JP3635701B2 - 加工装置 - Google Patents

加工装置 Download PDF

Info

Publication number
JP3635701B2
JP3635701B2 JP29950494A JP29950494A JP3635701B2 JP 3635701 B2 JP3635701 B2 JP 3635701B2 JP 29950494 A JP29950494 A JP 29950494A JP 29950494 A JP29950494 A JP 29950494A JP 3635701 B2 JP3635701 B2 JP 3635701B2
Authority
JP
Japan
Prior art keywords
processing
mask
laser
laser beam
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29950494A
Other languages
English (en)
Other versions
JPH08155667A (ja
Inventor
信靖 鈴木
伸昭 古谷
正隆 山嵜
英彦 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29950494A priority Critical patent/JP3635701B2/ja
Publication of JPH08155667A publication Critical patent/JPH08155667A/ja
Application granted granted Critical
Publication of JP3635701B2 publication Critical patent/JP3635701B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

【0001】
【産業上の利用分野】
本発明はレーザを用いた加工装置に関するものである。
【0002】
【従来の技術】
レーザの加工への応用は炭酸ガスレーザ、YAGレーザ等の赤外領域の波長を有するレーザを中心に近年盛んに行われてきており、特に金属板加工分野では加工方法として確立されている。更に最近ではエキシマレーザや、波長変換により高次高調波を発生させたYAGレーザ等の紫外領域の波長を有する短パルスレーザを用いた微細加工への応用が検討され始めている。
【0003】
この紫外領域の波長を有する短パルスレーザによる加工メカニズムは炭酸ガスレーザ等の赤外領域の波長を有するレーザによる溶融、蒸発といった熱加工とは大きく異なる。つまり、非常に短いパルス(数ナノから数十ナノ秒)で発振するエキシマレーザ等を用いると短時間に加工が行われ、加えて高いフォトンエネルギーによる高速な加熱や光化学反応を利用するので、低温、低損傷なアブレーション(除去)加工が可能となるからである。またパルスレーザ加工のためパルス数によって加工量の制御を容易に行うことができる、即ち任意の深さの加工が可能である。このように微細領域での加工には非常に適しており、実際に産業分野への応用も検討されている。
【0004】
レーザ加工装置の一般的な構成及び加工方法はレーザ光源から発振されたレーザービームをある形状のマスクを透過させ直接、もしくはレンズ系で縮小または拡大した後に被加工物にマスク形状のレーザビームを照射し加工を行うものである。具体的な例をエキシマレーザの加工において説明する。図14は特開平3−142091に示されたエキシマレーザ加工の従来例である。エキシマレーザ発振器141から出射したビーム142は円形状のマスク143を透過後ミラー144で折り返され集光レンズ145によりポリイミドフィルム146上に縮小投影され加工が行われる。ポリイミドフィルム146の裏面には銅箔147がありパルス発振で1パルスごとに徐々に加工を行いレーザビームが銅箔面まで到達すると加工しきい値がポリイミドより高いため加工がそこで停止する。これはポリイミドフィルムを選択的に除去する方法の例であるが、ポリイミドフィルム等の被加工物の貫通は勿論同一材料の場合でもパルス数をコントロールすることによって任意の深さの加工が可能である。
【0005】
【発明が解決しようとする課題】
マスクを用いたレーザ光による加工において、加工量の制御はレーザの照射量もしくはレーザのエネルギー密度を変化させて行う。しかしながら、この場合に加工量が制御される加工形状はマスク形状そのものであって、マスク形状と異なる複雑かつ、微細な形状が得られるように加工量を制御することは困難である。フレネルレンズのような複雑かつ微細な形状に加工するためには、所定の形状が加工可能なようにレーザ光の強度分布やマスクの透過率分布を変化させたり、または被加工物にレーザ光の吸収率分布をつける等の処置を施す必要がある。こうした処置を施すことによって加工装置および加工方法自体が複雑になり、量産性を低下させていた。
【0006】
また、フレネルレンズのような複雑かつ微細な形状をマスクを用いフォトリソグラフィにより作製する方法は、フォトレジストに対して露光する光の照射量分布をつけることが必要となる。さらに照射量分布の条件は露光後にエッチングされた形状から決定しなければならず非常に困難である。加えて、露光量分布をつけるためには複雑な装置、数多い工程が必要となり、必然的に加工装置が高コストとなる。
【0007】
電子線リソグラフィによる作製方法もフォトリソグラフィと同様の理由により問題点が多く困難である。
【0008】
【課題を解決するための手段】
上記課題を解決するために、第1に、被加工物を加工する加工光を射出する加工用光源と、前記加工光に対して透明部分と不透明部分を有し、前記加工光の少なくとも1部を透過して前記被加工物の少なくとも1部に照射するマスクと、前記マスクを前記加工光に対して移動させて前記被加工物上の前記加工光の照射位置を変化させるマスク移動機構とを具備し、マスク移動を回転とするマスク回転機構および、マスクの透過部分の形状が点対称である前記マスク、加えて前記マスクの前記透過部分の対称中心と前記回転の中心の相対位置を移動させる機構を用いることにより、被加工物上で回転対称形状を有する複雑かつ微細な加工を容易に実現できるものである。
【0009】
また、第2に、マスクと被加工物の間に、前記マスクのマスクパターンの投影像を前記被加工物上で変化させる投影光学系を具備することにより、前記マスクパターンの前記投影像に対応した複雑かつ微細な加工を前記被加工物上で行うことができるものである。
【0010】
また、第3に、加工用光源とマスクの間に、加工光を前記マスクの特定部分に入射させるか、あるいは前記マスクの前記特定部分を空間的に移動させる入射光調整光学系を具備することにより、上記課題を解決することができるものである。
【0012】
また、第4に、マスクを透明材料上に形成した不透明材料により構成することにより、複雑かつ微細なマスクパターンを実現することができ、前記マスクパターンに対応した複雑かつ微細な加工を被加工物上で実現できるものである。
【0017】
また、第5に、加工用光源としてエキシマレーザ、あるいはYAGレーザの高調波のような紫外パルスレーザを用いて、加工方法としてレーザ光によるアブレーション加工を実現することにより、被加工物に対して低温、低損傷で複雑かつ微細な加工を実現できるものである。
【0018】
【作用】
本発明は、第1に、上記方法によって被加工物に照射される加工光の量を任意に制御することにより、従来の加工方法と比較して容易に、加工位置および加工深さ等の加工量を高精度に制御可能であり、複雑かつ微細な形状の加工を実現することができる。
【0019】
また、第2に、被加工物に照射される加工光を複数に分岐する光分岐光学系を用いることによって同時に、複数の被加工物および、被加工物上の複数の場所に加工位置および、加工量が高精度に制御された複雑かつ微細な形状の加工を容易に施すことができる。
【0020】
また、第3に、レーザ光によるアブレーション加工を行うことにより、被加工物に対して低温、低損傷で複雑かつ微細な加工を実現できる。
【0021】
【実施例】
(実施例1)
以下、本発明の第1の実施例について図1を参照して説明する。
【0022】
図1は本発明の第1の実施例におけるレーザを用いた加工装置の構成図である。図1において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、13はマスクを移動するマスク移動ステージ、14は石英基板、15は石英基板14上に形成されたマスクパターン、16はマスクパターン15の透過部分を透過した第2のレーザビーム、17はマスクパターン15を縮小投影する縮小光学系、18は被加工物であるポリイミドフィルム、19はポリイミドフィルム18が固定されるガラス基板を示す。
【0023】
以下、図1に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後の第1のレーザビーム12はマスク移動ステージ13に固定されたマスクに入射する。マスクはエキシマレーザが透過する石英基板14と、石英基板14上に形成されたマスクパターン15で構成される。マスクに入射された第1のレーザビーム12のうちマスクパターン15の透過部分を透過した第2のレーザビーム16がポリイミドフィルム18に照射される。第2のレーザビーム16は縮小光学系17を透過してマスクパターン15の透過部分の縮小投影像の形状にポリイミドフィルム18を加工する。
【0024】
エキシマレーザはパルスレーザでポリイミドフィルム18の加工深さは照射されたレーザパルス数に依存する。また、1パルス当たりの加工深さは約0.5μm以下で加工レーザビームのエネルギー密度によって異なる。1パルスは20ns程度であり、1パルスあたりの加工は非常に短時間で実現することが可能である。
【0025】
マスク移動ステージ13を図1中では左から右に横方向に移動することによって、マスク移動ステージ13に固定されたマスクも左から右に移動する構成となっている。マスクが左から右に移動することによってマスクパターン15の透過部分も左から右に移動し、第2のレーザビーム16の照射位置をポリイミドフィルム18上で空間的に(図1中では左から右に)変化させることができる。第2のレーザビーム16の照射位置をマスク移動によって変化させることにより、照射されるレーザパルス数がポリイミドフィルム18上で空間的に変化する。照射位置および、照射されるレーザパルス数がポリイミドフィルム18上で変化すれば加工形状および、加工深さ等の加工量もポリイミドフィルム18上で変化することになる。
【0026】
以上のように、マスク移動によって被加工物上でレーザビームの照射位置および、照射パルス数を制御することができ、従来の加工方法と比較して容易に、しかも加工位置および加工深さ等の加工量を高精度に制御可能であり、複雑かつ微細な形状の加工を実施することができる。
【0027】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えば紫外レーザあるいはYAGレーザ等のエキシマレーザ以外のパルス駆動あるいは連続発振(CW)のレーザ光源でも良い。また、マスク移動を横方向の移動(1軸)としたが移動方向は横方向(1軸)に限らない。さらに、加工形状を変化させるためには、マスクパターンの透過部分の形状を変化させることも可能である。加えて、加工深さの制御は照射パルス数ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入するか、あるいはレーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。さらに、パルスレーザ光源のパルス周期とマスク移動の移動速度が同期していても良い。
【0028】
(実施例2)
以下、本発明の第2の実施例について図2を参照して説明する。
【0029】
図2は本発明の第2の実施例におけるレーザを用いた加工装置の構成図である。図2において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、13はマスクを移動するマスク移動ステージ、14は石英基板、15は石英基板14上に形成されたマスクパターン、16はマスクパターン15の透過部分を透過した第2のレーザビーム、18は被加工物であるポリイミドフィルム、19はポリイミドフィルム18が固定されるガラス基板、21はマスクパターン15の透過部分の像をポリイミドフィルム18に変形して投影する投影光学系、22は投影光学系21を透過した第3のレーザビームを示す。
【0030】
以下、図2に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後、第1のレーザビーム12はマスク移動ステージ13に固定されたマスクに入射する。マスクは実施例1と同様に石英基板14と、マスクパターン15で構成される。マスクに入射された第1のレーザビーム12のうちマスクパターン15の透過部分を透過した第2のレーザビーム16が投影光学系21(円柱レンズ)に入射し、投影光学系21を透過した第3のレーザビーム22がポリイミドフィルム18に照射されポリイミドフィルム18の加工が行われる。この際、投影光学系21として円柱レンズを用いているため、図2中の横方向にのみ縮小された(紙面と垂直な方向は変形されない)マスクパターン15の像がポリイミドフィルム18に投影された形状に被加工物の加工が行われる。
【0031】
エキシマレーザはパルスレーザでポリイミドフィルム18の加工深さは照射されたレーザパルス数に依存する。また、1パルス当たりの加工深さは約0.5μm以下で加工レーザビームのエネルギー密度によって異なる。1パルスは20ns程度であり、1パルスあたりの加工は非常に短時間で実現することが可能である。
【0032】
マスク移動ステージ13を実施例1と同様に移動することによって、レーザビーム22の照射位置および、照射されるレーザパルス数をポリイミドフィルム18上で空間的に変化させることができる。照射位置および、照射されるレーザパルス数がポリイミドフィルム18上で変化すれば加工形状および、加工深さ等の加工量もポリイミドフィルム18上で変化することになる。さらに投影光学系21を用いることにより、マスク移動のみならず、ポリイミドフィルム18上でのマスクパターン15の投影像の変化によって加工形状および、加工深さ等の加工量を変化させることができる。
【0033】
以上のように、マスク移動によって被加工物上でレーザビームの照射位置および、照射パルス数を制御することができ、従来の加工方法と比較して容易に、しかも加工位置および加工深さ等の加工量を高精度に制御可能であり、複雑かつ微細な形状の加工を実施することができる。さらに、投影光学系を用いてマスクパターンの投影像を被加工物上で変化させることによって、変化した投影像に対応した複雑かつ微細な加工を被加工物上で行うことができる。
【0034】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えば紫外レーザあるいはYAGレーザ等のエキシマレーザ以外のパルス駆動あるいは連続発振(CW)のレーザ光源でも良い。また、投影光学系を円柱レンズとしたが投影光学系はその他の光学部品を用いた構成でも良い。さらに、加工形状を変化させるためには、マスクパターンの透過部分の形状を変化させることも可能である。加えて、加工深さの制御は照射パルス数ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入するか、あるいはレーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。さらに加えて、パルスレーザ光源のパルス周期とマスク移動の移動速度が同期していても良い。
【0035】
(実施例3)
以下、本発明の第3の実施例について図3を参照して説明する。
【0036】
図3は本発明の第3の実施例におけるレーザを用いた加工装置の構成図である。図3において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、13はマスクを移動するマスク移動ステージ、14は石英基板、15は石英基板14上に形成されたマスクパターン、31はマスク14の特定部分にレーザビームを入射させるための入射光調整光学系(開口絞り)、32は入射光調整光学系31を透過した第2のレーザビーム、33はマスクパターン15の特定部分の透過部分を透過した第3のレーザビーム、17はマスクパターン15の特定部分を縮小投影する縮小光学系、18は被加工物であるポリイミドフィルム、19はポリイミドフィルム18が固定されるガラス基板を示す。
【0037】
以下、図3に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後レーザビーム12は開口絞り31に入射し、開口絞り31を透過することで第2のレーザビーム32がマスク移動ステージ13に固定されたマスクの特定部分に入射する。マスクは実施例1、2と同様に石英基板14とマスクパターン15で構成される。マスクの特定部分に入射されたレーザビームのうちマスクパターン15の透過部分を透過した第3のレーザビーム33がポリイミドフィルム18に照射される。第3のレーザビーム33は縮小光学系17を透過してマスクパターン15の特定の透過部分の縮小投影像の形状にポリイミドフィルム18を加工する。
【0038】
エキシマレーザはパルスレーザでポリイミドフィルム18の加工深さは照射されたレーザパルス数に依存する。また、1パルス当たりの加工深さは約0.5μm以下で加工レーザビームのエネルギー密度によって異なる。1パルスは20ns程度であり、1パルスあたりの加工は非常に短時間で実現することが可能である。
【0039】
マスク移動ステージ13を移動することによって、マスク移動ステージ13に固定されたマスクも移動する構成となっている。マスクが移動することによってマスクパターン15の透過部分も移動し、第3のレーザビーム33の照射位置および、照射パルス数をポリイミドフィルム18上で空間的に変化させることができる。照射位置および、照射されるレーザパルス数がポリイミドフィルム18上で変化すれば加工形状および、加工深さ等の加工量もポリイミドフィルム18上で変化することになる。さらに、開口絞り31を用いることにより、同一マスク上で第2のレーザビーム32の入射するマスクパターン15の透過部分を限定することが可能となり、開口絞り31の径および、空間的な位置を変化させれば1つのマスクで複数のパターンの加工が実現でき、加工の制御性が向上することになる。
【0040】
以上のように、マスク移動によって被加工物上でマスク上の特定の部分に照射されたレーザビームの照射位置および、照射パルス数を制御することができ、従来の加工方法と比較して容易に、しかも加工位置および加工深さを高精度に制御可能であり、複雑かつ微細な形状の加工を実施することができる。さらに、マスクに入射するレーザビームを変化させる入射光調整光学系を用いることによって、より加工用レーザビームの制御性を向上させ、同一マスクでの複数のパターンの加工が実現できる。
【0041】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えば紫外レーザあるいはYAGレーザ等のエキシマレーザ以外のパルス駆動あるいは連続発振(CW)のレーザ光源でも良い。また、入射光調整光学系として固定した開口絞りを用いたが、入射光調整光学系はマスクに入射するレーザビームの形状を変化させるものであれば良く、開口絞り以外の光学部品を用いても差し支えない。さらに、加工形状を変化させるためには、マスクの透過部分の形状を変化させることも可能である。加えて、加工深さの制御は照射パルス数ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入したり、レーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。さらに、パルスレーザ光源のパルス周期とマスク移動の移動速度が同期していても良い。
【0042】
(実施例4)
以下、本発明の第4の実施例について図4を参照して説明する。
【0043】
図4は本発明におけるレーザを用いた加工装置の構成図である。図4において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、13はマスクを移動するマスク移動ステージ、14は石英基板、15は石英基板14上に形成されたマスクパターン、16はマスクパターン15の透過部分を透過した第2のレーザビーム、17はマスクパターン15を縮小投影する縮小光学系、41は被加工物であるポリイミド薄膜、42はポリイミド薄膜が堆積されるガラス基板、43はガラス基板が固定され、光学機能を持った光を出射するレーザダイオードを示す。
【0044】
以下、図4に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後レーザビーム12はマスク移動ステージ13に固定されたマスクに入射する。上述の実施例1、2、3と同様にマスクは石英基板14とマスクパターン15で構成される。マスクに入射された第1のレーザビーム12のうちマスクパターン15の透過部分を透過した第2のレーザビーム16がポリイミド薄膜41に照射される。第2のレーザビーム16は縮小光学系17を透過してマスクパターン15の透過部分の縮小投影像の形状にポリイミド薄膜41を加工する。ここでポリイミド薄膜41はスピンコート法によってレーザダイオード43上に固定されたガラス基板42上に所定の膜厚となるように堆積されている。
【0045】
エキシマレーザはパルスレーザでポリイミド薄膜41の加工深さは照射されたレーザパルス数に依存する。また、1パルス当たりの加工深さは約0.5μm以下であるが、レーザ発振器から出射されるレーザビームの加工レーザビームのエネルギー密度によって異なる。1パルスは20ns程度であり、1パルスあたりの加工は非常に短時間で実現することが可能である。
【0046】
マスク移動ステージ13を移動することによって、マスク移動ステージ13に固定されたマスクも移動する構成となっている。マスクが移動することによってマスクパターン15の透過部分も移動し、第2のレーザビーム16の照射位置および、照射パルス数をポリイミド薄膜41上で空間的に変化させることができる。照射位置および、照射されるレーザパルス数がポリイミド薄膜41上で変化すれば加工形状および、加工深さ等の加工量もポリイミド薄膜41上で変化することになる。
【0047】
ポリイミド薄膜41、ガラス基板42、レーザダイオード43は3つの部品で1つの光学素子を構成する。ポリイミド薄膜41に加工を施すことによって、この光学素子は新たな光学機能を有することになる。ここで、ポリイミド薄膜41はエキシマレーザビームに対して不透明体であるため加工が可能であり、レーザダイオード43から出射されるレーザビーム(波長680nm)に対しては透明体である。このため、ポリイミド薄膜41、ガラス基板42、レーザダイオード43から構成される光学素子は、レーザダイオード43から出射されるレーザビームに対して新たな光学機能を付加された光学素子として用いることができる。
【0048】
以上のように、マスク移動によって被加工物上でレーザビームの照射位置および、照射パルス数を制御することができ、従来の加工方法と比較して容易に、しかも加工位置および加工深さを高精度に制御可能であり、複雑かつ微細な形状の加工を実施することができ、さらに被加工物の材料として光学機能を有する光に対しては透明体であり、加工光に対しては不透明体である材料を用いることで、高精度な加工が施された光学素子を作製可能である。
【0049】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えば紫外レーザあるいはYAGレーザ等のエキシマレーザ以外のパルス駆動あるいは連続発振(CW)のレーザ光源でも良い。また、加工が行われる光学素子を上記構成としたが、被加工物の材料さえレーザ加工条件を満たしていれば、光学素子が他の構成をとっても良い。さらに、加工形状を変化させるためには、マスクの透過部分の形状を変化させことも可能である。加えて、加工深さの制御は照射パルス数ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入したり、レーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。さらに、パルスレーザ光源のパルス周期とマスク移動の移動速度が同期していても良い。また、ポリイミド薄膜の加工例として、集光用レンズの作製を実験により確認している。
【0050】
(実施例5)
以下、本発明の第5の実施例について図5を参照して説明する。
【0051】
図5は本発明の第5の実施例におけるレーザを用いた加工装置の構成図である。図5において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、13はマスクを移動するマスク移動ステージ、14は石英基板、15は石英基板14上に形成されたマスクパターン、16はマスクパターン15の透過部分を透過した第2のレーザビーム、17はマスクパターン15を縮小投影する縮小光学系、51はレーザビーム15で加工可能であるポリイミド薄膜、52はレーザビーム15で加工不可能であり、ポリイミド薄膜51が堆積される石英基板を示す。
【0052】
以下、図5に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後、第1のレーザビーム12はマスク移動ステージ13に固定されたマスクに入射する。マスクは上述の実施例と同様に石英基板14とマスクパターン15で構成される。マスクに入射された第1のレーザビーム12のうちマスクパターン15の透過部分を透過した第2のレーザビーム16がエキシマレーザで加工可能な物質であるポリイミド薄膜51上に照射される。ここで、ポリイミド薄膜51は、エキシマレーザを90%以上透過し、レーザビーム16では加工不可能な石英基板52上にスピンコート法で所定の膜厚となるように堆積されている。第2のレーザビーム16は縮小光学系17を透過してマスクパターン15の透過部分の縮小投影像の形状にポリイミド薄膜51を選択的に加工する。
【0053】
エキシマレーザはパルスレーザでポリイミド薄膜51の加工深さは照射されたレーザパルス数に依存する。また、1パルス当たりの加工深さは約0.5μm以下で加工レーザビームのエネルギー密度によって異なる。1パルスは20ns程度であり、1パルスあたりの加工は非常に短時間で実現することが可能である。
【0054】
また、マスク移動ステージ13を移動することによって、マスク移動ステージ13に固定されたマスクも移動する構成となっている。マスクが移動することによってマスクパターン15の透過部分も移動し、ポリイミド薄膜51上で第2のレーザビーム16の照射位置および、照射パルス数を空間的に変化させることができる。第2のレーザビーム16の照射位置および照射パルス数がポリイミド薄膜51上で空間的に変化すれば加工形状および、加工深さ等の加工量もポリイミド薄膜51上で変化することになる。さらに、エキシマレーザで加工不可能な物質である石英基板52上に、加工可能な物質であるポリイミド薄膜51を所定の膜厚となるように堆積することによって、層状構造を有する被加工物の加工深さがポリイミド薄膜51の膜厚以上にはならない。言い換えれば被加工物の加工深さをポリイミド薄膜51の膜厚で制御可能となり、加工深さの制御性が向上する。
【0055】
以上のように、マスク移動によって被加工物上でレーザビームの照射位置および、照射パルス数を制御することができ、従来の加工方法と比較して容易に、しかも加工位置および加工深さを高精度に制御可能であり、複雑かつ微細な形状の加工を実施することができる。さらに、被加工物を加工光で加工不可能な物質と、加工光で加工可能な物質で構成することにより、被加工物自体が加工深さの制御性を有するようになり、容易に3次元形状の作製が可能となる。
【0056】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えば紫外レーザあるいはYAGレーザ等のエキシマレーザ以外のパルス駆動あるいは連続発振(CW)のレーザ光源でも良い。また、加工可能な物質をポリイミドとしたが、PMMA等の加工光を吸収する物質であればポリイミドに限るものではない。さらに加工不可能な物質は石英としたが、フッ化カルシウムのような加工光を90%以上透過する物質であれば良い。加えて加工形状を変化させるためには、マスクの透過部分の形状を変化させることも可能である。さらに、加工深さの制御は照射パルス数ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入したり、レーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。そして、パルスレーザ光源のパルス周期とマスク移動の移動速度が同期していても良い。
【0057】
(実施例6)
以下、本発明の第6の実施例について図6を参照して説明する。
【0058】
図6は本発明の第6の実施例におけるレーザを用いた加工装置の構成図である。図6において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、13はマスク移動ステージ、14は石英基板、15は石英基板14上に形成されたマスクパターン、16はマスクパターン15の透過部分を透過した第2のレーザビーム、61は第2のレーザビーム16を2つに分岐する光分岐光学系、62及び63はそれぞれ光分岐光学系61で分岐された第3及び第4のレーザビーム、64、65はマスクパターン15を縮小投影する縮小光学系、66、67は被加工物であるポリイミドフィルム、68、69はそれぞれポリイミドフィルム66、67が固定されるガラス基板を示す。
【0059】
以下、図6に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後、第1のレーザビーム12はマスク移動ステージ13に固定されたマスクに入射する。上述の実施例と同様にマスクは石英基板14とマスクパターン15で構成される。マスクに入射された第1のレーザビーム12のうちマスクパターン15の透過部分を透過した第2のレーザビーム16が光分岐光学系(ハーフミラー)61に入射し、光分岐光学系によって2つに分岐された第3及び第4のレーザビーム62、63がそれぞれポリイミドフィルム66、67に照射される。第3及び第4のレーザビーム62、63はそれぞれ縮小光学系64、65を透過してマスクパターン15の透過部分の縮小投影像の形状にポリイミドフィルム66、67を加工する。
【0060】
エキシマレーザはパルスレーザでポリイミドフィルム66、67の加工深さは照射されたレーザパルス数に依存する。また、1パルス当たりの加工深さは約0.5μm以下で加工レーザビームのエネルギー密度によって異なる。1パルスは20ns程度であり、1パルスあたりの加工は非常に短時間で実現することが可能である。
【0061】
マスク移動ステージ13を移動することによって、マスク移動ステージ13に固定されたマスク14も移動する構成となっている。マスクが移動することによってマスクパターン15の透過部分も移動し、光分岐光学系61によって2つに分岐された第3及び第4のレーザビーム62、63の照射位置および、照射パルス数をそれぞれポリイミドフィルム66、67上で空間的に変化させることができる。照射位置および、照射されるレーザパルス数がポリイミドフィルム66、67上で変化すれば加工形状および、加工深さ等の加工量もポリイミドフィルム66、67上で変化することになる。
【0062】
以上のように、マスク移動および、光分岐光学系によって被加工物上でレーザビームの照射位置および、照射パルス数を制御することができ、従来の加工方法と比較して容易に、しかも加工位置および加工深さを高精度に制御可能であり、複雑かつ微細な形状の加工を同時に複数の被加工物上で実施することができる。
【0063】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えば紫外レーザあるいはYAGレーザ等のエキシマレーザ以外のパルス駆動あるいは連続発振(CW)のレーザ光源でも良い。また、加工光の分岐数を2としたが、加工が可能な加工光の強度が得られれば分岐数は3以上の整数であっても良い。加えて、被加工物を複数としたが、被加工物は1つで加工箇所が複数であっても良い。さらに、加工形状を変化させるためには、マスクの透過部分の形状を変化させることも可能である。加えて、加工深さの制御は照射パルス数ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入したり、レーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。さらに、パルスレーザ光源のパルス周期とマスク移動の移動速度が同期していても良い。
【0064】
(実施例7)
以下、本発明の第7の実施例について図7を参照して説明する。
【0065】
図7は本発明の第7の実施例におけるレーザを用いた加工装置の構成図である。図7において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、13はマスク移動ステージ、71は第1のレーザビーム12に対して透明体である石英基板、72は第1のレーザビーム12に対して不透明な材料であるクロムを用いて形成されているマスクパターン、73はマスクパターン72の透過部分を透過した第2のレーザビーム、18は被加工物であるポリイミドフィルム、19はポリイミドフィルム18が固定されるガラス基板を示す。
【0066】
以下、図7に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後レーザビーム12はマスク移動ステージ13に固定されたマスクに入射する。マスクはエキシマレーザに対して透明であり、しかも厚みが均一でない石英基板71上にエキシマレーザに対して不透明材料であるクロムを蒸着してマスクパターン72を形成した構成である。マスクに入射された第1のレーザビーム12はマスクの出射面が加工光の光軸に対して垂直でないため屈折する。第1のレーザビーム12のうちマスクパターン72の透過部分を透過し、マスクの出射面で屈折した第2のレーザビーム73がポリイミドフィルム18上に照射される。第3のレーザビーム73は縮小光学系17を透過してマスクパターン15の透過部分の縮小投影像の形状にポリイミドフィルム18を加工する。
【0067】
エキシマレーザはパルスレーザでポリイミドフィルム18の加工深さは照射されたレーザパルス数に依存する。また、1パルス当たりの加工深さは約0.5μm以下で加工レーザビームのエネルギー密度によって異なる。1パルスは20ns程度であり、1パルスあたりの加工は非常に短時間で実現することが可能である。
【0068】
マスク移動ステージ13を移動することによって、マスク移動ステージ13に固定されたマスクも移動する構成となっている。マスクが移動することによってマスクパターン15の透過部分も移動し、ポリイミドフィルム18上で第2のレーザビーム73の照射位置および、照射パルス数を空間的に変化させることができる。第2のレーザビーム73の照射位置および照射パルス数がポリイミドフィルム18上で空間的に変化すれば加工形状および、加工深さ等の加工量もポリイミドフィルム18上で変化することになる。
第1のレーザビーム12に対して透明材料である石英をマスク基板として用いることで光の屈折現象を利用することができる。つまり、厚みが一様でない石英基板71を用いれば透過光である第2のレーザビーム73は第1のレーザビーム12の光軸とずれた角度で、被加工物であるポリイミドフィルム18に入射するので、深さ方向に角度を持った方向に加工ができ、加工の制御性が向上する。さらに、石英基板71上に、第1のレーザビーム12に対して不透明な材料であるクロムを蒸着してマスクパターン72を形成することによって、高精度に複雑かつ微細なマスクパターンを実現できる。マスクパターン72が高精度に複雑かつ微細なパターンであれば、マスクパターンに対応した複雑かつ微細な加工をポリイミドフィルム18上に施すことができる。
【0069】
以上のように、マスク移動によって被加工物上でレーザビームの照射位置および、照射パルス数を制御することができ、従来の加工方法と比較して容易に、しかも加工位置および加工深さを高精度に制御可能であり、複雑かつ微細な形状の加工を実施することができる。さらに、マスクを透明材料の基板上に不透明材料のマスクパターンを形成した構成とすることで、加工の制御性が向上し、被加工物に対して、複雑かつ微細なマスクパターンに対応した高精度な加工を施すことが可能となる。
【0070】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えば紫外レーザあるいはYAGレーザ等のエキシマレーザ以外のパルス駆動あるいは連続発振(CW)のレーザ光源でも良い。また、加工形状を変化させるためには、マスクの透過部分の形状を変化させてもかまわない。さらに、加工深さの制御は照射パルス数ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入したり、レーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。加えて、パルスレーザ光源のパルス周期とマスク移動の移動速度が同期していても良い。さらに、マスク基板の材料は石英、マスクパターンの材料はクロムとしたが、加工光に対する透過、不透過の条件を満たせば、例えばマスク基板としてフッ化カルシウム及びマスクパターンとしてアルミニウム等の他の材料を用いても良い。
【0071】
(実施例8)
以下、本発明の第8の実施例について図1および8を参照して説明する。
【0072】
図8は本発明の第8の実施例における対称中心を有するマスクの模式図であり、装置の全体構成は図1、マスク本体については図8に基づいて説明する。図1において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、13はマスクを移動するマスク移動ステージ、14は石英基板、15は石英基板14上に形成されたマスクパターン、16はマスクパターン15の透過部分を透過した第2のレーザビーム、17はマスクパターン15を縮小投影する縮小光学系、18は被加工物であるポリイミドフィルム、19はポリイミドフィルム18が固定されるガラス基板を示す。図8において81は加工光が透過するマスクパターン15の点対称な形状の透過部分、82は加工光が透過しないマスクパターン15の不透過部分を示す。
【0073】
以下、図1および、図8に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後、第1のレーザビーム12はマスク移動ステージ13に固定されたマスクに入射する。マスクは上述の実施例と同様に石英基板14とマスクパターン15で構成される。マスクパターン15の透過部分81を透過した第2のレーザビーム16がポリイミドフィルム18に照射される。第2のレーザビーム16は縮小光学系17を透過してマスクパターン15の透過部分81の縮小投影像の形状にポリイミドフィルム18を加工する。
【0074】
エキシマレーザはパルスレーザでポリイミドフィルム18の加工深さは照射されたレーザパルス数に依存する。また、1パルス当たりの加工深さは約0.5μm以下で加工レーザビームのエネルギー密度によって異なる。1パルスは20ns程度であり、1パルスあたりの加工は非常に短時間で実現することが可能である。
【0075】
マスク移動ステージ13を移動することによって、マスク移動ステージ13に固定されたマスクも移動する構成となっている。マスクが移動することによってマスクパターン15の透過部分81も移動し、第3のレーザビーム16の照射位置および、照射パルス数をポリイミドフィルム18上で空間的に変化させることができる。照射位置および、照射されるレーザパルス数がポリイミドフィルム18上で変化すれば加工形状および、加工深さ等の加工量もポリイミドフィルム18上で変化することになる。
【0076】
マスクパターン15に点対称な形状の透過部分81を用いることにより、ポリイミドフィルム18上に投影されるマスクパターン15の透過部分81の像も点対称な形状となる。マスク移動によって第2のレーザビーム16の照射位置および、照射パルス数を変化させることで、対称形状を有する加工がポリイミドフィルム18上に施されることになる。
【0077】
以上のように、マスクの移動によって被加工物上でレーザビームの照射位置および、照射パルス数を制御することができ、従来の加工方法と比較して容易に、しかも加工位置および加工深さを高精度に制御可能であり、対称中心を有するマスクの透過部分の形状を反映した、複雑かつ微細な対称形状を有する加工を実施することができる。
【0078】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えば紫外レーザあるいはYAGレーザ等のエキシマレーザ以外のパルス駆動あるいは連続発振(CW)のレーザ光源でも良い。また、加工形状を変化させるためには、マスクの透過部分の形状を変化させることも可能である。さらに、加工深さの制御は照射パルス数ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入したり、レーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。加えて、パルスレーザ光源のパルス周期とマスク移動の移動速度が同期していても良い。さらに、対称中心を有するマスクパターンを用いたが対称線を有するマスクパターンを用いても良い。
【0079】
(実施例9)
以下、本発明の第9の実施例について図9を参照して説明する。
【0080】
図9は本発明の第9の実施例におけるレーザを用いた加工装置の構成図である。図9において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、91はマスクを移動するマスク移動ステージ、92はマスク移動ステージを駆動するファンクションジェネレータ、14は石英基板、15は石英基板14上に形成されたマスクパターン、16はマスクパターン15の透過部分を透過した第2のレーザビーム、17はマスクパターン15を縮小投影する縮小光学系、18は被加工物であるポリイミドフィルム、19はポリイミドフィルム18が固定されるガラス基板を示す。
【0081】
以下、図9に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後、第1のレーザビーム12はファンクションジェネレータ92で駆動され、マスクを特定の周期で繰り返し移動させるマスク移動ステージ91に固定されたマスクに入射する。上述の実施例と同様にマスクは石英基板14とマスクパターン15で構成される。マスクに入射された第1のレーザビーム12のうちマスクパターン15の透過部分を透過した第2のレーザビーム16がポリイミドフィルム18に照射される。第2のレーザビーム16は縮小光学系17を透過してマスクパターン15の縮小投影像の形状にポリイミドフィルム18を加工する。
【0082】
エキシマレーザはパルスレーザでポリイミドフィルム18の加工深さは照射されたレーザパルス数に依存する。また、1パルス当たりの加工深さは約0.5μm以下で加工レーザビームのエネルギー密度によって異なる。1パルスは20ns程度であり、1パルスあたりの加工は非常に短時間で実現することが可能である。
【0083】
マスク移動ステージ91をファンクションジェネレータ92の駆動で特定の周期で繰り返し移動させることによって、マスク移動ステージ91に固定されたマスクも特定の周期で繰り返し移動が可能な構成となっている。マスクが移動することによってマスクパターン15の透過部分も特定の周期で繰り返し移動し、第2のレーザビーム16の照射位置および、照射パルス数をポリイミドフィルム18上で空間的かつ、周期的に変化する。第2のレーザビーム16の照射位置および、照射パルス数がポリイミドフィルム18上で空間的かつ周期的に変化すれば、加工形状および、加工深さ等の加工量もポリイミドフィルム18上で変化することになる。
【0084】
以上のように、周期的なマスク移動によって被加工物上でレーザビームの照射位置および、照射パルス数を周期的に制御することができ、従来の加工方法と比較して容易に、しかも加工位置および加工深さを高精度に制御可能であり、複雑かつ微細な形状の加工を実施することができる。さらに、被加工物に照射されるレーザパルス数を周期的に変化させることによって、被加工物の加工形状および、加工量をマスクの移動周期および、移動速度によって容易かつ高精度に制御することができる。
【0085】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えば紫外レーザあるいはYAGレーザ等のエキシマレーザ以外のパルス駆動あるいは連続発振(CW)のレーザ光源でも良い。また、加工形状を変化させるためには、マスクの透過部分の形状を変化させることも可能である。さらに、加工深さの制御は照射パルス数ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入したり、レーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。加えて、パルスレーザ光源のパルス周期とマスク移動の移動速度、移動周期の少なくとも一方が同期していても良い。
【0086】
(実施例10)
以下、本発明の第10の実施例について図1及び10を参照して説明する。
【0087】
図10(a)は本発明の第10の実施例におけるマスクパターンを示し、(b)はポリイミドフィルムの加工状態の模式図であり、装置の全体構成については図1に、マスクパターンおよび加工状態については図10に基づいて説明する。図1において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、13はマスクを平行移動するマスク移動ステージ、14は石英基板、15は石英基板14上に形成されたマスクパターン、16はマスクパターン15の透過部分を透過した第2のレーザビーム、17はマスクパターン15を縮小投影する縮小光学系、18は被加工物であるポリイミドフィルム、19はポリイミドフィルム18が固定されるガラス基板を示す。図10(a)において、101はマスクパターン15の透過部分、102はマスクパターン15の不透過部分を示す。図10(b)はポリイミドフィルム18の加工状態を示す図である。
【0088】
以下、図1および、図10に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後、第1のレーザビーム12はマスクを平行移動させるマスク移動ステージ13に固定されたマスクに入射する。マスクは上述の実施例と同様に石英基板14とマスクパターン15で構成される。マスクに入射された第1のレーザビーム12のうちマスクパターン15の透過部分101を透過した第2のレーザビーム16がポリイミドフィルム18に照射される。第2のレーザビーム16は縮小光学系17を透過してマスクパターン15の透過部分101の縮小投影像の形状にポリイミドフィルム18を加工する。
【0089】
エキシマレーザはパルスレーザでポリイミドフィルム18の加工深さは照射されたレーザパルス数に依存する。また、1パルス当たりの加工深さは約0.5μm以下で加工レーザビームのエネルギー密度によって異なる。1パルスは20ns程度であり、1パルスあたりの加工は非常に短時間で実現することが可能である。
【0090】
マスク移動ステージ13を平行移動することによって、マスク移動ステージ13に固定されたマスクも平行移動する構成となっている。マスクが平行移動することによってマスクパターン15の透過部分101も図10(a)のように平行移動し、第2のレーザビーム16の照射位置をポリイミドフィルム18上で平行移動させることができる。第2のレーザビーム16の照射位置をポリイミドフィルム18上で平行移動させることにより、照射されるレーザパルス数がポリイミドフィルム18上でマスクの平行移動方向に空間的に変化する。ポリイミドフィルム上で第2のレーザビーム16の照射位置および、照射パルス数がマスクの平行移動方向に変化することにより、図10(b)の様な加工形状にポリイミドフィルム18は加工される。ここで、マスクは図10(a)の矢印の方向に等速に平行移動する。
【0091】
図10(b)においてポリイミドフィルムは均等な鋸刃形状に加工されているが、マスクの平行移動の方向および、移動速度を変化させれば、鋸刃の角度および、加工深さ等を容易に変化させることができる。
【0092】
以上のように、マスクの平行移動によって被加工物上でレーザビームの照射位置および、照射パルス数を制御することができ、従来の加工方法と比較して容易に、しかも加工位置および加工深さを高精度に制御可能であり、複雑かつ微細な形状の加工を実施することができる。さらに、マスクの平行移動の方向および、移動速度によって被加工物の加工形状および、加工量を容易かつ高精度に制御することができる。
【0093】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えば紫外レーザあるいはYAGレーザ等のエキシマレーザ以外のパルス駆動あるいは連続発振(CW)のレーザ光源でも良い。また、加工形状を変化させるためには、マスクの透過部分の形状を変化させても良い。さらに、加工深さの制御は照射パルス数ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入したり、レーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。加えて、パルスレーザ光源のパルス周期とマスク移動の移動速度が同期していても良い。
【0094】
(実施例11)
以下、本発明の第11の実施例について図11および図12を参照して説明する。
【0095】
図11は本発明の第11の実施例におけるレーザを用いた加工装置の構成図であり、図12(a)は本発明の第11の実施例における点対称な形状を有するマスクパターンを示し、(b)はポリイミドフィルムの加工状態の模式図である。装置の全体構成については図11に、マスクパターンおよび、加工状態については図12に基づいて説明する。図11において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、111はマスクを固定するマスク取り付け円筒、112は駆動ベルト、113は駆動ベルト112を介してマスク取り付け円筒111を回転させる同期モータ、14は石英基板、15は石英基板14上に形成されたマスクパターン、114はマスクパターン15の中心とマスク回転の中心の相対位置を移動させる中心位置移動機構、16はマスクパターン15の透過部分を透過した第2のレーザビーム、17はマスクパターン15を縮小投影する縮小投影光学系、18は被加工物であるポリイミドフィルム、19はポリイミドフィルム18が固定されるガラス基板を示す。図12において121は点対称な形状を有するマスクパターン15の透過部分、122はマスクパターン15の不透過部分を示す。
【0096】
以下、図11および、図12に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後、第1のビーム12はマスク取り付け円筒111に入射し、続いてマスクに入射する。ここで、マスク取り付け円筒は内径が第1のレーザビーム12よりも小さいので開口絞りとしても作用する。マスク取り付け円筒111は駆動ベルト112によって結合された同期モータ113によって定速回転する。マスク取り付け円筒111に固定されたマスクは上述の実施例と同様に石英基板14とマスクパターン15で構成される。ここで、マスクは中心位置移動機構114によって移動可能な構成となっている。マスクに入射された第1のレーザビーム12のうちマスクパターン15の点対称形状を有する透過部分121を透過した第2のレーザビーム16がポリイミドフィルム18に照射される。第2のレーザビーム16は縮小光学系17を透過してマスクパターン15の透過部分121の縮小投影像の形状にポリイミドフィルム18を加工する。
【0097】
エキシマレーザはパルスレーザでポリイミドフィルム18の加工深さは照射されたレーザパルス数に依存する。また、1パルス当たりの加工深さは約0.5μm以下で加工レーザビームのエネルギー密度によって異なる。1パルスは20ns程度であり、1パルスあたりの加工は非常に短時間で実現することが可能である。
【0098】
同期モータ113を駆動することによって、駆動ベルト112で同期モータ113と結合されたマスク取り付け円筒111が回転する構成になっている。マスク取り付け円筒111が回転することによって、マスク取り付け円筒111に固定されたマスクも回転する。マスクが回転することによって、マスクパターン15の透過部分121も回転し、第2のレーザビーム16の照射位置および、照射パルス数をポリイミドフィルム18上で回転方向に変化させることができる。第2のレーザビーム16の照射位置および、照射パルス数がポリイミドフィルム18上で回転方向に変化することにより、図12(b)の様な球面形状にポリイミドフィルム18を加工することができる。
【0099】
中心位置移動機構114によって、マスクパターン15の透過部分121の対称中心をマスク回転の中心に一致させることによって完全な球面形状にポリイミドフィルム18を加工することができる。さらに、中心移動機構114によって、透過部分121の対称中心とマスク回転中心を故意にずらすことにより、ポリイミドフィルム18上の加工中心付近の加工量を微小に変化させることができる。
【0100】
以上のように、マスク回転によって被加工物上でレーザビームの照射位置および、照射パルス数を制御することができ、従来の加工方法と比較して容易に、しかも加工位置および加工深さを高精度に制御可能であり、回転対称形状を有する複雑かつ微細な加工を実施することができる。
【0101】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えば紫外レーザあるいはYAGレーザ等のエキシマレーザ以外のパルス駆動あるいは連続発振(CW)のレーザ光源でも良い。また、マスクの透過部分の形状は点対称でなくても良い。さらに、加工形状を変化させるために、マスクの透過部分の形状を変化させることも可能である。加えて、加工深さの制御は照射パルス数ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入したり、レーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。さらに、パルスレーザ光源のパルス周期とマスクの回転速度、回転周期の少なくとも一方が同期していても良い。
【0102】
(実施例12)
以下、本発明の第12の実施例について図1を参照して説明する。
【0103】
図1において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、13はマスクを移動するマスク移動ステージ、14は石英基板、15は石英基板14上に形成されたマスクパターン、16はマスクパターン15の透過部分を透過した第2のレーザビーム、17はマスクパターン15を縮小投影する縮小光学系、18は被加工物であるポリイミドフィルム、19はポリイミドフィルム18が固定されるガラス基板を示す。
【0104】
以下、図1に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後、第1のレーザビーム12はマスク移動ステージ13に固定されたマスクに入射する。マスクは石英基板14とマスクパターン15で構成される。マスクに入射された第1のレーザビーム12のうちマスクパターン15の透過部分を透過した第2のレーザビーム16がポリイミドフィルム18に照射される。第2のレーザビーム16は縮小光学系17を透過してマスクパターン15の縮小投影像の形状にポリイミドフィルム18をアブレーション(除去)加工する。
【0105】
エキシマレーザによるアブレーション加工は、非常に短いパルス(数十ナノ秒)で発振するエキシマレーザを用いることにより、短時間で加工を行うことができ、加えて高いフォトンエネルギーによる高速な加熱や光化学反応を利用するので、低温、低損傷な加工を行うことができる。また、エキシマレーザはパルスレーザであるため、ポリイミドフィルム18の加工深さは照射されたレーザパルス数に依存する。さらに、1パルス当たりの加工深さは約0.5μm以下で加工レーザビームのエネルギー密度によって制御可能である。加えて、加工される材質によって上記アブレーション加工に必要なレーザビームのエネルギー密度が異なり、例えば本実施例で用いたポリイミドのような高分子材料では1J/cm2前後であり、金属、セラミック、ガラス材料では10J/cm2以上必要となる。従って、被加工物の材質によってレーザ発振器11の出力を決定し被加工物上でのレーザビームのエネルギー密度を設定する必要がある。
【0106】
また、マスク移動ステージ13を移動することによって、マスク移動ステージ13に固定されたマスクも移動する構成となっている。マスクが移動することによってマスクパターン15の透過部分も移動し、レーザビーム16の照射位置および、照射パルス数をポリイミドフィルム18上で空間的に変化させることができる。レーザビーム16の照射位置および、照射パルス数がポリイミドフィルム18上で空間的に変化すれば、加工形状および、加工深さ等の加工量がポリイミドフィルム18上で変化することになる。
【0107】
以上のように、マスク移動によって被加工物上でレーザビームの照射位置および、照射パルス数を制御することができ、従来の加工方法と比較して容易に、しかも加工位置および加工深さを高精度に制御可能であり、複雑かつ微細な形状の加工を実施することができる。また、加工機構として、レーザビームによるアブレーション加工を用いることで短時間で、低温、低損傷な制御性の高い加工を容易に行うことができる。
【0108】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えばYAGレーザの高調波等のエキシマレーザ以外のアブレーション加工が可能なレーザ光源でも良い。また、加工形状を変化させるためには、マスクの透過部分の形状を変化させることも可能である。さらに、加工深さの制御は照射パルス数ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入したり、レーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。加えて、パルスレーザ光源のパルス周期とマスク移動の移動速度が同期していても良い。
【0109】
(実施例13)
以下、本発明の第13の実施例について図13を参照して説明する。
【0110】
図13は本発明の第13の実施例におけるレーザを用いた加工装置の構成図である。図13において、11は加工用光源であるレーザ発振器、12はレーザ発振器11より出射した第1のレーザビーム、13はマスクを移動するマスク移動ステージ、14は石英基板、15は石英基板14上に形成されたマスクパターン、16はマスクパターン15の透過部分を透過した第2のレーザビーム、17はマスクパターン15を縮小投影する縮小光学系、131は被加工物であるフォトレジスト、132はフォトレジスト131が塗布されているシリコンウェハを示す。
【0111】
以下、図13に基づき本発明の加工方法について簡単に説明する。レーザ発振器11は波長308nmのエキシマレーザを用いた。レーザ発振器11から出射された直後の第1のレーザビーム12の形状は約15×30mmの長方形である。レーザ発振器11より出射後、第1のレーザビーム12はマスク移動ステージ13に固定されたマスクに入射する。マスクは上述の実施例と同様に石英基板14とマスクパターン15で構成される。マスクに入射された第1のレーザビーム12のうちマスクパターン15の透過部分を透過した第2のレーザビーム16がフォトレジスト131に照射される。第2のレーザビーム16は縮小光学系17を透過してマスクパターン15の縮小投影像の形状にフォトレジスト131を露光する。第2のレーザビーム16が照射されたフォトレジスト131のレーザビーム16の照射された部分で材料変性(感光現象)が生じ、現像することによって除去することが可能となる。
【0112】
マスク移動ステージ13を移動することによって、マスク移動ステージ13に固定されたマスクも移動する構成となっている。マスクが移動することによってマスクパターン15の透過部分も移動し、第2のレーザビーム16の照射位置および、照射量をフォトレジスト131上で空間的に変化させることができる。第2のレーザビーム16の照射位置および、照射量がフォトレジスト131上で変化すれば、加工形状および、露光量もフォトレジスト131上で変化することになる。
【0113】
以上のように、マスク移動によって被加工物上でレーザビームの照射位置および、照射パルス数を制御することができ、従来の加工方法と比較して容易に、加工位置および物性変化量を高精度に制御可能であり、形状変化を伴わない複雑かつ微細な材料変性加工を実施することができる。
【0114】
なお、本実施例では加工用光源としてエキシマレーザを用いたが、例えば紫外レーザあるいはYAGレーザ等のエキシマレーザ以外の材料変性が可能なパルス駆動あるいは連続発振(CW)のレーザ光源でも良い。また、材料変性はフォトレジストの感光現象としたが屈折率変化等の光学定数変化を伴う物性変化でも良い。さらに、加工位置および、加工量を変化させるためには、マスクの透過部分の形状を変化させることも可能である。加えて、加工量の制御は照射量ではなくビームの経路にビーム強度を減衰させるためのフィルター等を挿入したり、レーザの出力自体を変化させてエネルギー密度を変化させる方法のいずれかを採用しても良い。さらに、パルスレーザ光源を用いてパルス周期とマスク移動の移動速度が同期していても良い。
【0115】
【発明の効果】
以上のように、本発明の加工装置を用いることで、第1に、上記構成によって被加工物に照射される加工光の量を任意に制御することにより、従来の加工装置と比較して容易に、加工位置および加工深さ等の加工量を高精度に制御可能であり、複雑かつ微細な形状の加工を実現することができる。
【0116】
また、第2に、被加工物に照射される加工光を複数に分岐する光分岐光学系を用いることによって同時に、複数の被加工物および、被加工物上の複数の場所に加工位置および、加工量が高精度に制御された複雑かつ微細な形状の加工を容易に施すことができる。
【0117】
また、第3に、レーザ光によるアブレーション加工を行うことにより、被加工物に対して低温、低損傷で複雑かつ微細な加工を実現できる。
【図面の簡単な説明】
【図1】本発明の第1、第8、第10、第12の実施例におけるレーザを用いた加工装置の構成図
【図2】本発明の第2の実施例におけるレーザを用いた加工装置の構成図
【図3】本発明の第3の実施例におけるレーザを用いた加工装置の構成図
【図4】本発明の第4の実施例におけるレーザを用いた加工装置の構成図
【図5】本発明の第5の実施例におけるレーザを用いた加工装置の構成図
【図6】本発明の第6の実施例におけるレーザを用いた加工装置の構成図
【図7】本発明の第7の実施例におけるレーザを用いた加工装置の構成図
【図8】本発明の第8の実施例における対称中心を有するマスクパターンの模式図
【図9】本発明の第9の実施例におけるレーザを用いた加工装置の構成図
【図10】本発明の第10の実施例におけるマスクパターンおよび加工状態の模式図
【図11】本発明の第11の実施例におけるレーザを用いた加工装置の構成図
【図12】本発明の第11の実施例における点対称な形状を有するマスクパターンおよび加工状態の模式図
【図13】本発明の第13の実施例におけるレーザを用いた加工装置の構成図
【図14】従来のエキシマレーザによる加工装置の構成図
【符号の説明】
11 レーザ発振器
12 第1のレーザビーム
13 マスク移動ステージ
14 石英基板
15 マスクパターン
16 第2のレーザビーム
17 縮小光学系
18 ポリイミドフィルム
19 ガラス基板
21 投影光学系
22 第3のレーザビーム
31 入射光調整光学系
32 第2のレーザビーム
33 第3のレーザビーム
41 ポリイミド薄膜
42 ガラス基板
43 レーザダイオード
51 ポリイミド薄膜
52 石英基板
61 光分岐光学系
62 第3のレーザビーム
63 第4のレーザビーム
64 縮小光学系
65 縮小光学系
66 ポリイミドフィルム
67 ポリイミドフィルム
68 ガラス基板
69 ガラス基板
71 石英基板
72 マスクパターン
73 第2のレーザビーム
81 透過部分
82 不透過部分
91 マスク移動ステージ
92 ファンクションジェネレータ
101 透過部分
102 不透過部分
111 マスク取り付け円筒
112 駆動ベルト
113 同期モータ
114 中心位置移動機構
121 透過部分
122 不透過部分
131 フォトレジスト
132 シリコンウェハ
141 エキシマレーザ発振器
142 レーザビーム
143 マスク
144 折返しミラー
145 集光レンズ
146 ポリイミドフィルム
147 銅箔

Claims (14)

  1. 被加工物を加工する加工光を射出する加工用光源と、前記加工光に対して透明部分と不透明部分を有し、前記加工光の少なくとも1部を透過して前記被加工物の少なくとも1部に照射するマスクと、前記マスクを前記加工光に対して移動させて前記被加工物上の前記加工光の照射位置を変化させるマスク移動機構とを具備し、前記マスクの透明部分の形状は点対称であり、かつマスク移動機構はマスクを回転させ、前記マスクの対称中心と前記マスクの回転中心の相対位置を移動させる加工装置。
  2. 被加工物を加工する加工光を射出する加工用光源と、前記加工光に対して透明部分と不透明部分を有し、前記加工光の少なくとも1部を透過して前記被加工物の少なくとも1部に照射するマスクと、前記マスクを前記加工光に対して移動させて前記被加工物上の前記加工光の照射位置を変化させるマスク移動機構とを具備し、前記加工用光源と前記マスクの間に、加工光を前記マスクの特定部分に入射させる入射光調整光学系を具備する加工装置。
  3. 入射光調整光学系は、加工光が入射するマスクの特定部分を空間的に移動させる請求項2記載の加工装置。
  4. マスクと被加工物の間に、前記マスクのマスクパターンの投影像を前記被加工物上で変化させる投影光学系を具備することを特徴とする請求項1ないし3のいずれか記載の加工装置。
  5. 投影光学系が縮小光学系であることを特徴とする請求項4記載の加工装置。
  6. マスクが、透明材料と前記透明材料上に形成した不透明材料により構成されることを特徴とする請求項1ないし5のいずれか記載の加工装置。
  7. 透明材料が不均一な厚みを有することを特徴とする請求項6記載の加工装置。
  8. 加工用光源がレーザ光源であることを特徴とする請求項1ないし7のいずれか記載の加工装置。
  9. レーザ光源が紫外レーザであることを特徴とする請求項8記載の加工装置。
  10. 紫外レーザがエキシマレーザであることを特徴とする請求項9記載の加工装置。
  11. 紫外レーザがYAGレーザの高調波であることを特徴とする請求項9
    記載の加工装置。
  12. レーザ光源がパルス発振である請求項8ないし11のいずれか記載の加工装置。
  13. レーザ光源が周期的なパルス発振であり、かつパルス周期とマスクの移動が同期する請求項8ないし11のいずれか記載の加工装置。
  14. 加工がレーザ光によるアブレーション加工であることを特徴とする請求項9ないし13のいずれか記載の加工装置。
JP29950494A 1994-12-02 1994-12-02 加工装置 Expired - Fee Related JP3635701B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29950494A JP3635701B2 (ja) 1994-12-02 1994-12-02 加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29950494A JP3635701B2 (ja) 1994-12-02 1994-12-02 加工装置

Publications (2)

Publication Number Publication Date
JPH08155667A JPH08155667A (ja) 1996-06-18
JP3635701B2 true JP3635701B2 (ja) 2005-04-06

Family

ID=17873444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29950494A Expired - Fee Related JP3635701B2 (ja) 1994-12-02 1994-12-02 加工装置

Country Status (1)

Country Link
JP (1) JP3635701B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3526224B2 (ja) * 1998-10-20 2004-05-10 シャープ株式会社 加工方法および光学部品
US6525296B2 (en) 1998-10-20 2003-02-25 Sharp Kabushiki Kaisha Method of processing and optical components
US6313435B1 (en) * 1998-11-20 2001-11-06 3M Innovative Properties Company Mask orbiting for laser ablated feature formation
JP2003080524A (ja) * 2001-09-12 2003-03-19 Nitto Denko Corp 光学フィルムの製造方法及び液晶表示装置
KR20070035234A (ko) * 2005-09-27 2007-03-30 삼성전자주식회사 표시 기판의 제조 방법 및 이를 제조하기 위한 제조 장치
US7977602B2 (en) * 2007-03-21 2011-07-12 Photon Dynamics, Inc. Laser ablation using multiple wavelengths
US20160074968A1 (en) * 2014-09-11 2016-03-17 Suss Microtec Photonic Systems Inc. Laser etching system including mask reticle for multi-depth etching

Also Published As

Publication number Publication date
JPH08155667A (ja) 1996-06-18

Similar Documents

Publication Publication Date Title
EP3330798B1 (en) Maskless photolithographic system in cooperative working mode for cross-scale structure
US8049138B2 (en) Method and apparatus for processing three-dimensional structure, method for producing three-dimensional shape product and three-dimensional structure
US7482052B2 (en) Method for processing by laser, apparatus for processing by laser, and three-dimensional structure
EP1724816A1 (en) Exposure method and system, and device production method
TWI464540B (zh) 微影裝置及器件製造方法
JP2007057622A (ja) 光学素子及びその製造方法、光学素子用形状転写型の製造方法及び光学素子用転写型
JP2010510089A (ja) ポリマーオブジェクトオプティカル製造工程
JP3635701B2 (ja) 加工装置
CN1259171C (zh) 飞秒倍频激光直写系统及微加工方法
WO2020013122A1 (ja) レーザ加工装置、レーザ加工方法及び成膜マスクの製造方法
US6335786B1 (en) Exposure apparatus
US20090316127A1 (en) Substrate, and method and apparatus for producing the same
JP2015170780A (ja) 露光方法、微細周期構造体の製造方法、グリッド偏光素子の製造方法及び露光装置
JP4456881B2 (ja) レーザ加工装置
JPH10113780A (ja) レーザ加工装置、レーザ加工方法、および、回折格子
JP7221300B2 (ja) レーザ加工装置及び被加工物の加工方法
JP2005224841A (ja) レーザ加工方法及び装置、並びに、レーザ加工方法を使用した構造体の製造方法
JPH10319221A (ja) 光学素子及び光学素子の製造方法
JP5164176B2 (ja) 立体投影による光投影露光装置及び光投影露光方法
KR20040070158A (ko) 극초단 펄스 레이저 빔을 이용한 초정밀 직접 패터닝 방법 및 장치
JP4741560B2 (ja) リソグラフィ装置
JPH08179108A (ja) 回折光学素子の加工方法及び加工装置
KR200364788Y1 (ko) 극초단 펄스 레이저 빔을 이용한 초정밀 직접 패터닝 장치
JPH11179576A (ja) 光加工機及びそれを用いたオリフィスプレートの製造方法
JPH09318831A (ja) 直接描画方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees