JP3625376B2 - Wafer grinding method and apparatus - Google Patents

Wafer grinding method and apparatus Download PDF

Info

Publication number
JP3625376B2
JP3625376B2 JP14292198A JP14292198A JP3625376B2 JP 3625376 B2 JP3625376 B2 JP 3625376B2 JP 14292198 A JP14292198 A JP 14292198A JP 14292198 A JP14292198 A JP 14292198A JP 3625376 B2 JP3625376 B2 JP 3625376B2
Authority
JP
Japan
Prior art keywords
grinding
wafer
semiconductor wafer
required thickness
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14292198A
Other languages
Japanese (ja)
Other versions
JPH11333680A (en
Inventor
伸仁 布谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14292198A priority Critical patent/JP3625376B2/en
Publication of JPH11333680A publication Critical patent/JPH11333680A/en
Application granted granted Critical
Publication of JP3625376B2 publication Critical patent/JP3625376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は特に半導体製造工程における、ウェハの研削工程に使用されるウェハの研削方法及び装置に関する。
【0002】
【従来の技術】
図8は、従来のウェハの研削を説明する概念図である。従来、半導体ウェハ1は、その主表面に回路素子等の形成後、ダメージを受けないように主表面が保護テープ2で覆われる。その後、ウェハ1は、図示しないウェハ保持機構で保持されながら裏面が研削され、必要最小限の厚さとなる。
【0003】
このウェハ1の裏面研削は、トランジスタ素子のスイッチング特性等を向上させるために重要である。最近では、カード用メモリ等に使われるために単に薄くする目的でウェハ裏面の研削工程が必要なこともある。このように、ウェハの要求厚(製品にする上で必要な厚さ)は製品によって様々である。
【0004】
ウェハ1の裏面を研削する前、ウェハ1は例えば点線101のような裏面と端面を有している。すなわち、搬送時などでウェハ1の端面すなわち周縁部分(エッジ)が欠けたり、割れたりするのを防止するため、ウェハ周囲の端面は丸みを帯びているのが一般的である。
【0005】
ところが、図9の拡大図に示されるように、矢印のようにウェハ1の裏面101を研削する工程を経ると、ウェハ周囲の端面102は部分的に削られ、丸みをなくした部分103が発生する。この結果、以降のウェハの搬送時等において、ウェハの周縁部分の欠け、割れを増やす原因となる。特に、丸みをなくした部分103が鋭角的であって、搬送時に接触するようなことがあれば、製品歩留まりの低下を引き起こす問題がある。
【0006】
【発明が解決しようとする課題】
このように従来、半導体ウェハの裏面を研削する工程を経ると、ウェハ周囲の端面は、部分的に削られ、丸みをなくした部分が発生し、ウェハの周縁部分の欠け、割れ、ひいてはウェハにクラックを引き起こす可能性が増し、製品の歩留まりを低下させる原因となる。
【0007】
この発明は上記のような事情を考慮し、その課題は、半導体ウェハの裏面の研削に応じて、その研削部とウェハ周縁部の連続部分において確実に丸みが作られるような、ウェハの研削方法及び装置を提供することにある。
【0008】
【課題を解決するための手段】
この発明のウェハの研削方法は、所定の機能を実現すべく回路素子が形成されている半導体ウェハの主表面を保護する工程と、前記半導体ウェハに関し、主表面側を支持し裏面及び端面を露出させる工程と、前記半導体ウェハが任意の要求厚になるまで前記半導体ウェハの裏面全体を研削すると同時に前記要求厚に応じた半導体ウェハの端面に丸みを有するように前記半導体ウェハの端面部を研削する工程と具備したことを特徴とする。
【0011】
また、この発明のウェハの研削装置は、半導体ウェハの面に対して実質的に平行なまま移動して半導体ウェハの一方面全体に回転しながら接触する第1の研削面及び前記一方面全体の研削で任意の要求厚にされる前記半導体ウェハの端面への丸み形状を反映させる、前記第1の研削面から実質的に垂直方向に連続した端部曲面を含む第2の研削面により構成される研削用砥石を具備し、
前記半導体ウェハが任意の要求厚になるまで前記半導体ウェハの一方面全体を研削すると同時に前記要求厚に応じた半導体ウェハの端面部に丸みを有するように前記半導体ウェハの端面を研削することを特徴とする。
【0012】
この発明の方法では、主表面に回路素子が形成された後の半導体ウェハの裏面を研削するにあたって、要求厚に応じた半導体ウェハの端面部に適切な丸みを有するように半導体ウェハの端面を研削する。
【0013】
この発明の装置では、上記方法を実現するため、裏面研削で任意の要求厚にされる半導体ウェハの端面への丸み形状を反映させる凹部を有している第2の砥石や、第1の研削面から連続した第2の研削面を含む一体的な研削用砥石を備えている。
【0014】
【発明の実施の形態】
図1は、この発明の第1の実施形態に係るウェハの研削方法及び装置を説明する概念図である。半導体ウェハ1は、その主表面に所定の機能を実現すべく回路素子が既に形成されているものである。このウェハ1の主表面を例えば保護用テープ2で覆って保護した後、実質的なウェハ研削工程に入る。
【0015】
ウェハ1は、主表面側を例えば真空吸着式チャック3で保持し、裏面側及び端面を露出させる。点線101,102はそれぞれ研削前のウェハ1の裏面、端面を示す。その後、ウェハ1が任意の要求厚、すなわちウェハ1が必要な厚さになるまで前記半導体ウェハの裏面全体を平面研削用砥石4により研削する。このウェハ1の裏面全体を研削する工程の実施前か後に、上記要求厚に応じたウェハ1の端面に丸みを有するようにウェハ1の端面部を端面研削用砥石5により研削するのである。
【0016】
上記ウェハ1は、ウェハ中心を軸として回転運動させ、平面研削用砥石4は、少なくともウェハ1の面に実質的に平行なまま移動する(矢印41)。好ましくは平面研削用砥石4は、ウェハ1の回転方向とは逆方向に回転しながらウェハ1の裏面全体に接触させる。
【0017】
上記ウェハ1は裏面研削により所定の要求厚にされるのであるから、端面研削用砥石5は、その要求厚に応じたウェハ1の端面の丸みを実現するような凹部51を設けた円筒形状が準備される。この端面研削用砥石5は、自転運動を伴い、矢印52のようにウェハ1の中心方向に向かって移動しながらウェハ1の端面部を研削する。
【0018】
図2は、図1と同様のウェハ端面近傍と端面研削用砥石5を示す拡大図である。図1と同様の個所には同じ符号を付す。凹部51は例えば、断面が少なくとも半円より少ない円弧状の形状を有する。その円弧の半径をRmmとすると、ウェハ1の裏面研削後におけるウェハ1の要求厚Xmmに対し、R≧X/2であることを満足する。上記凹部51に関し、このような一つの条件を規定することにより、ウェハ1の裏面研削後におけるウェハの端面は適当な丸みを連続して帯びるように構成できる。
【0019】
ウェハ1の端面部の研削を、ウェハ1の裏面全体を研削する工程の実施前に行った場合、端面研削用砥石5の凹部51の下部曲面より下は、円筒形を反映して丸みなしに削れる(11)。しかし、この部分11は、後でウェハ1の裏面全体を研削する工程によって除去される部分である。従って、予定通りウェハ1の要求厚に適応した端面の丸みが実現される。
【0020】
ウェハ1の端面部の研削を、ウェハ1の裏面全体を研削する工程の実施後に行った場合、ウェハ1の端面部が端面研削用砥石5の凹部51の形状のみを反映させて研削され、要求厚に適応したウェハ1の端面の丸みを実現する。
【0021】
端面研削用砥石5の凹部51の円弧形状の上縁と下縁の間の距離Dmmの条件は、D≧Xであるといえる。しかし、平面方向の研削精度により、加工後のウェハの厚さ(要求厚)に若干のばらつきが発生したときでも十分に対応できるように、所望のウェハの要求厚に合わせるよりも若干余裕を持った形状とすることが望ましい。
【0022】
すなわち、ΔXを要求厚のばらつきと考えると、D>X+ΔXと考えてもよい。このため、端面研削用砥石5は、図示しない移動機構によってウェハ端面への研削量(砥石の送り量)を上下にも微調整させ、必要な形状を整えることができる。
【0023】
なお、図示しないが、ウェハ1にオリエンテーションフラットがあり、オリエンテーションフラットの端面を研削する必要がある場合は、上述のようなウェハ周端面研削とは別に、回転の停止しているウェハ1のオリエンテーションフラットに沿って、端面研削用砥石5を回転させながら並行移動させることにより、オリエンテーションフラットに均等に接触させて研削すればよい。
【0024】
このような実施方法及び実施形態によれば、ウェハ1の端面は要求厚に適応した丸みを帯び、鋭角的な部分はなくなり、搬送等によるウェハの割れ、欠けの発生を抑制できる。
【0025】
なお、ウェハ1は、研削時、主表面側を例えば真空吸着チャック3で保持するとしたが、これに限らず、主表面側を台上に接触させるようにして置き、上方からウェハ1の裏面全体を、回転させた平面研削用砥石4により研削し、任意の要求厚にする。このウェハ1の裏面全体を研削する工程の実施前か後に上記要求厚に応じたウェハ1の端面に丸みを有するようにウェハ1の端面部を研削してもよい。
【0026】
また、端面研削前のウェハ1の端面形状によっては、端面研削用砥石5の凹部形状断面が丸みを帯びたものでなくても、鋭角的な部分を持たないように加工できることがある。このような場合、端面研削用砥石5の凹部形状断面が、例えば台形状であってもかまわない。これは、つまり、研削時、台形の角が反映されることなく、端面研削前のウェハ1の端面の形状(丸み形状)を活かしたウェハ端面を実現するものである。
【0027】
図3は、この発明の第2の実施形態に係るウェハの研削方法及び装置を説明する概念図である。また、図4は、図3のウェハ端面近傍を示す拡大図である。これらの図はそれぞれ図1、図2と対応している。第1の実施形態と異なる点は、端面研削用砥石5の構成である。ここでは端面研削用砥石6として断面図で説明する。その他は前記した第1の実施形態と同様であるので同一の符号を付す。
【0028】
端面研削用砥石6は、ウェハ1の要求厚の変更に、ある程度対処できることが特徴である。端面研削用砥石6は、半導体ウェハの端面部への丸み形状を反映させる凹部の形状を、凹部を形成する両曲面の間に延在させた円筒部分の長さを調節することによって変形させることができる。これにより、変更される半導体ウェハの要求厚に、ある程度応じられるウェハの端面部の研削ができる。
【0029】
より具体的には、端面研削用砥石6は、凹部を形成する一方曲面61と、他方曲面62と、その間に延在させた円筒部分63とを有し、この円筒部分63の長さを任意の長さに調節する可変機構65が含まれている。
【0030】
ウェハ1の要求厚に合わせ、事前に可変機構65による送りねじ等の微調整により、この一方曲面61に延在させた円筒部分63を、凹部形状表面にどの程度露出させるか設定する。このように砥石の凹部形状を変更できる構造を持つ。これにより、第1の実施形態よりも自由度が高いウェハの要求厚に応じた端面研削が可能となる。
【0031】
なお、円筒部分63は、砥石の一方曲面、他方曲面どちら側に延在させる構成であってもかまわない。また、凹部形状は、一方曲面61と、他方曲面62とを合わせ円筒部分63を無くしたときに、実質的に少なくとも半円より少ない連続した円弧状の形状を示すことが望ましい。しかし、加工上、砥石の強度に問題が生じる場合は、一方曲面61と、他方曲面62とが別々の円弧を持つ形状とする。
【0032】
従って、円筒部分63をある程度出した形で端面研削形状が調整され、第1の実施形態と同様に、この端面研削用砥石6は、自転運動を伴いウェハ1の中心方向に向かって移動しながらウェハ1の端面部を研削する。
【0033】
ウェハ1の要求厚Xmmと、端面研削用砥石6の凹部の上縁と下縁の間の距離Dmmの条件は、D≧Xであるといえる。砥石の凹部形状を変更できる構造なので、平面方向の研削精度により加工後のウェハの厚さ(要求厚)に若干のばらつきが発生したときでも十分に対応できる。要求厚XのばらつきΔXを考えると、D>X+ΔXで調整してもよい。
【0034】
なお、ウェハ1にオリエンテーションフラットがあり、オリエンテーションフラットの端面を研削する必要がある場合は、上述のようなウェハ周端面研削とは別に、回転の停止しているウェハ1のオリエンテーションフラットに沿って、端面研削用砥石6を並行移動させることにより、オリエンテーションフラットに均等に接触させて研削すればよい。
【0035】
このような実施方法及び実施形態によれば、ウェハ1の端面は、ウェハ1の要求厚の変更に応じて、その要求厚に適応した丸みを帯び、鋭角的な部分はなくなり、搬送等によるウェハの割れ、欠けの発生を抑制できる。
【0036】
図5は、この発明の第3の実施形態に係るウェハの研削方法及び装置を説明する概念図である。半導体ウェハ1は、その主表面に所定の機能を実現すべく回路素子が既に形成されているものである。このウェハ1の主表面を例えばテープ2で覆って保護した後、実質的なウェハ研削工程に入る。
【0037】
ウェハ1は、主表面側を例えば真空吸着チャック3で保持し、裏面側及び端面を露出させる。その後、この発明では、ウェハ1が任意の要求厚になるまでウェハ1の裏面全体を研削すると同時に要求厚に応じたウェハ1の端面部に丸みを有するようにウェハ1の端面を研削する、一体型研削用砥石7により目的を達成する。
【0038】
上記一体型研削用砥石7は、図5では説明のため断面図で示されている。半導体ウェハ1の面に対して実質的に平行なまま移動し回転させながらウェハ1の裏面全体に接触する第1研削面71及び裏面全体の研削で任意の要求厚にされるウェハ1の端面への丸み形状を反映させる、第1研削面71から実質的に垂直方向に連続した端部曲面を構成する第2研削面72を含んでいる。ウェハ1は、その中心を軸として一体型研削用砥石7の回転方向とは逆方向に回転し一体型研削用砥石7と接触することによって裏面と端面が一括的に研削される。
【0039】
図6は、上記第2研削面72の拡大図を示す。第2研削面72での端部曲面を構成する半径をRmmとすると、ウェハ1の裏面研削後の要求厚Xmmに対し、R≦X/2を満足する。このように規定することにより、ウェハ1の研削終了時、ウェハ1の端面に鋭角的な部分が表れるのを防ぐことができる。
【0040】
すなわち、ウェハ1の端面において、少なくとも研削された裏面側の角は半径Rの丸みを持つことになる。また、表面側の角は研削前の丸みを部分的に残すことになる。
【0041】
ここでは、ウェハ1の端面を研削する場合、ウェハ1の端面最外周は実質的に研削面最外周ポイントP1を出ないように研削を進めていく。また、ウェハ1の回転の中心と一体型研削用砥石7の回転の中心とが実質的に一致していることが好ましいが、必ずしもそうである必要はなく、研削当初からオフセットされることになってもよい。
【0042】
このような実施方法及び実施形態によれば、ウェハ1の端面は要求厚に適応した丸みを帯び、鋭角的な部分はなくなり、搬送等によるウェハの割れ、欠けの発生を抑制できる。
【0043】
図7は、第2研削面72の変形例である。端部曲面終端から上部に延在する第1研削面71に実質的に垂直な壁部分721を有する。ウェハ1の要求厚によっては、第2研削面72から壁部分721をも反映させたフラットな面がウェハ1表面側の角に繋がるように表れることになる。
【0044】
このときは、ウェハ1の端面に関し、ウェハ1裏面側の角は第2研削面72を反映させた一様な丸みを帯び、ウェハ1表面側の角は、研削前に帯びているウェハの丸みの一部が残って直角より大きい角度ということになる(仮に、研削前に帯びているウェハの丸みの一部も残されないとしてもその部分は直角より小さくならない)。結局のところ、ウェハ1の端面は鋭角的な部分はなくすことができ、要求厚に適応できる丸みを有することになる。これにより、搬送等によるウェハの割れ、欠けの発生を抑制できる。
【0045】
また、上記図7は、壁部分721の終端から上縁部に向かってテーパ形状となる斜面722を有する。この斜面722を有することにより、ウェハ1を誘導する精度に若干の余裕を持たせることができる。
【0046】
なお、この斜面722は実質的にウェハの端面を研削する部分ではない。最終的にウェハの端面がこの斜面722を反映させるような研削は行わないように、第2研削面72の半径Rや壁部分721の寸法を設定しなければならない。また、この図7において壁部分721を設けない構成も考えられる。
【0047】
上記のように、ウェハの裏面及び端面を一括的に研削する方法及び装置によれば、平面部分は平衡度など必要な精度は十分に満足できる形状で、緩やかな円弧状の部分はウェハの端面部分を研削し、また、もともとウェハ自体に施されている丸み形状の一部を利用しつつ、最終的には鋭角部分のない形状に加工できる。
【0048】
以上各実施形態とも、ウェハを水平に設置した加工方法で説明を行ってきたが、加工は垂直方向でも構わないし、ウェハを逆さにし、平面用の砥石を上部から移動させる方法でも構わない。
【0049】
【発明の効果】
以上説明したようにこの発明によれば、主表面に回路素子が形成された後の半導体ウェハの裏面を研削するにあたって、要求厚に応じた半導体ウェハの端面部に適切な丸みを有するように、半導体ウェハの裏面を研削する工程の実施前または後または同時に、少なくとも裏面削部とウェハ周縁部の連続部分において確実に適切な丸みが作られるような、ウェハの研削方法及び装置を提供することができる。
【図面の簡単な説明】
【図1】この発明の第1の実施形態に係るウェハの研削方法及び装置を説明する概念図。
【図2】図1のウェハ端面近傍を示す拡大図。
【図3】この発明の第2の実施形態に係るウェハの研削方法及び装置を説明する概念図。
【図4】図3のウェハ端面近傍を示す拡大図。
【図5】この発明の第3の実施形態に係るウェハの研削方法及び装置を説明する概念図。
【図6】図5の構成の研削面の一部の拡大図。
【図7】第3の実施形態に係る研削面の形状の変形例を示す概念図。
【図8】従来のウェハの研削を説明するための概念図。
【図9】ウェハの研削工程後のウェハ端面部分の様子を示す拡大図。
【符号の説明】
1…半導体ウェハ
2…保護用テープ
3…真空吸着式チャック
4…平面研削用砥石
5,6…端面研削用砥石
7…一体型研削用砥石
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wafer grinding method and apparatus used in a wafer grinding process, particularly in a semiconductor manufacturing process.
[0002]
[Prior art]
FIG. 8 is a conceptual diagram illustrating conventional grinding of a wafer. Conventionally, the main surface of the semiconductor wafer 1 is covered with a protective tape 2 so as not to be damaged after the circuit elements and the like are formed on the main surface. Thereafter, the back surface of the wafer 1 is ground while being held by a wafer holding mechanism (not shown), so that the thickness becomes the minimum necessary.
[0003]
This backside grinding of the wafer 1 is important for improving the switching characteristics of the transistor elements. Recently, since it is used for a memory for a card or the like, a grinding process for the back surface of the wafer may be required only for the purpose of thinning. As described above, the required thickness of the wafer (thickness necessary for making the product) varies depending on the product.
[0004]
Before the back surface of the wafer 1 is ground, the wafer 1 has a back surface and an end surface, such as a dotted line 101, for example. That is, in order to prevent the end surface of the wafer 1, that is, the peripheral portion (edge) from being chipped or broken during conveyance, the end surface around the wafer is generally rounded.
[0005]
However, as shown in the enlarged view of FIG. 9, when the back surface 101 of the wafer 1 is ground as shown by the arrow, the end surface 102 around the wafer is partly cut and a rounded portion 103 is generated. To do. As a result, it becomes a cause of increasing the chipping and cracking of the peripheral portion of the wafer during subsequent wafer transport. In particular, if the rounded portion 103 is acute and touches at the time of conveyance, there is a problem of causing a decrease in product yield.
[0006]
[Problems to be solved by the invention]
In this way, conventionally, after the process of grinding the back surface of the semiconductor wafer, the end surface around the wafer is partially cut to generate a rounded portion, and the peripheral edge of the wafer is chipped, cracked, and eventually into the wafer. This increases the possibility of causing cracks and reduces the product yield.
[0007]
The present invention takes the above-mentioned circumstances into consideration, and the problem is that a method for grinding a wafer in which rounding is surely made in a continuous portion of the ground portion and the peripheral portion of the wafer according to grinding of the back surface of the semiconductor wafer. And providing an apparatus.
[0008]
[Means for Solving the Problems]
The method for grinding a wafer according to the present invention includes a step of protecting a main surface of a semiconductor wafer on which circuit elements are formed so as to realize a predetermined function, and the semiconductor wafer is supported on the main surface side and exposed on the back surface and the end surface. a step of, the end face of the semiconductor wafer such that the semiconductor wafer has a rounded end surface portion of the semiconductor wafer in response to the request thickness simultaneously grinding the entire back surface of the semiconductor wafer until any required thickness characterized by comprising the step of grinding.
[0011]
The wafer grinding apparatus according to the present invention also includes a first grinding surface that moves while being substantially parallel to the surface of the semiconductor wafer and contacts the entire one surface of the semiconductor wafer while rotating, and the entire first surface. The second grinding surface includes an end curved surface that is substantially perpendicular to the first grinding surface and reflects a rounded shape on the end surface of the semiconductor wafer, which is arbitrarily required for grinding. Equipped with a grinding wheel
Grinding one end of the semiconductor wafer until the semiconductor wafer has an arbitrary required thickness, and simultaneously grinding the end face of the semiconductor wafer so that the end face of the semiconductor wafer has a roundness according to the required thickness. And
[0012]
In the method of the present invention, when grinding the back surface of the semiconductor wafer after the circuit elements are formed on the main surface, the end surface of the semiconductor wafer is ground so that the end surface portion of the semiconductor wafer according to the required thickness has an appropriate roundness. To do.
[0013]
In the apparatus of the present invention, in order to realize the above-described method, the second grinding wheel having a recess reflecting the round shape on the end surface of the semiconductor wafer, which has an arbitrary required thickness by the back surface grinding, or the first grinding An integral grinding wheel including a second grinding surface continuous from the surface is provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a conceptual diagram illustrating a wafer grinding method and apparatus according to a first embodiment of the present invention. The semiconductor wafer 1 has a circuit element already formed on its main surface so as to realize a predetermined function. After the main surface of the wafer 1 is covered and protected with a protective tape 2, for example, a substantial wafer grinding process is started.
[0015]
The main surface side of the wafer 1 is held by, for example, a vacuum suction chuck 3, and the back surface side and the end surface are exposed. Dotted lines 101 and 102 indicate the back surface and end surface of the wafer 1 before grinding, respectively. Thereafter, the entire back surface of the semiconductor wafer is ground by the surface grinding grindstone 4 until the wafer 1 has an arbitrary required thickness, that is, the wafer 1 has a required thickness. Before or after the step of grinding the entire back surface of the wafer 1, the end surface portion of the wafer 1 is ground by the end surface grinding wheel 5 so that the end surface of the wafer 1 is rounded according to the required thickness.
[0016]
The wafer 1 is rotated about the center of the wafer, and the grinding wheel 4 for surface grinding moves at least substantially parallel to the surface of the wafer 1 (arrow 41). Preferably, the grinding wheel 4 for surface grinding is brought into contact with the entire back surface of the wafer 1 while rotating in a direction opposite to the rotation direction of the wafer 1.
[0017]
Since the wafer 1 is made to have a predetermined required thickness by back surface grinding, the end grinding wheel 5 has a cylindrical shape provided with a recess 51 that realizes roundness of the end surface of the wafer 1 according to the required thickness. Be prepared. This end grinding wheel 5 grinds the end surface portion of the wafer 1 while moving toward the center of the wafer 1 as indicated by an arrow 52 along with the rotation.
[0018]
FIG. 2 is an enlarged view showing the vicinity of the wafer end face and the end face grinding wheel 5 similar to FIG. The same parts as those in FIG. The recess 51 has, for example, an arc shape whose cross section is less than a semicircle. When the radius of the arc is Rmm, it satisfies that R ≧ X / 2 with respect to the required thickness Xmm of the wafer 1 after the back grinding of the wafer 1. By defining one such condition for the recess 51, the end surface of the wafer after the backside grinding of the wafer 1 can be configured to continuously have an appropriate roundness.
[0019]
When the grinding of the end surface of the wafer 1 is performed before the step of grinding the entire back surface of the wafer 1, the portion below the lower curved surface of the concave portion 51 of the grinding wheel 5 for edge grinding is rounded to reflect the cylindrical shape. It can be shaved (11). However, the portion 11 is a portion that is removed later by grinding the entire back surface of the wafer 1. Therefore, the roundness of the end face adapted to the required thickness of the wafer 1 is realized as planned.
[0020]
When the grinding of the end surface of the wafer 1 is performed after the step of grinding the entire back surface of the wafer 1, the end surface of the wafer 1 is ground to reflect only the shape of the recess 51 of the grinding wheel 5 for end surface grinding. The roundness of the end face of the wafer 1 adapted to the thickness is realized.
[0021]
It can be said that the condition of the distance Dmm between the upper edge and the lower edge of the arc shape of the concave portion 51 of the end surface grinding wheel 5 is D ≧ X. However, the grinding accuracy in the planar direction has a margin more than matching the required thickness of the desired wafer so that it can be adequately handled even when slight variations occur in the thickness (required thickness) of the processed wafer. It is desirable to have a different shape.
[0022]
That is, if ΔX is considered as a variation in required thickness, it may be considered that D> X + ΔX. For this reason, the grinding wheel 5 for end face grinding can finely adjust the grinding amount (whetstone feed amount) to the wafer end face by a moving mechanism (not shown) to adjust the required shape.
[0023]
Although not shown, when the wafer 1 has an orientation flat and it is necessary to grind the end face of the orientation flat, the orientation flat of the wafer 1 whose rotation has stopped is separated from the above-mentioned wafer peripheral end face grinding. Then, the end surface grinding wheel 5 may be moved in parallel while being rotated so as to be uniformly contacted with the orientation flat for grinding.
[0024]
According to such an implementation method and embodiment, the end surface of the wafer 1 is rounded in accordance with the required thickness, and there is no acute angle portion, so that the occurrence of cracking and chipping of the wafer due to conveyance or the like can be suppressed.
[0025]
Note that the main surface side of the wafer 1 is held by, for example, the vacuum suction chuck 3 at the time of grinding. However, the present invention is not limited to this, and the main surface side is placed on a table so that the entire back surface of the wafer 1 is viewed from above. Is ground with the rotated surface grinding wheel 4 to have an arbitrary required thickness. The end surface portion of the wafer 1 may be ground so that the end surface of the wafer 1 is rounded before or after the step of grinding the entire back surface of the wafer 1 is performed.
[0026]
Further, depending on the end face shape of the wafer 1 before end face grinding, even if the recess shape cross section of the end face grinding grindstone 5 is not rounded, it may be processed so as not to have an acute angle portion. In such a case, the concave shape cross section of the grindstone 5 for end face grinding may be, for example, trapezoidal. That is, at the time of grinding, a trapezoidal corner is not reflected, and a wafer end face that takes advantage of the shape (round shape) of the end face of the wafer 1 before end face grinding is realized.
[0027]
FIG. 3 is a conceptual diagram for explaining a wafer grinding method and apparatus according to a second embodiment of the present invention. FIG. 4 is an enlarged view showing the vicinity of the wafer end face of FIG. These figures correspond to FIGS. 1 and 2, respectively. The difference from the first embodiment is the configuration of the grindstone 5 for end face grinding. Here, the end face grinding wheel 6 will be described in a cross-sectional view. The other parts are the same as those in the first embodiment described above, and are therefore denoted by the same reference numerals.
[0028]
The end surface grinding wheel 6 is characterized in that it can cope with a change in the required thickness of the wafer 1 to some extent. The grindstone 6 for end surface grinding is deformed by adjusting the length of a cylindrical portion extending between both curved surfaces forming the concave portion, reflecting the shape of the concave portion reflecting the round shape of the end surface portion of the semiconductor wafer. Can do. Thereby, the end surface portion of the wafer can be ground to some extent according to the required thickness of the semiconductor wafer to be changed.
[0029]
More specifically, the grindstone 6 for end face grinding has one curved surface 61 that forms a recess, the other curved surface 62, and a cylindrical portion 63 extending therebetween, and the length of the cylindrical portion 63 is arbitrary. A variable mechanism 65 for adjusting the length is included.
[0030]
In accordance with the required thickness of the wafer 1, the degree to which the cylindrical portion 63 extended on the one curved surface 61 is exposed to the concave surface by fine adjustment of the feed screw or the like by the variable mechanism 65 in advance is set. Thus, it has a structure which can change the recessed part shape of a grindstone. Thereby, end face grinding according to the required thickness of the wafer having a higher degree of freedom than the first embodiment becomes possible.
[0031]
The cylindrical portion 63 may be configured to extend on either the one curved surface side or the other curved surface side of the grindstone. Further, it is desirable that the concave shape has a continuous arc shape substantially less than at least a semicircle when the curved surface 61 is combined with the curved surface 61 and the cylindrical surface 63 is eliminated. However, when a problem arises in the strength of the grindstone due to processing, the curved surface 61 and the curved surface 62 have different arcs.
[0032]
Accordingly, the shape of the end surface grinding is adjusted by protruding the cylindrical portion 63 to some extent, and the end surface grinding grindstone 6 moves toward the center of the wafer 1 with its rotation, as in the first embodiment. The end surface portion of the wafer 1 is ground.
[0033]
It can be said that the condition of the required thickness Xmm of the wafer 1 and the distance Dmm between the upper edge and the lower edge of the concave portion of the grindstone 6 for end face grinding is D ≧ X. Since the concave shape of the grindstone can be changed, even when slight variations occur in the thickness (required thickness) of the wafer after processing due to the grinding accuracy in the planar direction, it can be sufficiently handled. Considering the variation ΔX of the required thickness X, the adjustment may be made by D> X + ΔX.
[0034]
In addition, when the wafer 1 has an orientation flat and it is necessary to grind the end face of the orientation flat, along with the orientation flat of the wafer 1 whose rotation is stopped separately from the wafer peripheral end face grinding as described above, What is necessary is just to grind evenly by contacting the orientation flat by moving the grindstone 6 for end surface grinding in parallel.
[0035]
According to such an implementation method and embodiment, the end face of the wafer 1 is rounded in conformity with the required thickness of the wafer 1 according to the change of the required thickness, and there is no acute angle portion. Can prevent cracking and chipping.
[0036]
FIG. 5 is a conceptual diagram for explaining a wafer grinding method and apparatus according to a third embodiment of the present invention. The semiconductor wafer 1 has a circuit element already formed on its main surface so as to realize a predetermined function. After the main surface of the wafer 1 is covered with, for example, the tape 2 and protected, a substantial wafer grinding process is started.
[0037]
The main surface side of the wafer 1 is held by, for example, a vacuum suction chuck 3, and the back surface side and the end surface are exposed. Thereafter, in the present invention, the entire back surface of the wafer 1 is ground until the wafer 1 has an arbitrary required thickness, and at the same time, the end surface of the wafer 1 is ground so that the end surface portion of the wafer 1 is round according to the required thickness. The object is achieved by the body grinding wheel 7.
[0038]
The integrated grinding wheel 7 is shown in a sectional view in FIG. The first grinding surface 71 that contacts the entire back surface of the wafer 1 while moving and rotating while remaining substantially parallel to the surface of the semiconductor wafer 1 and the end surface of the wafer 1 that has an arbitrary required thickness by grinding the entire back surface The 2nd grinding surface 72 which comprises the end curved surface which continued in the perpendicular direction from the 1st grinding surface 71 reflecting the round shape of this is included. The wafer 1 rotates in the direction opposite to the rotation direction of the integrated grinding wheel 7 around the center thereof and comes into contact with the integrated grinding wheel 7 so that the back surface and the end surface are ground together.
[0039]
FIG. 6 shows an enlarged view of the second grinding surface 72. When the radius constituting the end curved surface at the second grinding surface 72 is Rmm, R ≦ X / 2 is satisfied with respect to the required thickness Xmm after the back surface grinding of the wafer 1. By defining in this way, it is possible to prevent an acute angle portion from appearing on the end face of the wafer 1 when the grinding of the wafer 1 is completed.
[0040]
That is, at the end face of the wafer 1, at least the ground corner on the back side has a radius R. Also, the corners on the surface side partially leave roundness before grinding.
[0041]
Here, when the end surface of the wafer 1 is ground, the grinding is advanced so that the outermost periphery of the end surface of the wafer 1 does not substantially come out of the outermost peripheral point P1 of the grinding surface. In addition, it is preferable that the center of rotation of the wafer 1 and the center of rotation of the integral grinding wheel 7 are substantially coincident with each other, but this is not always necessary, and offset from the beginning of grinding. May be.
[0042]
According to such an implementation method and embodiment, the end surface of the wafer 1 is rounded in accordance with the required thickness, and there is no acute angle portion, so that the occurrence of cracking and chipping of the wafer due to conveyance or the like can be suppressed.
[0043]
FIG. 7 is a modification of the second grinding surface 72. A wall portion 721 that is substantially perpendicular to the first grinding surface 71 extends upward from the end curved end surface. Depending on the required thickness of the wafer 1, a flat surface reflecting the wall portion 721 from the second grinding surface 72 appears so as to be connected to a corner on the wafer 1 surface side.
[0044]
At this time, with respect to the end face of the wafer 1, the corner on the back surface side of the wafer 1 has a uniform roundness reflecting the second grinding surface 72, and the corner on the front surface side of the wafer 1 has a roundness of the wafer that has been rounded before grinding. This means that an angle larger than a right angle is left (even if a portion of the roundness of the wafer that is crushed before grinding is not left, the portion does not become smaller than the right angle). After all, the end face of the wafer 1 can be eliminated from an acute angle portion, and has a roundness that can be adapted to the required thickness. Thereby, generation | occurrence | production of the crack of a wafer by conveyance etc. and a chip can be suppressed.
[0045]
In addition, FIG. 7 has a slope 722 that tapers from the end of the wall portion 721 toward the upper edge. By having the inclined surface 722, a slight margin can be given to the accuracy of guiding the wafer 1.
[0046]
The inclined surface 722 is not a portion that substantially grinds the end surface of the wafer. Finally, the radius R of the second grinding surface 72 and the dimension of the wall portion 721 must be set so that grinding is not performed so that the end surface of the wafer reflects the inclined surface 722. Further, a configuration in which the wall portion 721 is not provided in FIG.
[0047]
As described above, according to the method and apparatus for collectively grinding the back surface and the end surface of the wafer, the flat surface portion has a shape that sufficiently satisfies the required accuracy such as the degree of balance, and the gentle arc-shaped portion is the end surface of the wafer. It is possible to grind the part and finally use the part of the round shape originally applied to the wafer itself, and finally process it into a shape without an acute angle part.
[0048]
In each of the embodiments described above, the processing method has been described in which the wafer is horizontally installed. However, the processing may be performed in the vertical direction, or may be a method in which the wafer is turned upside down and the planar grindstone is moved from above.
[0049]
【The invention's effect】
As described above, according to the present invention, when grinding the back surface of the semiconductor wafer after the circuit elements are formed on the main surface, the end surface portion of the semiconductor wafer according to the required thickness has an appropriate roundness. To provide a method and apparatus for grinding a wafer so that an appropriate roundness can be surely made at least in a continuous portion of a back surface-cutting portion and a wafer peripheral portion before, or after or simultaneously with the step of grinding a back surface of a semiconductor wafer. it can.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram illustrating a wafer grinding method and apparatus according to a first embodiment of the present invention.
2 is an enlarged view showing the vicinity of the wafer end face in FIG. 1; FIG.
FIG. 3 is a conceptual diagram illustrating a wafer grinding method and apparatus according to a second embodiment of the present invention.
4 is an enlarged view showing the vicinity of the wafer end face in FIG. 3;
FIG. 5 is a conceptual diagram illustrating a wafer grinding method and apparatus according to a third embodiment of the present invention.
6 is an enlarged view of a part of a grinding surface having the configuration of FIG.
FIG. 7 is a conceptual diagram showing a modification of the shape of the grinding surface according to the third embodiment.
FIG. 8 is a conceptual diagram for explaining conventional grinding of a wafer.
FIG. 9 is an enlarged view showing a state of a wafer end surface portion after the wafer grinding step.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor wafer 2 ... Protective tape 3 ... Vacuum adsorption chuck 4 ... Surface grinding wheel 5, 6 ... End surface grinding wheel 7 ... Integrated grinding wheel

Claims (7)

所定の機能を実現すべく回路素子が形成されている半導体ウェハの主表面を保護する工程と、
前記半導体ウェハに関し、主表面側を支持し裏面及び端面を露出させる工程と、
前記半導体ウェハが任意の要求厚になるまで前記半導体ウェハの裏面全体を研削すると同時に前記要求厚に応じた半導体ウェハの端面部に丸みを有するように前記半導体ウェハの端面を研削する工程と
を具備したことを特徴とするウェハの研削方法。
A step of protecting a main surface of a semiconductor wafer on which circuit elements are formed in order to realize a predetermined function;
Regarding the semiconductor wafer, supporting the main surface side and exposing the back surface and the end surface;
Grinding the entire back surface of the semiconductor wafer until the semiconductor wafer has an arbitrary required thickness, and simultaneously grinding the end surface of the semiconductor wafer so that the end surface of the semiconductor wafer has a roundness according to the required thickness; A method for grinding a wafer, comprising:
前記半導体ウェハの裏面全体及び端面部研削用としての一体的な砥石を用い、回転させながら前記半導体ウェハ面に対して実質的に平行なまま移動させ、前記半導体ウェハの裏面全体及び端面部に接触することを特徴とする請求項1記載のウェハの研削方法。Using an integral grindstone for grinding the entire back surface and the end surface of the semiconductor wafer, it is moved while being substantially parallel to the semiconductor wafer surface while rotating, and contacts the entire back surface and the end surface of the semiconductor wafer. The wafer grinding method according to claim 1, wherein: 前記半導体ウェハは前記砥石の回転方向とは逆方向に回転しながら研削されることを特徴とする請求項2記載のウェハの研削方法。3. The method of grinding a wafer according to claim 2, wherein the semiconductor wafer is ground while rotating in a direction opposite to a rotation direction of the grindstone. 半導体ウェハの面に対して実質的に平行なまま移動して半導体ウェハの一方面全体に回転しながら接触する第1の研削面及び前記一方面全体の研削で任意の要求厚にされる前記半導体ウェハの端面への丸み形状を反映させる、前記第1の研削面から実質的に垂直方向に連続した端部曲面を含む第2の研削面により構成される研削用砥石を具備し、The first ground surface that moves while being substantially parallel to the surface of the semiconductor wafer and contacts the entire one surface of the semiconductor wafer while rotating, and the semiconductor having an arbitrary required thickness by grinding the entire one surface A grinding wheel constituted by a second grinding surface including an end curved surface that is substantially perpendicular to the first grinding surface and reflects a rounded shape on an end surface of the wafer;
前記半導体ウェハが任意の要求厚になるまで前記半導体ウェハの一方面全体を研削すると同時に前記要求厚に応じた半導体ウェハの端面部に丸みを有するように前記半導体ウェハの端面を研削することを特徴とするウェハの研削装置。  Grinding one end of the semiconductor wafer until the semiconductor wafer has an arbitrary required thickness, and simultaneously grinding the end face of the semiconductor wafer so that the end face of the semiconductor wafer has a roundness according to the required thickness. Wafer grinding equipment.
前記半導体ウェハの他方面を保持し前記半導体ウェハを中心として前記研削用砥石の回転方向とは逆方向に回転させる回転駆動機構を具備したことを特徴とする請求項4記載のウェハの研削装置。5. The wafer grinding apparatus according to claim 4, further comprising a rotation drive mechanism that holds the other surface of the semiconductor wafer and rotates the semiconductor wafer about the semiconductor wafer in a direction opposite to a rotation direction of the grinding wheel. 前記第2の研削面の端部曲面の半径Rmmは、前記半導体ウェハの一方面の研削後における要求厚Xmmに対し、R≦X/2であることを特徴とする請求項4または5記載のウェハの研削装置。6. The radius Rmm of the end curved surface of the second grinding surface is R ≦ X / 2 with respect to a required thickness Xmm after grinding of one surface of the semiconductor wafer. Wafer grinding equipment. 前記研削用砥石は前記第2の研削面の終端から上縁部に向かってテーパ形状となる斜面を有することを特徴とする請求項5記載のウェハの研削装置。6. The wafer grinding apparatus according to claim 5, wherein the grinding wheel has an inclined surface having a tapered shape from an end of the second grinding surface toward an upper edge portion.
JP14292198A 1998-05-25 1998-05-25 Wafer grinding method and apparatus Expired - Fee Related JP3625376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14292198A JP3625376B2 (en) 1998-05-25 1998-05-25 Wafer grinding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14292198A JP3625376B2 (en) 1998-05-25 1998-05-25 Wafer grinding method and apparatus

Publications (2)

Publication Number Publication Date
JPH11333680A JPH11333680A (en) 1999-12-07
JP3625376B2 true JP3625376B2 (en) 2005-03-02

Family

ID=15326736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14292198A Expired - Fee Related JP3625376B2 (en) 1998-05-25 1998-05-25 Wafer grinding method and apparatus

Country Status (1)

Country Link
JP (1) JP3625376B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911810B2 (en) * 2000-06-23 2012-04-04 コマツNtc株式会社 Workpiece grinding apparatus and grinding method
JP2003059878A (en) * 2001-08-08 2003-02-28 Hitachi Ltd Semiconductor chip and manufacturing method therefor
JP5519256B2 (en) 2009-12-03 2014-06-11 株式会社荏原製作所 Method and apparatus for polishing a substrate whose back surface is ground
KR101024490B1 (en) * 2010-11-19 2011-03-30 다이섹(주) Polishing device for silicon bricks made from a wire saw for cutting silicon ingots
CN103659512B (en) * 2014-01-03 2017-09-01 曹仁风 Edge polisher
JP6292704B1 (en) * 2017-10-17 2018-03-14 株式会社松風 Cutting object for dental CADCAM and its adapter connecting the CAM holding part with the resin part
CN113021115B (en) * 2021-05-26 2021-08-20 四川上特科技有限公司 Device for polishing wafer

Also Published As

Publication number Publication date
JPH11333680A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
TW415879B (en) Apparatus and method for chamfering wafer
JPH081493A (en) Mirror finished surface polishing method for wafer chamfering part and mirror finished surface polishing device
US6214704B1 (en) Method of processing semiconductor wafers to build in back surface damage
US5021862A (en) Beveled semiconductor silicon wafer and manufacturing method thereof
EP2530704B1 (en) Method for manufacturing bonded wafer
US5045505A (en) Method of processing substrate for a beveled semiconductor device
JP3625376B2 (en) Wafer grinding method and apparatus
JP3328193B2 (en) Method for manufacturing semiconductor wafer
JP3011129B2 (en) Glass substrate edge polishing machine and edge polishing method
JP2008108837A (en) Grinding apparatus of semiconductor wafer and method for manufacturing semiconductor device
JPH03177023A (en) Preparation of epitaxial wafer
JP2007266043A (en) Compound semiconductor wafer
JPH10209408A (en) Manufacture of soi substrate
JP3616407B2 (en) Method for polishing a semiconductor substrate
JPH06314676A (en) Semiconductor wafer
JPH09102122A (en) Substrate for recording medium
JPH08115893A (en) Manufacture of semiconductor device
JPS58100432A (en) Bevelling process of wafer
JP3964029B2 (en) Manufacturing method of semiconductor substrate
JPH0837169A (en) Method and apparatus for grinding semiconductor substrate and manufacture of semiconductor device
JP2001071244A (en) Precise chamfering method for semiconductor wafer
JP3545883B2 (en) Semiconductor device manufacturing equipment
JPS6381934A (en) Wafer and manufacture thereof
JPS6119386B2 (en)
JP3842916B2 (en) Positioning device and positioning method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees