JP3633005B2 - 冷房装置用蒸発器 - Google Patents
冷房装置用蒸発器 Download PDFInfo
- Publication number
- JP3633005B2 JP3633005B2 JP24429394A JP24429394A JP3633005B2 JP 3633005 B2 JP3633005 B2 JP 3633005B2 JP 24429394 A JP24429394 A JP 24429394A JP 24429394 A JP24429394 A JP 24429394A JP 3633005 B2 JP3633005 B2 JP 3633005B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- channel
- evaporator
- capillary
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Air-Conditioning For Vehicles (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、冷凍サイクルに使用される冷房装置用蒸発器に関し、特に複数の冷媒流路を並列に接続した冷房装置用蒸発器に関するものである。
【0002】
【従来の技術】
従来より、この種の冷房装置用蒸発器として、次のようなものが知られている。すなわち、流入流路と流出流路とを複数の冷媒流路により並列に接続した蒸発部と、冷凍サイクルの減圧弁と連通する被冷却流路と上記流出流路に連通し冷媒を出口に導く冷却流路との間で熱交換可能に形成された熱交換部と、該熱交換部の被冷却流路と上記蒸発部の流入流路との間に介装され、上記被冷却流路からの冷媒を減圧する絞り部と、上記熱交換部および上記絞り部を迂回して上記蒸発部の流入流路に冷媒を導くバイパス流路と、を備えたものがそれである。
【0003】
この種の冷房装置用蒸発器では、冷凍サイクルの凝縮器で凝縮され減圧弁により一旦減圧された冷媒は、熱交換部にて更に冷却される。続いて、絞り部にて更に減圧された後蒸発部にて蒸発し、周囲の空気から蒸発熱を吸収して熱交換部の冷却流路に導入される。冷却流路に導入された冷媒は被冷却流路の冷媒よりも低温化しており、被冷却流路の冷媒から熱を奪って冷凍サイクルに還元される。このように、この種の冷房装置用蒸発器では、熱交換部(いわゆるスーパークール)を持たせたことにより、蒸発部に導入される冷媒の乾き度(冷媒の気体成分の割合)を低減して、熱交換効率を向上させることができる。
【0004】
また、この種の冷房装置用蒸発器は、熱交換部および絞り部を迂回して蒸発部の流入流路に冷媒を導くバイパス流路を有しており、次のような効果が得られる。冬期などの低温時や、冷房装置の試運転時のように、減圧弁上流の冷媒圧力が低くなる場合、熱交換部の被冷却流路の冷媒温度が冷却流路の冷媒温度以下となる。この場合、被冷却流路の冷媒が冷却流路の冷媒によって暖められるいわゆる逆熱交換が起こる。すると、被冷却流路の冷媒の気化が促進され、冷媒が熱交換部を流れ難くなってしまう。このとき、上記バイパス流路により冷媒は逆熱交換を受けることなく蒸発部に達することができる。このため、前述のように減圧弁上流の冷媒圧力が低い場合にも、高い熱交換効率を保持することができる。
【0005】
更に、この種の冷房装置用蒸発器では、例えば、特開平6−185831号公報に記載のように、上記絞り部を毛管によって構成することが考えられている。絞り部を毛管によって構成すると、絞り部を穴などによって構成した場合に比べて、冷媒が絞り部を通過する際の騒音を低減することができる。
【0006】
【発明が解決しようとする課題】
ところが、毛管を通過した冷媒は、きわめて流速の速いジェット噴流となっている。また、上記毛管,バイパス流路,およびバイパス流路を補強するリブを、互いに接合された一対のプレートの間に形成する場合があるが、この場合、バイパス流路の毛管との合流位置を、リブの配設位置より上流に配設すると、次のような課題が生じる。すなわち、このように構成した場合、毛管から噴射された冷媒がリブに衝突し、リブの周囲に渦を形成する可能性がある。すると、その渦によってピーピーという騒音が発生することが考えられるのである。
【0007】
また、バイパス流路と毛管とを別々のプレート間に形成すると、上記騒音は発生しないが部品点数が増加し、製造コストが増大してしまう。更に、リブを省略するとバイパス流路を充分に広くすることができず、低温時や試運転時に充分な熱交換効率が得られない可能性がある。
【0008】
そこで、本発明は、低い製造コストで良好な熱交換効率が得られると共に、騒音を良好に抑制することのできる冷房装置用冷却器を提供することを目的としてなされた。
【0009】
【課題を解決するための手段】
上記目的を達するためになされた請求項1記載の発明は、
流入流路と流出流路とを複数の冷媒流路により並列に接続した蒸発部と、
冷凍サイクルの減圧弁と連通する被冷却流路と、上記蒸発部の流出流路に連通し冷媒を出口に導く冷却流路との間で熱交換可能に形成された熱交換部と、
該熱交換部の被冷却流路と上記蒸発部の流入流路との間に介装され、上記被冷却流路からの冷媒を減圧して上記流入流路に導く毛管と、
上記熱交換部および上記毛管を迂回して上記蒸発部の流入流路に冷媒を導くバイパス流路と、
を備えた冷房装置用蒸発器において、
上記毛管,上記バイパス流路,および上記バイパス流路を補強するリブを、互いに接合された一対のプレートの間に形成すると共に、上記バイパス流路の上記毛管との合流位置を、上記リブの配設位置より下流に配設したことを特徴とする冷房装置用蒸発器を要旨としている。
【0010】
また、請求項2記載の発明は、
上記一対のプレートの内、一方のプレートが平板状であり、他方のプレートに上記毛管,上記バイパス流路,および上記リブに応じた凹凸がプレス加工により形成されたことを特徴とする請求項1記載の冷房装置用蒸発器を要旨としている。
【0011】
更に、請求項3記載の発明は、
上記バイパス流路に、上記減圧弁上流の冷媒圧力が、所定圧以下となったときに開弁する弁体を設けたことを特徴とする請求項1または2記載の冷房装置用蒸発器を要旨としている。
【0012】
【作用および発明の効果】
このように構成された請求項1記載の発明では、毛管,バイパス流路,およびバイパス流路を補強するリブを、互いに接合された一対のプレートの間に形成しているので、部品点数を減らして製造コストを低く押さえることができる。また、リブを形成したことによりバイパス流路を充分に広くすることができ、低温時や試運転時にも良好な熱交換効率を得ることができる。
【0013】
更に、バイパス流路の毛管との合流位置を、リブの配設位置より下流に配設している。このため、毛管から噴射された冷媒がリブに衝突して渦を形成するのを抑制することができる。また、毛管によって冷媒を減圧する本発明の構成は、絞り穴などによって減圧する構成に比べて騒音を低減することができる。従って、本発明では、騒音の発生を良好に防止することができる。すなわち、本発明では、低い製造コストで良好な熱交換効率が得られると共に、騒音を良好に抑制することができる。
【0014】
また、請求項2記載の発明は、請求項1記載の発明の構成に加えて、互いに接合される上記一対のプレートの内、一方のプレートが平板状であり、他方のプレートに上記毛管,上記バイパス流路,および上記リブに応じた凹凸をプレス加工により形成した構成を有する。このため、上記他方のプレートに上記プレス加工を施して上記一方のプレートと接合するだけで、リブにより補強されたバイパス流路および毛管を形成することができる。従って、請求項1記載の発明の効果に加えて、製造工程を一層簡略化し、製造コストを一層低減することができる。
【0015】
更に、請求項3記載の発明では、バイパス流路に、上記減圧弁上流の冷媒圧力が、所定圧以下となったときに開弁する弁体を設けている。このため、例えば、減圧弁上流の冷媒圧力が充分に高く、熱交換部で逆熱交換が起こる可能性が殆どないときは上記バイパス流路を閉鎖し、逆熱交換が起こる可能性が生じたときにはバイパス流路を開くことができる。本発明ではバイパス流路をリブで補強して充分に広く形成することができるので、弁体が開弁したときにも冷媒が円滑に流通し、きわめて良好な熱交換効率が得られる。
【0016】
すなわち、本発明ではリブによってバイパス流路を広く形成したことによる効果が一層顕著となる。また、請求項1記載の発明と共通の構成によりリブが存在しても騒音が増大することはない。従って、請求項1または2記載の発明の効果に加えて、騒音を防止しつつ一層良好に熱交換効率を向上させることができる。
【0017】
【実施例】
以下本発明の実施例を図面に基づいて詳細に説明する。
図1は本発明の一実施例である冷房装置用蒸発器を適用した冷凍サイクルの概略構成図である。1はコンプレッサで、車両用に適用された場合にはコンプレッサ1は図示しない内燃機関で回転駆動され、コンプレッサ1はガス状の冷媒(本実施例ではHFC−134aを使用した)を圧縮して凝縮器2に送り、凝縮器2はこの冷媒を外部の空気により冷却して液状の冷媒としてレシーバ4に送るように接続されている。
【0018】
レシーバ4は冷媒を一時蓄えると共に、冷媒中の塵や水分を取り除くものである。そして、レシーバ4を出た冷媒は、膨張弁6に送られ、膨張弁6は、送られてきた冷媒を減圧させるものである。また、この膨張弁6は、図2に示すように、弁7の移動により、その開度を調節可能な構成のものである。なお、本実施例では、膨張弁6が減圧弁として働くが、減圧弁は開度が調節可能なものに限らず、固定絞り弁であっても実施可能である。
【0019】
膨張弁6は、弁7が、ばね10により閉弁方向に付勢力Ps により付勢されると共に、弁7の一端がダイヤフラム12に係合している。更に、後述する冷房装置用蒸発器(以下、単に蒸発器という)16の下流側に設けられた感温筒8を備え、蒸発器16の下流側の冷媒温度が上昇すると、感温筒8内の圧力Pf が上昇し、すなわち冷房負荷が増加すると、この圧力Pf がキャピラリチューブ14を介してダイヤフラム12の一側に作用して、弁7を開弁方向に移動して、冷媒の量を大きくするように開度が調節されるよう構成されている。
【0020】
また、膨張弁6には、蒸発器16の下流側の冷媒圧力P0 をダイヤフラム12の他側に導入する外均管17が設けられており、弁7による開度は、上記ばね10の付勢力Ps と外均管17からの圧力P0 およびキャピラリチューブ14からの圧力Pf の釣合(Pf =Ps +P0 )により、蒸発器16の下流側での冷媒圧力と冷媒温度を補償するように構成されている。
【0021】
上記膨張弁6から出た冷媒は、蒸発器16に送られた後、ガス状の冷媒となってコンプレッサ1に吸い込まれるように接続されている。蒸発器16は、図3に示すように蒸発部18と熱交換部20とを備えており、蒸発部18は、図4に示すように、流入流路22と流出流路24とを備えている。そして、両流路22,24は複数の並列に接続された冷媒流路26により連通されており、冷媒流路26を通る冷媒と、車室内に供給される空気との間で熱交換が行われるように構成されている。
【0022】
一方、熱交換部20は、入口孔27を介して上記膨張弁6と連通する複数の被冷却流路28を備え、この被冷却流路28の下流側は合流した後、絞り部30を介して流入流路22と連通している。また、熱交換部20は、蒸発部18の流出流路24に連通する複数の冷却流路32を備えており、冷却流路32の他端は合流した後、出口孔34を介して排出流路36(図1)に連通している。熱交換部20では、被冷却流路28と冷却流路32とが交互に配設され、各流路28,32内の冷媒の間で熱交換が可能にされている。
【0023】
図2に戻って、排出流路36には、上記感温筒8、および外均管17が取り付けられており、図1に示すように、排出流路36は出口孔34から排出された冷媒をコンプレッサ1に導入するように接続されている。
更に、レシーバ4と膨張弁6との間の流路に、バイパス流路38の一端が接続されて分岐されており、このバイパス流路38の他端は、絞り部30の下流側に連通している。また、バイパス流路38の入口には、定圧弁40が設けられている。この定圧弁40は、膨張弁6上流の冷媒圧力をパイロット圧として、その圧力が0.7±0.1MPa(絶対圧:以下、圧力は全て絶対圧で表示する)以下となったときに開弁するものである。すなわち、定圧弁40は請求項3の弁体に相当する。また、定圧弁40は、前述の入口孔27,出口孔34と共に、一つのブロックジョイント41(図4)に収められている。
【0024】
次に、前述した蒸発器16の具体的な構成について図4〜9によって説明する。図4に示すように、冷媒流路26を形成する複数のコアプレート42,43がフィン44を挟んで交互に積層されて蒸発部18が形成されている。また、側板46とセンタプレート48との間に複数組の第1,第2プレート50,52が積層されており、1組の両プレート50,52は対称の形状をしている。
【0025】
第1,第2プレート50,52には、図5に示すように、被冷却流路28および冷却流路32を形成する波型の凹凸が多数形成されており、更に、第1,第2プレート50,52の上部には、入口孔27と各被冷却流路28とを連通する冷媒流路を形成する上側流入孔54、定圧弁40と連通し後述のキャピラリプレート56に至る冷媒流路を形成するバイパス孔58、および、出口孔34と各冷却流路32とを連通する上側流出孔60が形成されている。また、第1,第2プレート50,51の下部には、各被冷却流路28とキャピラリプレート56とを連通する下側流入孔62、キャピラリプレート56と流入流路22とを連通する一対の貫通孔64,66、および流出流路24と各冷却流路32とを連通する下側流出孔68が形成されている。
【0026】
側板46には、図6に示すように、ブロックジョイント41の入口孔27,出口孔34,定圧弁40と対向する位置に、それぞれ貫通孔70,72,74が形成され、第1,第2プレート50,52の貫通孔64,66と対向する位置にはボルト76によって封止される検査孔78が、下側流出孔68と対向する位置には補強用リブ80が、それぞれ形成されている。
【0027】
センタプレート48は平板状に形成され、図7に示すように、バイパス孔58,下側流入孔62,下側流出孔68,および貫通孔64,66と対向する位置に、それぞれ貫通孔82,84,86,88,90が形成されている。
センタプレート48を挟んで第1,第2プレート50,52と対向配置されるキャピラリプレート56は、図8に示すように構成されている。すなわち、センタプレート48を介して第1,第2プレート50,52の下側流入孔62と対向する部分から、センタプレート48を介して貫通孔64と対向する部分に至って細溝94が形成されている。センタプレート48を介してバイパス孔58と対向する部分からセンタプレート48を介して貫通孔64と対向する部分に至って広幅の凹部96が形成され、この凹部96表面には多数の補強用リブ98が形成されている。なお、凹部96と細溝94との合流位置は、凹部96の補強用リブ98配設位置より下流側(貫通孔64側)に配設されている。
【0028】
このため、キャピラリプレート56をセンタプレート48に接合すると、細溝94とセンタプレート48との間に毛管としてのキャピラリ流路100が形成され、凹部96とセンタプレート48との間に前述のバイパス流路38が形成される。このキャピラリ流路100が図1に示す絞り部30を構成する。なお、凹部96には補強用リブ98が形成されているので、バイパス流路38を広幅に形成しても充分な強度を保持することができる。また、バイパス流路38とキャピラリ流路100との合流位置は、補強用リブ98の配設位置より下流側に配設される。
【0029】
更に、キャピラリプレート56の下部には、センタプレート48の貫通孔90および第1,第2プレート50,52の貫通孔66と蒸発部18の流入流路22とを連通する貫通孔102、並びに、センタプレート48の貫通孔86および第1,第2プレート50,52の下側流出孔68と蒸発部18の流出流路24とを連通する貫通孔104が形成されている。
【0030】
キャピラリプレート56と蒸発部18との間に配設される補強プレート106には、図9に示すように、凹部96や細溝94の形状に応じた凹凸が形成されている。このため、この補強プレート106をキャピラリプレート56と接合することにより、バイパス流路38やキャピラリ流路100を補強することができる。また、補強プレート106は他のプレート46,48,50,52,56より短く形成され、蒸発部18の流入流路22,流出流路24とキャピラリプレート56の貫通孔102,104とは、補強プレート106の下部を通って連通している。
【0031】
蒸発部18を形成するコアプレート42,43は、図10に示すように構成されている。すなわち、各コアプレート42,43の下側には、流入孔112と流出孔114とが形成されており、両コアプレート42,43は対称の形状である。この流入孔112により流入流路22が形成されると共に、流出孔114により流出流路24が形成される。各コアプレート42,43には、流入孔112と流出孔114とを連通する逆U字状の凹部116が形成され、この凹部116を対向させてコアプレート42,43を接合することにより、前述の冷媒流路26が形成される。本実施例の蒸発器16は、これらの各プレート42,43,46,48,50,52,56,106をろう付けにより接合して作成される。
【0032】
次に、前述した本実施例の蒸発器16の動作について、冷凍サイクルの動作と共に説明する。
まず、夏期における冷凍サイクルを、図11に例示するモリエル線図と共に説明する。コンプレッサ1の駆動により、ガス状の冷媒が吸入されて圧縮され(f点−g点間)、凝縮器2に送られる。凝縮器2では、冷媒と空気との間で熱交換を行い、高温の冷媒を空気により冷却して(g点−a点間)、液状の冷媒としてレシーバ4に送る。
【0033】
レシーバ4に送られた冷媒は、一時蓄えられて、定圧弁40および膨張弁6に送られる。夏期には膨張弁6上流(g点−a点間)の冷媒圧力P1 が通常0.7MPaより充分に高くなるので、定圧弁40はほぼ閉弁している。このため、ほぼ全量の冷媒が膨張弁6に流入する。膨張弁6は、蒸発器16の下流側のキャピラリチューブ14を介して検出される感温筒8の圧力Pf と、ばね10の付勢力Ps および外均管17を介して検出される蒸発器16の下流の冷媒圧力P0 との釣合により、その開度が調節される。
【0034】
膨張弁6を通過した冷媒は、その開度に応じて流量が調節されると共に減圧されて(a点−b点間)、蒸発器16の入口孔27および定圧弁40に送られる。冷媒は、被冷却流路28を介して更に冷却され、下側流入孔62を介してキャピラリ流路100に達する(b点−c点間)。その後、キャピラリ流路100を介して減圧され、貫通孔64,66を介して蒸発部18の流入流路22に送られる(c点−d点間)。流入流路22に送られた冷媒は、各冷媒流路26に分岐される。冷媒が冷媒流路26内にあるときには、冷媒と空気との間で各コアプレート42,43およびフィン44を介して熱交換が行われて、車室内へ供給される空気が冷却される(d点−e点間)。
【0035】
各冷媒流路26を通って流出流路24に送られた冷媒は、下側流出孔68を介して冷却流路32を通り、被冷却流路28の冷媒から熱を奪った後、上側流出孔60,出口孔34を介して排出流路36に排出される(e点−f点間)。すなわち、冷媒が冷却流路32を流れる際、被冷却流路28内の冷媒との間で熱交換が行われる。このため、冷却流路32を通過する冷媒は加熱されて(e点−f点間)過熱蒸気となり、また、被冷却流路28を通過する冷媒は冷却されて(b点−c点間)、膨張弁6の通過により気液二相状態となっている冷媒が、液状の冷媒にされる。
【0036】
これにより、被冷却流路28を流れる冷媒の液化が促進され液状の単相の冷媒となって、キャピラリ流路100を介して蒸発部18の流入流路22に送られる。このため、図11のd点における冷媒の乾き度xが0.2以下となる。ここで、冷媒としてHFC−134aを使用した場合、x≦0.2とすると、各冷媒流路26に冷媒が均等に分配されることが経験的に知られている。このため、各コアプレート42,43の間を通る空気に冷却むらが生じるのが防止される。すなわち、冷媒はほぼ液状の単相の状態であり、分配のための絞り等を設けなくても、流入流路22から各冷媒流路26に冷媒がほぼ均等に分配される。
【0037】
そして、冷却流路32から出口孔34に送られた冷媒は、排出流路36からコンプレッサ1に送られる。なお、図11の例では、凝縮器2の圧力P1 =1.0MPa、蒸発部18の圧力P3 =0.3MPaとしており、このとき、被冷却流路28の圧力P2 は0.6MPaとなる。
【0038】
一方、近年の車両の空調にあっては、冬期であっても、冷凍サイクルを実行し、空気を除湿した後、図示しないヒータにより加熱する。冬期の場合のように、凝縮器2を通過する空気温度がー5〜10℃と低い場合には、コンプレッサ1で圧縮(f点−g点間)された冷媒は、凝縮器2に送られ、熱交換により冷却されて液状の冷媒となる(g点−a点間)。しかし、凝縮器2では外気温度が低いために液化が促進され、冷媒が溜る傾向になる。このため、凝縮器2の出口の圧力P1 が低くなる。すると、図12のモリエル線図に例示するように、レシーバ4から供給された冷媒を、熱交換部20へ導入せず、定圧弁40にて直接P3 まで減圧しても冷媒の乾き度xは0.2以下となる(a点−d点間)。このため、全量の冷媒をバイパス流路38を介して蒸発部18に導入しても良好な熱交換効率が得られる。
【0039】
また、凝縮器2の圧力P1 が更に低下したとき、冷媒が熱交換部20を通過すると、次のような逆熱交換が起こる。すなわち、図13のモリエル線図に例示するように、液化された冷媒はレシーバ4を通り、膨張弁6により減圧され(a点−b点間)、熱交換部20の被冷却流路28に送られる。その後、キャピラリ流路100および絞り部30を介して蒸発部18の流入流路22に送られる(c点−d点間)。この際、供給される冷媒の圧力が低く、冷媒の量も少ない。そして、流入流路22に送られた冷媒は、各冷媒流路26に分配されて、空気との間で熱交換を行う。図示しないヒータにより加熱されている室内の空気温度は、例えば25℃と高く、冷媒は過熱蒸気となって、流出流路24に送られる(d点−e点間)。
【0040】
そして、流出流路24から熱交換部20の冷却流路32に送られた冷媒は、被冷却流路28の冷媒との間で熱交換を行うが、その際、冷却流路32の冷媒の温度の方が高く、被冷却流路28の冷媒は加熱されてしまう(b点−c点間)。また、冷却流路32の冷媒は冷却されてしまう(e点−f点間)。
【0041】
被冷却流路28の冷媒が加熱されると、冷媒の気化が促進され、被冷却流路28を通過し難くなる。なお、冷却流路32の冷媒は冷却されるため、感温筒8により検出される冷媒温度が低下し、膨張弁6の開度が減少して流量が低下する。このような逆熱交換が起こると、冷凍サイクルの熱交換効率が低下してしまう。なお、このような現象は低温時に限らず、試運転時のように冷媒量が少ないために圧力P1 が低くなる場合にも同様の逆熱交換が起こる。
【0042】
冷媒としてHFC−134aを使用した蒸発器16では、蒸発部18の冷媒圧力が約0.3MPaの場合、P1 ≦0.8MPaであれば、図12に例示した状態が生じる。すなわち、冷媒を熱交換部20へ導入せずに蒸発部18の冷媒圧力P3 まで直接減圧してもx≦0.2となることが判明している。また、P1 ≦0.6MPaであると図13に例示した状態が生じる。すなわち、冷媒を熱交換部20へ導入したとき逆熱交換が起こることが判明している。
【0043】
本実施例では、P1 ≦0.7±0.1MPaとなったときに定圧弁40を開弁してバイパス流路38を開き、それ以上の圧力では定圧弁40を閉弁して全量の冷媒を熱交換部20へ導入している。このため、熱交換部20で逆熱交換が起こるのを防止すると共に、蒸発部18へ導入される冷媒の乾き度xを0.2以下とすることができる。従って、圧力P1 がどのような値となっても、熱交換効率を良好に向上させることができる。
【0044】
また、本実施例では、キャピラリプレート56の凹部96に補強用リブ98を形成しており、これによって、充分な強度を保持したままバイパス流路38の流路面積を拡大することができる。このため、定圧弁40が開弁したときに冷媒がバイパス流路38を円滑に流通し、熱交換効率を一層向上させることができる。
【0045】
更に、本実施例では、キャピラリプレート56に、凹部96,補強用リブ98と共に、細溝94をプレス加工により形成し、これを平板状のセンタプレート48に接合することによりバイパス流路38およびキャピラリ流路100を形成している。このため、バイパス流路38およびキャピラリ流路100をきわめて簡単に作成することができる。従って、製造工程を簡略化して、製造コストを低く押さえることができる。
【0046】
また更に、本実施例ではキャピラリ流路100を介して冷媒を減圧しているので、絞り穴などによって減圧する構成に比べて騒音を低減することができる。しかも、バイパス流路38とキャピラリ流路100との合流位置は、補強用リブ98の配設位置より下流側に配設されている。このため、図8に例示したように、キャピラリ流路100から噴射されたジェット噴流200が補強用リブ98に衝突して渦などを形成するのを抑制することができる。
【0047】
すなわち、図14に例示する比較例のキャピラリプレート356のように、凹部396と細溝394との合流位置、すなわち、バイパス流路とキャピラリ流路との合流位置の下流側にも補強用リブ398が配設される場合、キャピラリ流路から噴射されたジェット噴流400はその補強用リブ398に衝突して、近接する補強用リブ398周囲に渦410を形成する。すると、この渦410によってピーピーという騒音が発生する可能性があるのである。これに対して本実施例ではこのような事態を回避して、騒音をきわめて良好に低減することができる。
【0048】
なお、本発明は上記実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の態様で実施することができる。例えば、上記実施例では定圧弁40によってバイパス流路38を開閉しているが、定圧弁40の代わりに単なる絞りを設けてもよい。この場合、熱交換部20での熱交換効率が低下すると、被冷却流路28内の冷媒圧力が増加し、上記絞りを介してバイパス流路38へ導入される冷媒の量が増大する。この場合、バイパス流路38の冷媒とキャピラリ流路100の冷媒とが圧力P1 に応じた所定の割合で合流するが、この場合もキャピラリ流路100からのジェット噴流200が補強用リブ98に衝突しないので、騒音を良好に低減することができる。また、上記実施例では冷媒としてHFC−134aを使用しているが他の冷媒を使用してもよい。
【図面の簡単な説明】
【図1】実施例の冷房装置用蒸発器を適用した冷凍サイクルの概略構成図である。
【図2】その冷凍サイクルの膨張弁の概略構成図である。
【図3】実施例の冷房装置用蒸発器の外観を表す斜視図である。
【図4】その冷房装置用蒸発器の構成を表す分解斜視図である。
【図5】その冷房装置用蒸発器の第1,第2プレートの構成を表す正面図である。
【図6】その冷房装置用蒸発器の側板の構成を表す正面図である。
【図7】その冷房装置用蒸発器のセンタプレートの構成を表す正面図である。
【図8】その冷房装置用蒸発器のキャピラリプレートの構成を表す正面図である。
【図9】その冷房装置用蒸発器の補強プレートの構成を表す正面図である。
【図10】その冷房装置用蒸発器のコアプレートの構成を表す正面図である。
【図11】実施例の冷凍サイクルの夏期におけるモリエル線図を表すグラフである。
【図12】実施例の冷凍サイクルの冬期におけるモリエル線図を表すグラフである。
【図13】比較例の冷凍サイクルの逆熱交換発生時のモリエル線図を表すグラフである。
【図14】比較例の冷房装置用蒸発器のキャピラリプレートの構成を表す正面図である。
【符号の説明】
1…コンプレッサ 2…凝縮器 4…レシーバ 6…膨張弁
16…蒸発器 18…蒸発部 20…熱交換部 22…流入流路
24…流出流路 26…冷媒流路 28…被冷却流路 30…絞り部
32…冷却流路 38…バイパス流路 40…定圧弁
42,43…コアプレート 46…側板 48…センタプレート
50…第1プレート 51…第2プレート 56…キャピラリプレート
58…バイパス孔 94…細溝 96…凹部
98…補強用リブ 100…キャピラリ流路 106…補強プレート
【産業上の利用分野】
本発明は、冷凍サイクルに使用される冷房装置用蒸発器に関し、特に複数の冷媒流路を並列に接続した冷房装置用蒸発器に関するものである。
【0002】
【従来の技術】
従来より、この種の冷房装置用蒸発器として、次のようなものが知られている。すなわち、流入流路と流出流路とを複数の冷媒流路により並列に接続した蒸発部と、冷凍サイクルの減圧弁と連通する被冷却流路と上記流出流路に連通し冷媒を出口に導く冷却流路との間で熱交換可能に形成された熱交換部と、該熱交換部の被冷却流路と上記蒸発部の流入流路との間に介装され、上記被冷却流路からの冷媒を減圧する絞り部と、上記熱交換部および上記絞り部を迂回して上記蒸発部の流入流路に冷媒を導くバイパス流路と、を備えたものがそれである。
【0003】
この種の冷房装置用蒸発器では、冷凍サイクルの凝縮器で凝縮され減圧弁により一旦減圧された冷媒は、熱交換部にて更に冷却される。続いて、絞り部にて更に減圧された後蒸発部にて蒸発し、周囲の空気から蒸発熱を吸収して熱交換部の冷却流路に導入される。冷却流路に導入された冷媒は被冷却流路の冷媒よりも低温化しており、被冷却流路の冷媒から熱を奪って冷凍サイクルに還元される。このように、この種の冷房装置用蒸発器では、熱交換部(いわゆるスーパークール)を持たせたことにより、蒸発部に導入される冷媒の乾き度(冷媒の気体成分の割合)を低減して、熱交換効率を向上させることができる。
【0004】
また、この種の冷房装置用蒸発器は、熱交換部および絞り部を迂回して蒸発部の流入流路に冷媒を導くバイパス流路を有しており、次のような効果が得られる。冬期などの低温時や、冷房装置の試運転時のように、減圧弁上流の冷媒圧力が低くなる場合、熱交換部の被冷却流路の冷媒温度が冷却流路の冷媒温度以下となる。この場合、被冷却流路の冷媒が冷却流路の冷媒によって暖められるいわゆる逆熱交換が起こる。すると、被冷却流路の冷媒の気化が促進され、冷媒が熱交換部を流れ難くなってしまう。このとき、上記バイパス流路により冷媒は逆熱交換を受けることなく蒸発部に達することができる。このため、前述のように減圧弁上流の冷媒圧力が低い場合にも、高い熱交換効率を保持することができる。
【0005】
更に、この種の冷房装置用蒸発器では、例えば、特開平6−185831号公報に記載のように、上記絞り部を毛管によって構成することが考えられている。絞り部を毛管によって構成すると、絞り部を穴などによって構成した場合に比べて、冷媒が絞り部を通過する際の騒音を低減することができる。
【0006】
【発明が解決しようとする課題】
ところが、毛管を通過した冷媒は、きわめて流速の速いジェット噴流となっている。また、上記毛管,バイパス流路,およびバイパス流路を補強するリブを、互いに接合された一対のプレートの間に形成する場合があるが、この場合、バイパス流路の毛管との合流位置を、リブの配設位置より上流に配設すると、次のような課題が生じる。すなわち、このように構成した場合、毛管から噴射された冷媒がリブに衝突し、リブの周囲に渦を形成する可能性がある。すると、その渦によってピーピーという騒音が発生することが考えられるのである。
【0007】
また、バイパス流路と毛管とを別々のプレート間に形成すると、上記騒音は発生しないが部品点数が増加し、製造コストが増大してしまう。更に、リブを省略するとバイパス流路を充分に広くすることができず、低温時や試運転時に充分な熱交換効率が得られない可能性がある。
【0008】
そこで、本発明は、低い製造コストで良好な熱交換効率が得られると共に、騒音を良好に抑制することのできる冷房装置用冷却器を提供することを目的としてなされた。
【0009】
【課題を解決するための手段】
上記目的を達するためになされた請求項1記載の発明は、
流入流路と流出流路とを複数の冷媒流路により並列に接続した蒸発部と、
冷凍サイクルの減圧弁と連通する被冷却流路と、上記蒸発部の流出流路に連通し冷媒を出口に導く冷却流路との間で熱交換可能に形成された熱交換部と、
該熱交換部の被冷却流路と上記蒸発部の流入流路との間に介装され、上記被冷却流路からの冷媒を減圧して上記流入流路に導く毛管と、
上記熱交換部および上記毛管を迂回して上記蒸発部の流入流路に冷媒を導くバイパス流路と、
を備えた冷房装置用蒸発器において、
上記毛管,上記バイパス流路,および上記バイパス流路を補強するリブを、互いに接合された一対のプレートの間に形成すると共に、上記バイパス流路の上記毛管との合流位置を、上記リブの配設位置より下流に配設したことを特徴とする冷房装置用蒸発器を要旨としている。
【0010】
また、請求項2記載の発明は、
上記一対のプレートの内、一方のプレートが平板状であり、他方のプレートに上記毛管,上記バイパス流路,および上記リブに応じた凹凸がプレス加工により形成されたことを特徴とする請求項1記載の冷房装置用蒸発器を要旨としている。
【0011】
更に、請求項3記載の発明は、
上記バイパス流路に、上記減圧弁上流の冷媒圧力が、所定圧以下となったときに開弁する弁体を設けたことを特徴とする請求項1または2記載の冷房装置用蒸発器を要旨としている。
【0012】
【作用および発明の効果】
このように構成された請求項1記載の発明では、毛管,バイパス流路,およびバイパス流路を補強するリブを、互いに接合された一対のプレートの間に形成しているので、部品点数を減らして製造コストを低く押さえることができる。また、リブを形成したことによりバイパス流路を充分に広くすることができ、低温時や試運転時にも良好な熱交換効率を得ることができる。
【0013】
更に、バイパス流路の毛管との合流位置を、リブの配設位置より下流に配設している。このため、毛管から噴射された冷媒がリブに衝突して渦を形成するのを抑制することができる。また、毛管によって冷媒を減圧する本発明の構成は、絞り穴などによって減圧する構成に比べて騒音を低減することができる。従って、本発明では、騒音の発生を良好に防止することができる。すなわち、本発明では、低い製造コストで良好な熱交換効率が得られると共に、騒音を良好に抑制することができる。
【0014】
また、請求項2記載の発明は、請求項1記載の発明の構成に加えて、互いに接合される上記一対のプレートの内、一方のプレートが平板状であり、他方のプレートに上記毛管,上記バイパス流路,および上記リブに応じた凹凸をプレス加工により形成した構成を有する。このため、上記他方のプレートに上記プレス加工を施して上記一方のプレートと接合するだけで、リブにより補強されたバイパス流路および毛管を形成することができる。従って、請求項1記載の発明の効果に加えて、製造工程を一層簡略化し、製造コストを一層低減することができる。
【0015】
更に、請求項3記載の発明では、バイパス流路に、上記減圧弁上流の冷媒圧力が、所定圧以下となったときに開弁する弁体を設けている。このため、例えば、減圧弁上流の冷媒圧力が充分に高く、熱交換部で逆熱交換が起こる可能性が殆どないときは上記バイパス流路を閉鎖し、逆熱交換が起こる可能性が生じたときにはバイパス流路を開くことができる。本発明ではバイパス流路をリブで補強して充分に広く形成することができるので、弁体が開弁したときにも冷媒が円滑に流通し、きわめて良好な熱交換効率が得られる。
【0016】
すなわち、本発明ではリブによってバイパス流路を広く形成したことによる効果が一層顕著となる。また、請求項1記載の発明と共通の構成によりリブが存在しても騒音が増大することはない。従って、請求項1または2記載の発明の効果に加えて、騒音を防止しつつ一層良好に熱交換効率を向上させることができる。
【0017】
【実施例】
以下本発明の実施例を図面に基づいて詳細に説明する。
図1は本発明の一実施例である冷房装置用蒸発器を適用した冷凍サイクルの概略構成図である。1はコンプレッサで、車両用に適用された場合にはコンプレッサ1は図示しない内燃機関で回転駆動され、コンプレッサ1はガス状の冷媒(本実施例ではHFC−134aを使用した)を圧縮して凝縮器2に送り、凝縮器2はこの冷媒を外部の空気により冷却して液状の冷媒としてレシーバ4に送るように接続されている。
【0018】
レシーバ4は冷媒を一時蓄えると共に、冷媒中の塵や水分を取り除くものである。そして、レシーバ4を出た冷媒は、膨張弁6に送られ、膨張弁6は、送られてきた冷媒を減圧させるものである。また、この膨張弁6は、図2に示すように、弁7の移動により、その開度を調節可能な構成のものである。なお、本実施例では、膨張弁6が減圧弁として働くが、減圧弁は開度が調節可能なものに限らず、固定絞り弁であっても実施可能である。
【0019】
膨張弁6は、弁7が、ばね10により閉弁方向に付勢力Ps により付勢されると共に、弁7の一端がダイヤフラム12に係合している。更に、後述する冷房装置用蒸発器(以下、単に蒸発器という)16の下流側に設けられた感温筒8を備え、蒸発器16の下流側の冷媒温度が上昇すると、感温筒8内の圧力Pf が上昇し、すなわち冷房負荷が増加すると、この圧力Pf がキャピラリチューブ14を介してダイヤフラム12の一側に作用して、弁7を開弁方向に移動して、冷媒の量を大きくするように開度が調節されるよう構成されている。
【0020】
また、膨張弁6には、蒸発器16の下流側の冷媒圧力P0 をダイヤフラム12の他側に導入する外均管17が設けられており、弁7による開度は、上記ばね10の付勢力Ps と外均管17からの圧力P0 およびキャピラリチューブ14からの圧力Pf の釣合(Pf =Ps +P0 )により、蒸発器16の下流側での冷媒圧力と冷媒温度を補償するように構成されている。
【0021】
上記膨張弁6から出た冷媒は、蒸発器16に送られた後、ガス状の冷媒となってコンプレッサ1に吸い込まれるように接続されている。蒸発器16は、図3に示すように蒸発部18と熱交換部20とを備えており、蒸発部18は、図4に示すように、流入流路22と流出流路24とを備えている。そして、両流路22,24は複数の並列に接続された冷媒流路26により連通されており、冷媒流路26を通る冷媒と、車室内に供給される空気との間で熱交換が行われるように構成されている。
【0022】
一方、熱交換部20は、入口孔27を介して上記膨張弁6と連通する複数の被冷却流路28を備え、この被冷却流路28の下流側は合流した後、絞り部30を介して流入流路22と連通している。また、熱交換部20は、蒸発部18の流出流路24に連通する複数の冷却流路32を備えており、冷却流路32の他端は合流した後、出口孔34を介して排出流路36(図1)に連通している。熱交換部20では、被冷却流路28と冷却流路32とが交互に配設され、各流路28,32内の冷媒の間で熱交換が可能にされている。
【0023】
図2に戻って、排出流路36には、上記感温筒8、および外均管17が取り付けられており、図1に示すように、排出流路36は出口孔34から排出された冷媒をコンプレッサ1に導入するように接続されている。
更に、レシーバ4と膨張弁6との間の流路に、バイパス流路38の一端が接続されて分岐されており、このバイパス流路38の他端は、絞り部30の下流側に連通している。また、バイパス流路38の入口には、定圧弁40が設けられている。この定圧弁40は、膨張弁6上流の冷媒圧力をパイロット圧として、その圧力が0.7±0.1MPa(絶対圧:以下、圧力は全て絶対圧で表示する)以下となったときに開弁するものである。すなわち、定圧弁40は請求項3の弁体に相当する。また、定圧弁40は、前述の入口孔27,出口孔34と共に、一つのブロックジョイント41(図4)に収められている。
【0024】
次に、前述した蒸発器16の具体的な構成について図4〜9によって説明する。図4に示すように、冷媒流路26を形成する複数のコアプレート42,43がフィン44を挟んで交互に積層されて蒸発部18が形成されている。また、側板46とセンタプレート48との間に複数組の第1,第2プレート50,52が積層されており、1組の両プレート50,52は対称の形状をしている。
【0025】
第1,第2プレート50,52には、図5に示すように、被冷却流路28および冷却流路32を形成する波型の凹凸が多数形成されており、更に、第1,第2プレート50,52の上部には、入口孔27と各被冷却流路28とを連通する冷媒流路を形成する上側流入孔54、定圧弁40と連通し後述のキャピラリプレート56に至る冷媒流路を形成するバイパス孔58、および、出口孔34と各冷却流路32とを連通する上側流出孔60が形成されている。また、第1,第2プレート50,51の下部には、各被冷却流路28とキャピラリプレート56とを連通する下側流入孔62、キャピラリプレート56と流入流路22とを連通する一対の貫通孔64,66、および流出流路24と各冷却流路32とを連通する下側流出孔68が形成されている。
【0026】
側板46には、図6に示すように、ブロックジョイント41の入口孔27,出口孔34,定圧弁40と対向する位置に、それぞれ貫通孔70,72,74が形成され、第1,第2プレート50,52の貫通孔64,66と対向する位置にはボルト76によって封止される検査孔78が、下側流出孔68と対向する位置には補強用リブ80が、それぞれ形成されている。
【0027】
センタプレート48は平板状に形成され、図7に示すように、バイパス孔58,下側流入孔62,下側流出孔68,および貫通孔64,66と対向する位置に、それぞれ貫通孔82,84,86,88,90が形成されている。
センタプレート48を挟んで第1,第2プレート50,52と対向配置されるキャピラリプレート56は、図8に示すように構成されている。すなわち、センタプレート48を介して第1,第2プレート50,52の下側流入孔62と対向する部分から、センタプレート48を介して貫通孔64と対向する部分に至って細溝94が形成されている。センタプレート48を介してバイパス孔58と対向する部分からセンタプレート48を介して貫通孔64と対向する部分に至って広幅の凹部96が形成され、この凹部96表面には多数の補強用リブ98が形成されている。なお、凹部96と細溝94との合流位置は、凹部96の補強用リブ98配設位置より下流側(貫通孔64側)に配設されている。
【0028】
このため、キャピラリプレート56をセンタプレート48に接合すると、細溝94とセンタプレート48との間に毛管としてのキャピラリ流路100が形成され、凹部96とセンタプレート48との間に前述のバイパス流路38が形成される。このキャピラリ流路100が図1に示す絞り部30を構成する。なお、凹部96には補強用リブ98が形成されているので、バイパス流路38を広幅に形成しても充分な強度を保持することができる。また、バイパス流路38とキャピラリ流路100との合流位置は、補強用リブ98の配設位置より下流側に配設される。
【0029】
更に、キャピラリプレート56の下部には、センタプレート48の貫通孔90および第1,第2プレート50,52の貫通孔66と蒸発部18の流入流路22とを連通する貫通孔102、並びに、センタプレート48の貫通孔86および第1,第2プレート50,52の下側流出孔68と蒸発部18の流出流路24とを連通する貫通孔104が形成されている。
【0030】
キャピラリプレート56と蒸発部18との間に配設される補強プレート106には、図9に示すように、凹部96や細溝94の形状に応じた凹凸が形成されている。このため、この補強プレート106をキャピラリプレート56と接合することにより、バイパス流路38やキャピラリ流路100を補強することができる。また、補強プレート106は他のプレート46,48,50,52,56より短く形成され、蒸発部18の流入流路22,流出流路24とキャピラリプレート56の貫通孔102,104とは、補強プレート106の下部を通って連通している。
【0031】
蒸発部18を形成するコアプレート42,43は、図10に示すように構成されている。すなわち、各コアプレート42,43の下側には、流入孔112と流出孔114とが形成されており、両コアプレート42,43は対称の形状である。この流入孔112により流入流路22が形成されると共に、流出孔114により流出流路24が形成される。各コアプレート42,43には、流入孔112と流出孔114とを連通する逆U字状の凹部116が形成され、この凹部116を対向させてコアプレート42,43を接合することにより、前述の冷媒流路26が形成される。本実施例の蒸発器16は、これらの各プレート42,43,46,48,50,52,56,106をろう付けにより接合して作成される。
【0032】
次に、前述した本実施例の蒸発器16の動作について、冷凍サイクルの動作と共に説明する。
まず、夏期における冷凍サイクルを、図11に例示するモリエル線図と共に説明する。コンプレッサ1の駆動により、ガス状の冷媒が吸入されて圧縮され(f点−g点間)、凝縮器2に送られる。凝縮器2では、冷媒と空気との間で熱交換を行い、高温の冷媒を空気により冷却して(g点−a点間)、液状の冷媒としてレシーバ4に送る。
【0033】
レシーバ4に送られた冷媒は、一時蓄えられて、定圧弁40および膨張弁6に送られる。夏期には膨張弁6上流(g点−a点間)の冷媒圧力P1 が通常0.7MPaより充分に高くなるので、定圧弁40はほぼ閉弁している。このため、ほぼ全量の冷媒が膨張弁6に流入する。膨張弁6は、蒸発器16の下流側のキャピラリチューブ14を介して検出される感温筒8の圧力Pf と、ばね10の付勢力Ps および外均管17を介して検出される蒸発器16の下流の冷媒圧力P0 との釣合により、その開度が調節される。
【0034】
膨張弁6を通過した冷媒は、その開度に応じて流量が調節されると共に減圧されて(a点−b点間)、蒸発器16の入口孔27および定圧弁40に送られる。冷媒は、被冷却流路28を介して更に冷却され、下側流入孔62を介してキャピラリ流路100に達する(b点−c点間)。その後、キャピラリ流路100を介して減圧され、貫通孔64,66を介して蒸発部18の流入流路22に送られる(c点−d点間)。流入流路22に送られた冷媒は、各冷媒流路26に分岐される。冷媒が冷媒流路26内にあるときには、冷媒と空気との間で各コアプレート42,43およびフィン44を介して熱交換が行われて、車室内へ供給される空気が冷却される(d点−e点間)。
【0035】
各冷媒流路26を通って流出流路24に送られた冷媒は、下側流出孔68を介して冷却流路32を通り、被冷却流路28の冷媒から熱を奪った後、上側流出孔60,出口孔34を介して排出流路36に排出される(e点−f点間)。すなわち、冷媒が冷却流路32を流れる際、被冷却流路28内の冷媒との間で熱交換が行われる。このため、冷却流路32を通過する冷媒は加熱されて(e点−f点間)過熱蒸気となり、また、被冷却流路28を通過する冷媒は冷却されて(b点−c点間)、膨張弁6の通過により気液二相状態となっている冷媒が、液状の冷媒にされる。
【0036】
これにより、被冷却流路28を流れる冷媒の液化が促進され液状の単相の冷媒となって、キャピラリ流路100を介して蒸発部18の流入流路22に送られる。このため、図11のd点における冷媒の乾き度xが0.2以下となる。ここで、冷媒としてHFC−134aを使用した場合、x≦0.2とすると、各冷媒流路26に冷媒が均等に分配されることが経験的に知られている。このため、各コアプレート42,43の間を通る空気に冷却むらが生じるのが防止される。すなわち、冷媒はほぼ液状の単相の状態であり、分配のための絞り等を設けなくても、流入流路22から各冷媒流路26に冷媒がほぼ均等に分配される。
【0037】
そして、冷却流路32から出口孔34に送られた冷媒は、排出流路36からコンプレッサ1に送られる。なお、図11の例では、凝縮器2の圧力P1 =1.0MPa、蒸発部18の圧力P3 =0.3MPaとしており、このとき、被冷却流路28の圧力P2 は0.6MPaとなる。
【0038】
一方、近年の車両の空調にあっては、冬期であっても、冷凍サイクルを実行し、空気を除湿した後、図示しないヒータにより加熱する。冬期の場合のように、凝縮器2を通過する空気温度がー5〜10℃と低い場合には、コンプレッサ1で圧縮(f点−g点間)された冷媒は、凝縮器2に送られ、熱交換により冷却されて液状の冷媒となる(g点−a点間)。しかし、凝縮器2では外気温度が低いために液化が促進され、冷媒が溜る傾向になる。このため、凝縮器2の出口の圧力P1 が低くなる。すると、図12のモリエル線図に例示するように、レシーバ4から供給された冷媒を、熱交換部20へ導入せず、定圧弁40にて直接P3 まで減圧しても冷媒の乾き度xは0.2以下となる(a点−d点間)。このため、全量の冷媒をバイパス流路38を介して蒸発部18に導入しても良好な熱交換効率が得られる。
【0039】
また、凝縮器2の圧力P1 が更に低下したとき、冷媒が熱交換部20を通過すると、次のような逆熱交換が起こる。すなわち、図13のモリエル線図に例示するように、液化された冷媒はレシーバ4を通り、膨張弁6により減圧され(a点−b点間)、熱交換部20の被冷却流路28に送られる。その後、キャピラリ流路100および絞り部30を介して蒸発部18の流入流路22に送られる(c点−d点間)。この際、供給される冷媒の圧力が低く、冷媒の量も少ない。そして、流入流路22に送られた冷媒は、各冷媒流路26に分配されて、空気との間で熱交換を行う。図示しないヒータにより加熱されている室内の空気温度は、例えば25℃と高く、冷媒は過熱蒸気となって、流出流路24に送られる(d点−e点間)。
【0040】
そして、流出流路24から熱交換部20の冷却流路32に送られた冷媒は、被冷却流路28の冷媒との間で熱交換を行うが、その際、冷却流路32の冷媒の温度の方が高く、被冷却流路28の冷媒は加熱されてしまう(b点−c点間)。また、冷却流路32の冷媒は冷却されてしまう(e点−f点間)。
【0041】
被冷却流路28の冷媒が加熱されると、冷媒の気化が促進され、被冷却流路28を通過し難くなる。なお、冷却流路32の冷媒は冷却されるため、感温筒8により検出される冷媒温度が低下し、膨張弁6の開度が減少して流量が低下する。このような逆熱交換が起こると、冷凍サイクルの熱交換効率が低下してしまう。なお、このような現象は低温時に限らず、試運転時のように冷媒量が少ないために圧力P1 が低くなる場合にも同様の逆熱交換が起こる。
【0042】
冷媒としてHFC−134aを使用した蒸発器16では、蒸発部18の冷媒圧力が約0.3MPaの場合、P1 ≦0.8MPaであれば、図12に例示した状態が生じる。すなわち、冷媒を熱交換部20へ導入せずに蒸発部18の冷媒圧力P3 まで直接減圧してもx≦0.2となることが判明している。また、P1 ≦0.6MPaであると図13に例示した状態が生じる。すなわち、冷媒を熱交換部20へ導入したとき逆熱交換が起こることが判明している。
【0043】
本実施例では、P1 ≦0.7±0.1MPaとなったときに定圧弁40を開弁してバイパス流路38を開き、それ以上の圧力では定圧弁40を閉弁して全量の冷媒を熱交換部20へ導入している。このため、熱交換部20で逆熱交換が起こるのを防止すると共に、蒸発部18へ導入される冷媒の乾き度xを0.2以下とすることができる。従って、圧力P1 がどのような値となっても、熱交換効率を良好に向上させることができる。
【0044】
また、本実施例では、キャピラリプレート56の凹部96に補強用リブ98を形成しており、これによって、充分な強度を保持したままバイパス流路38の流路面積を拡大することができる。このため、定圧弁40が開弁したときに冷媒がバイパス流路38を円滑に流通し、熱交換効率を一層向上させることができる。
【0045】
更に、本実施例では、キャピラリプレート56に、凹部96,補強用リブ98と共に、細溝94をプレス加工により形成し、これを平板状のセンタプレート48に接合することによりバイパス流路38およびキャピラリ流路100を形成している。このため、バイパス流路38およびキャピラリ流路100をきわめて簡単に作成することができる。従って、製造工程を簡略化して、製造コストを低く押さえることができる。
【0046】
また更に、本実施例ではキャピラリ流路100を介して冷媒を減圧しているので、絞り穴などによって減圧する構成に比べて騒音を低減することができる。しかも、バイパス流路38とキャピラリ流路100との合流位置は、補強用リブ98の配設位置より下流側に配設されている。このため、図8に例示したように、キャピラリ流路100から噴射されたジェット噴流200が補強用リブ98に衝突して渦などを形成するのを抑制することができる。
【0047】
すなわち、図14に例示する比較例のキャピラリプレート356のように、凹部396と細溝394との合流位置、すなわち、バイパス流路とキャピラリ流路との合流位置の下流側にも補強用リブ398が配設される場合、キャピラリ流路から噴射されたジェット噴流400はその補強用リブ398に衝突して、近接する補強用リブ398周囲に渦410を形成する。すると、この渦410によってピーピーという騒音が発生する可能性があるのである。これに対して本実施例ではこのような事態を回避して、騒音をきわめて良好に低減することができる。
【0048】
なお、本発明は上記実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の態様で実施することができる。例えば、上記実施例では定圧弁40によってバイパス流路38を開閉しているが、定圧弁40の代わりに単なる絞りを設けてもよい。この場合、熱交換部20での熱交換効率が低下すると、被冷却流路28内の冷媒圧力が増加し、上記絞りを介してバイパス流路38へ導入される冷媒の量が増大する。この場合、バイパス流路38の冷媒とキャピラリ流路100の冷媒とが圧力P1 に応じた所定の割合で合流するが、この場合もキャピラリ流路100からのジェット噴流200が補強用リブ98に衝突しないので、騒音を良好に低減することができる。また、上記実施例では冷媒としてHFC−134aを使用しているが他の冷媒を使用してもよい。
【図面の簡単な説明】
【図1】実施例の冷房装置用蒸発器を適用した冷凍サイクルの概略構成図である。
【図2】その冷凍サイクルの膨張弁の概略構成図である。
【図3】実施例の冷房装置用蒸発器の外観を表す斜視図である。
【図4】その冷房装置用蒸発器の構成を表す分解斜視図である。
【図5】その冷房装置用蒸発器の第1,第2プレートの構成を表す正面図である。
【図6】その冷房装置用蒸発器の側板の構成を表す正面図である。
【図7】その冷房装置用蒸発器のセンタプレートの構成を表す正面図である。
【図8】その冷房装置用蒸発器のキャピラリプレートの構成を表す正面図である。
【図9】その冷房装置用蒸発器の補強プレートの構成を表す正面図である。
【図10】その冷房装置用蒸発器のコアプレートの構成を表す正面図である。
【図11】実施例の冷凍サイクルの夏期におけるモリエル線図を表すグラフである。
【図12】実施例の冷凍サイクルの冬期におけるモリエル線図を表すグラフである。
【図13】比較例の冷凍サイクルの逆熱交換発生時のモリエル線図を表すグラフである。
【図14】比較例の冷房装置用蒸発器のキャピラリプレートの構成を表す正面図である。
【符号の説明】
1…コンプレッサ 2…凝縮器 4…レシーバ 6…膨張弁
16…蒸発器 18…蒸発部 20…熱交換部 22…流入流路
24…流出流路 26…冷媒流路 28…被冷却流路 30…絞り部
32…冷却流路 38…バイパス流路 40…定圧弁
42,43…コアプレート 46…側板 48…センタプレート
50…第1プレート 51…第2プレート 56…キャピラリプレート
58…バイパス孔 94…細溝 96…凹部
98…補強用リブ 100…キャピラリ流路 106…補強プレート
Claims (3)
- 流入流路と流出流路とを複数の冷媒流路により並列に接続した蒸発部と、
冷凍サイクルの減圧弁と連通する被冷却流路と、上記蒸発部の流出流路に連通し冷媒を出口に導く冷却流路との間で熱交換可能に形成された熱交換部と、
該熱交換部の被冷却流路と上記蒸発部の流入流路との間に介装され、上記被冷却流路からの冷媒を減圧して上記流入流路に導く毛管と、
上記熱交換部および上記毛管を迂回して上記蒸発部の流入流路に冷媒を導くバイパス流路と、
を備えた冷房装置用蒸発器において、
上記毛管,上記バイパス流路,および上記バイパス流路を補強するリブを、互いに接合された一対のプレートの間に形成すると共に、上記バイパス流路の上記毛管との合流位置を、上記リブの配設位置より下流に配設したことを特徴とする冷房装置用蒸発器。 - 上記一対のプレートの内、一方のプレートが平板状であり、他方のプレートに上記毛管,上記バイパス流路,および上記リブに応じた凹凸がプレス加工により形成されたことを特徴とする請求項1記載の冷房装置用蒸発器。
- 上記バイパス流路に、上記減圧弁上流の冷媒圧力が、所定圧以下となったときに開弁する弁体を設けたことを特徴とする請求項1または2記載の冷房装置用蒸発器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24429394A JP3633005B2 (ja) | 1994-10-07 | 1994-10-07 | 冷房装置用蒸発器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24429394A JP3633005B2 (ja) | 1994-10-07 | 1994-10-07 | 冷房装置用蒸発器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08110122A JPH08110122A (ja) | 1996-04-30 |
JP3633005B2 true JP3633005B2 (ja) | 2005-03-30 |
Family
ID=17116592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24429394A Expired - Fee Related JP3633005B2 (ja) | 1994-10-07 | 1994-10-07 | 冷房装置用蒸発器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3633005B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001051858A1 (fr) * | 2000-01-11 | 2001-07-19 | Daikin Industries, Ltd. | Structure de montage de moteur du ventilateur d'un appareil de conditionnement d'air et appareil de conditionnement d'air ainsi obtenu |
JP2016035376A (ja) * | 2014-08-04 | 2016-03-17 | 株式会社デンソー | 蒸発器 |
KR101683491B1 (ko) * | 2014-12-09 | 2016-12-07 | 현대자동차 주식회사 | 차량용 열교환기 |
CN111707022B (zh) * | 2020-05-19 | 2021-04-30 | 中南大学 | 毛细管掺汽超空化喷射噪声抑制装置 |
CN111707023B (zh) * | 2020-05-19 | 2021-09-10 | 中南大学 | 双向膨胀阀掺汽超空化喷射噪声抑制装置 |
-
1994
- 1994-10-07 JP JP24429394A patent/JP3633005B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08110122A (ja) | 1996-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8099978B2 (en) | Evaporator unit | |
US5678422A (en) | Refrigerant evaporator | |
JP3538492B2 (ja) | 冷凍サイクル装置 | |
US20070251265A1 (en) | Piping structure with inner heat exchanger and refrigeration cycle device having the same | |
JP2917764B2 (ja) | 冷房装置用蒸発器 | |
KR101755456B1 (ko) | 열교환기 | |
US5390507A (en) | Refrigerant evaporator | |
US6874569B2 (en) | Downflow condenser | |
JP3635715B2 (ja) | 冷房装置用蒸発器 | |
JP3633005B2 (ja) | 冷房装置用蒸発器 | |
JP5062066B2 (ja) | エジェクタ式冷凍サイクル用蒸発器ユニット | |
JP5540816B2 (ja) | 蒸発器ユニット | |
JP3633030B2 (ja) | 冷房装置用蒸発器 | |
JP4106718B2 (ja) | 熱交換器 | |
JP3694552B2 (ja) | 空気調和機 | |
KR100664536B1 (ko) | 자동차 공기조화장치의 적층형 2차 열교환기 | |
JPH05157401A (ja) | 熱交換器 | |
JP3143987B2 (ja) | 蒸発器 | |
WO2015098696A1 (ja) | 熱交換器 | |
US5778974A (en) | Laminated type heat exchanger having small flow resistance | |
KR100664537B1 (ko) | 자동차 공기조화장치의 적층형 2차 열교환기용 플레이트 | |
JPH06307737A (ja) | 冷媒蒸発器 | |
JPH08159571A (ja) | 熱交換器 | |
CN116353288A (zh) | 一种电动汽车热泵空调系统 | |
JPH06117727A (ja) | 蒸発器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041220 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110107 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |