蒸発器を適用した冷凍サイクルの概略構成図である。
【図2】その冷凍サイクルの膨張弁の概略構成図である。
【図3】第1実施例の冷房装置用蒸発器の外観を表す斜視図である。
【図4】その冷房装置用蒸発器の構成を表す分解斜視図である。
【図5】その冷房装置用蒸発器の第1,第2プレートの構成を表す正面図である。
【図6】その冷房装置用蒸発器の側板の構成を表す正面図である。
【図7】その冷房装置用蒸発器のセンタプレートの構成を表す正面図である。
【図8】その冷房装置用蒸発器のキャピラリプレートの構成を表す正面図である。
【図9】その冷房装置用蒸発器の補強プレートの構成を表す正面図である。
【図10】その冷房装置用蒸発器のコアプレートの構成を表す正面図である。
【図11】第1実施例の冷凍サイクルの夏期におけるモリエル線図を表すグラフである。
【図12】第1実施例の冷凍サイクルの冬期におけるモリエル線図を表すグラフである。
【図13】比較例の冷凍サイクルの逆熱交換発生時のモリエル線図を表すグラフである。
【図14】第2実施例の冷房装置用蒸発器の構成を表す分解斜視図である。
【図15】その冷房装置用蒸発器のセンタプレートの構成を表す正面図である。
【図16】その冷房装置用蒸発器を適用した冷凍サイクルの概略構成図である。
【図17】第2実施例の冷凍サイクルの夏期におけるモリエル線図を表すグラフである。
【図18】第3実施例の冷房装置用蒸発器の構成を表す分解斜視図である。
【符号の説明】
1…コンプレッサ 2…凝縮器 4…レシーバ 6…膨張弁
16…蒸発器 18…蒸発部 20…熱交換部 22…流入流路
24…流出流路 26…冷媒流路 28…被冷却流路 30…絞り部
32…冷却流路 38…バイパス流路 40…定圧弁
42,43…コアプレート 46…側板 48…センタプレート
50…第1プレート 51…第2プレート 56…キャピラリプレート
58…バイパス孔 94…細溝 96…凹部
98…補強用リブ 100…キャピラリ流路 106…補強プレート

Claims (3)

  1. 流入流路と流出流路とを複数の冷媒流路により並列に接続した蒸発部と、
    冷凍サイクルの減圧弁と連通する被冷却流路と、上記蒸発部の流出流路に連通し冷媒を出口に導く冷却流路との間で熱交換可能に形成された熱交換部と、
    上記被冷却流路の冷媒を減圧して上記流入流路に導く減圧手段と、
    上記熱交換部および上記減圧手段を迂回して上記蒸発部の流入流路に冷媒を導くバイパス流路と、
    を備えた冷房装置用蒸発器において、
    上記バイパス流路に、上記減圧弁上流の冷媒圧力が、上記熱交換部に導入しても上記被冷却流路の冷媒温度が上記冷却流路の冷媒温度以下となることなく、かつ、上記熱交換部へ導入せずに上記蒸発部の冷媒圧力まで直接減圧しても冷媒の乾き度が所定値以下となる所定圧以下となったときに開弁する弁体を設けたことを特徴とする冷房装置用蒸発器。
  2. 上記冷媒がHFC−134aであり、上記蒸発部の冷媒圧力が約0.3MPa(絶対圧)であり、上記所定圧が0.7±0.1MPa(絶対圧)であることを特徴とする請求項1記載の冷房装置用蒸発器。
  3. 上記弁体が、上記減圧弁上流の冷媒圧力をパイロット圧として開閉する定圧弁であることを特徴とする請求項1または2記載の冷房装置用蒸発器。
JP11844795A 1994-10-07 1995-05-17 冷房装置用蒸発器 Expired - Fee Related JP3635715B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11844795A JP3635715B2 (ja) 1994-10-07 1995-05-17 冷房装置用蒸発器
US08/539,525 US5609036A (en) 1994-10-07 1995-10-06 Evaporator for cooling apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-244294 1994-10-07
JP24429494 1994-10-07
JP11844795A JP3635715B2 (ja) 1994-10-07 1995-05-17 冷房装置用蒸発器

Publications (2)

Publication Number Publication Date
JPH08159607A JPH08159607A (ja) 1996-06-21
JP3635715B2 true JP3635715B2 (ja) 2005-04-06

Family

ID=26456384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11844795A Expired - Fee Related JP3635715B2 (ja) 1994-10-07 1995-05-17 冷房装置用蒸発器

Country Status (2)

Country Link
US (1) US5609036A (ja)
JP (1) JP3635715B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314747B1 (en) 1999-01-12 2001-11-13 Xdx, Llc Vapor compression system and method
US6523365B2 (en) * 2000-12-29 2003-02-25 Visteon Global Technologies, Inc. Accumulator with internal heat exchanger
US6463757B1 (en) 2001-05-24 2002-10-15 Halla Climate Controls Canada, Inc. Internal heat exchanger accumulator
DE50212488D1 (de) * 2001-12-21 2008-08-21 Daimler Ag Aufbau und regelung einer klimaanlage für ein kraftfahrzeug
US20050081559A1 (en) * 2003-10-20 2005-04-21 Mcgregor Ian A.N. Accumulator with pickup tube
US7080526B2 (en) * 2004-01-07 2006-07-25 Delphi Technologies, Inc. Full plate, alternating layered refrigerant flow evaporator
FR2916835B1 (fr) * 2007-05-31 2010-07-30 Valeo Systemes Thermiques Module d'echange de chaleur pour un circuit de climatisation
EP2223023A1 (en) * 2007-11-14 2010-09-01 SWEP International AB Suction gas heat exchanger
DE102008060699A1 (de) * 2008-12-08 2010-06-10 Behr Gmbh & Co. Kg Verdampfer für einen Kältekreis
US20100243200A1 (en) * 2009-03-26 2010-09-30 Modine Manufacturing Company Suction line heat exchanger module and method of operating the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159821A (ja) * 1992-11-19 1994-06-07 Nippondenso Co Ltd 冷房装置
JP2917764B2 (ja) * 1992-09-17 1999-07-12 株式会社デンソー 冷房装置用蒸発器

Also Published As

Publication number Publication date
US5609036A (en) 1997-03-11
JPH08159607A (ja) 1996-06-21

Similar Documents

Publication Publication Date Title
US6293123B1 (en) Refrigeration cycle device
US7520142B2 (en) Ejector type refrigerating cycle
US8099978B2 (en) Evaporator unit
EP1686323B1 (en) Heat exchanger of air conditioner
US20090241573A1 (en) Refrigerant cycle device
JP6739344B2 (ja) 冷却設備
US5524455A (en) Evaporator for cooling units
JP3635715B2 (ja) 冷房装置用蒸発器
EP2718131B1 (en) Temperature control system with refrigerant recovery arrangement
JP6623962B2 (ja) 冷凍サイクル装置
WO2018088034A1 (ja) 冷凍サイクル装置
KR100688168B1 (ko) 공기조화기의 열교환기
JP2008051474A (ja) 超臨界冷凍サイクル装置
JP3633005B2 (ja) 冷房装置用蒸発器
JP3633030B2 (ja) 冷房装置用蒸発器
CN110103672A (zh) 电动汽车空调系统
JP3694552B2 (ja) 空気調和機
JPH06341726A (ja) 多室型空気調和機
JPH05157401A (ja) 熱交換器
JP3143990B2 (ja) 蒸発器
JP3143987B2 (ja) 蒸発器
JPH10213356A (ja) 冷凍サイクル装置
JP4901851B2 (ja) 膨張弁機構及びそれを搭載した空気調和装置
JPH06117727A (ja) 蒸発器
JPH06307737A (ja) 冷媒蒸発器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees