JP3623093B2 - High frequency wiring board - Google Patents

High frequency wiring board Download PDF

Info

Publication number
JP3623093B2
JP3623093B2 JP01705698A JP1705698A JP3623093B2 JP 3623093 B2 JP3623093 B2 JP 3623093B2 JP 01705698 A JP01705698 A JP 01705698A JP 1705698 A JP1705698 A JP 1705698A JP 3623093 B2 JP3623093 B2 JP 3623093B2
Authority
JP
Japan
Prior art keywords
weight
frequency
oxide
wiring board
ghz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01705698A
Other languages
Japanese (ja)
Other versions
JPH11214812A (en
Inventor
健 岡村
哲也 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP01705698A priority Critical patent/JP3623093B2/en
Publication of JPH11214812A publication Critical patent/JPH11214812A/en
Application granted granted Critical
Publication of JP3623093B2 publication Critical patent/JP3623093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロストリップラインとグランド層からなる配線層を配設してなる高周波用配線基板に関するものである。
【0002】
【従来技術】
マイクロ波、ミリ波等の高周波で用いられる高周波回路においては、基板には比誘電率が低く誘電損失(tanδ)が小さい(Q値が大きい)材料を使用する必要がある。このため、従来、誘電体の材料としては主として比誘電率が約10、測定周波数10GHzでのQ値が20000以上のアルミナ磁器が採用されていた(例えば、特開昭62−103904号公報等参照)。
【0003】
一方、比誘電率が低い材料としては、従来、コージェライトが知られているが、焼成温度範囲が極めて狭いことから緻密な焼結体が得難いため、ガラス材を添加することによって、比誘電率が4〜6、測定周波数10GHzでのQ値が1000程度のガラスセラミックスを作製し、これを用いることが知られている(例えば、特開昭61−234128号公報等参照)。
【0004】
【発明が解決しようとする課題】
しかしながら、低誘電率材料として用いられているガラスセラミックス等の磁器は比誘電率が4〜6と小さいが、Q値が10GHzで1000程度であり、近年における高周波数帯の誘電体共振器の普及にともない、より高いQ値の低誘電率材料が求められていた。
【0005】
一方、アルミナ磁器は10GHzでのQ値が20000以上と高いが、比誘電率が約10と比較的高いため、例えば、図1に示すような高インピーダンスのマイクロストリップラインを形成しようとすると、ライン幅が小さくなりすぎて断線が生じたり、相対的なライン幅のばらつきが大きくなりマイクロ波集積回路の不良率が増大するという問題があった。またライン間が狭くなることによりクロストークが発生するという問題があった。
【0006】
他方、この種の磁器基板におけるマイクロストリップラインのインピーダンスは、基板の厚さが一定であれば、その比誘電率及びマイクロストリップラインの幅にそれぞれ反比例するため、ライン幅を小さくする代わりに、比誘電率の低い基板材料を使用することによってもインピーダンスを高めることができ、このため、より低誘電率材料が求められていた。さらに、マイクロ波からミリ波へと伝送周波数がより高周波化した場合、Q値が低いと急激に伝送損失が大きくなることから、より低損失材料が求められていた。
【0007】
本発明は、絶縁基板材料として、低誘電率で、かつ高Q値の焼結体を用いることにより、高周波伝送特性を向上できる高周波用配線基板を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の高周波用配線基板は、絶縁基板の表面あるいは内部に、周波数1GHz以上の高周波信号が伝送可能なマイクロストリップラインとグランド層からなる配線層を配設してなる高周波用配線基板において、前記絶縁基板が、金属元素としてB、Siからなる複合酸化物であって、各金属元素酸化物による重量比組成式をxB・ySiOと表した時、前記x、yが0.1≦x≦20、80≦y≦99.9、x+y=100を満足するとともに、10GHzでのQ値が2000以上であり、前記配線層の20GHzでの伝送損失が15dB/m以下であることを特徴とする。
【0009】
また、高周波用配線基板の絶縁基板が、金属元素としてB、Siからなる複合酸化物であって、各金属元素酸化物による重量比組成式をxB・ySiOと表した時、前記x、yが0.1≦x≦20、80≦y≦99.9、x+y=100を満足する主成分と、該主成分100重量部に対して周期律表第4a族元素のうち少なくとも1種を酸化物換算で0.1重量部以上、もしくは希土類元素のうち少なくとも1種を酸化物換算で0.1重量部以上含有することが望ましい。ここで、主成分100重量部に対して周期律表第4a族元素のうち少なくとも1種を酸化物換算で0.1〜10重量部、もしくは希土類元素のうち少なくとも1種を酸化物換算で0.1〜15重量部含有することが望ましい。
【0011】
【作用】
本発明の高周波用配線基板では、絶縁基板が、比誘電率が5未満、10GHzにおけるQ値が2000以上の特性を得ることができ、また、このような低誘電率、高Q値の誘電体磁器を絶縁基板として用いることにより、高周波伝送特性を向上できる。
【0012】
【発明の実施の形態】
本発明の高周波用配線基板は、絶縁基板の表面あるいは内部に、周波数1GHz以上の高周波信号が伝送可能な配線層を配設してなるもので、例えば、図1に示すように、絶縁基板1の表面に配線層2、3を形成して構成されている。即ち、絶縁基板1の下面に全面電極(グランド)2を、上面にマイクロストリップライン3を形成して構成されている。全面電極(グランド)2とマイクロストリップライン3とから配線層が構成される。この配線層には、高周波信号として、1GHz以上、特には20GHz以上、さらには50GHz以上の高周波信号が伝送される。
【0013】
図1では、絶縁基板1の表面にマイクロストリップ線路を形成した例について説明したが、例えば、ストリップ線路、コプレーナ線路、誘電体導波管線路を形成しても良い。これらの配線層は、絶縁基板と同時焼成により形成されることが望ましい。また、このような高周波用配線基板は、マイクロ波、ミリ波用等の高周波で用いられるパッケージ、誘電体共振器、LCフィルター、コンデンサ、誘電体導波路、誘電体アンテナ等に用いることができる。
【0014】
そして、本発明の高周波用配線基板では、絶縁基板1が、金属元素としてB、Siからなる複合酸化物であって、各金属元素酸化物による重量比組成式をxB・ySiOと表した時、前記x、yが0.1≦x≦20、80≦y≦99.9、x+y=100を満足するものである。
【0015】
絶縁基板1の成分組成を前記範囲に限定したのは、次の理由による。即ち、Bの重量百分率示すxを0.1≦x≦20(80≦y≦99.9)としたのはxが0.1よりも小さい場合(yが99.9よりも大きい場合)は焼結体が緻密化せず、xが20を越えると(yが80よりも小さい場合)良好な焼結体が得られずQ値が低くなるからである。B量を示すxは、Q値を3000以上とするという点から0.2〜10重量%(90≦y≦99.8)が望ましい。
【0016】
測定周波数10GHzでのQ値が2000以上を満足することが望ましい理由は、Q値が2000以上ある場合には、近年における高周波数帯の絶縁基板に十分対応することができるからである。Q値は、高ければ高い程望ましいが、特には、測定周波数10GHzでのQ値が3000以上であることが望ましい。
【0017】
また、基板を構成する焼結体は、主相はガラス相であり、他に結晶相として、クリストバライト、トリジマイト、クオーツ等が析出する場合があるが、組成によってその析出相が異なる。本発明の誘電体磁器組成物ではガラス相のみであってもよい。
【0018】
本発明の絶縁基板は、原料粉末として、例えば、B粉末,SiO粉末を用い、所定の割合で秤量し、湿式混合した後乾燥し、得られた粉末に適量のバインダを加えて成形し、この成形体を大気中1250〜1400℃で焼成することにより得られる。
【0019】
尚、本発明の絶縁基板は、金属元素としてB、Siからなるものであるが、例えば、粉砕ボールや原料粉末の不純物として、Al、Ca、Ba、Zr、Ni、Fe、Cr、P、Na、Ti等が混入する場合があるが、この場合も、上記組成を満足する限り低誘電率で、高Q値の磁器を得ることができる。
【0020】
また、本発明の高周波用配線基板の絶縁基板は、金属元素としてB、Siからなる複合酸化物であって、各金属元素酸化物による重量比組成式をxB・ySiOと表した時、前記x、yが0.1≦x≦20、80≦y≦99.9、x+y=100を満足する主成分と、該主成分100重量部に対して周期律表第4a族元素のうち少なくとも1種を酸化物換算で0.1重量部以上含有するものであっても良い。
【0021】
ここで、主成分をこのような組成に限定したのは上記理由による。そして、この高周波用配線基板では、主成分100重量部に対して周期律表第4a族元素のうち少なくとも1種を酸化物換算で0.1重量部以上、好ましくは0.1〜10重量部含有するものである。
【0022】
このように主成分100重量部に対して、周期律表第4a族元素のうち少なくとも1種を酸化物換算で0.1重量部以上含有せしめたのは、この範囲ならばQ値がさらに向上するからである。一方、0.1重量部よりも少ない場合にはその添加効果が小さいからである。比誘電率を4以下とするためには、0.1〜10重量部含有することが望ましい。周期律表第4a族元素としては、Ti、Zr、Hfがあるが、そのうちでも、原料が安価で、Q値が高いという点からTiが望ましい。
【0023】
本発明の高周波用配線基板の絶縁基板は、原料粉末として、例えば、B粉末、SiO粉末、TiO粉末、ZrO粉末、HfO粉末を用い、所定の割合で秤量し、湿式混合した後乾燥し、得られた粉末に適量のバインダを加えて成形し、この成形体を大気中1250〜1400℃で焼成することにより得られる。
【0024】
また、本発明の絶縁基板では、主相がガラス相であり、他に結晶相として、クリストバライト、トリジマイト、クオーツ、Ti、Zr、Hf元素の酸化物等が析出する場合があるが、組成によってその析出相が異なる。
【0025】
尚、本発明の高周波用配線基板の絶縁基板は、金属元素として、B、SiおよびTi、Zr、Hf元素を含有するものであるが、例えば、粉砕ボールや原料粉末の不純物としてAl、Ba、Ni、Fe、Cr、Ca、P、Na等が混入する場合があるが、この場合も、上記組成を満足する限り低誘電率で、高Q値の磁器を得ることができる。
【0026】
本発明の高周波用配線基板の絶縁基体としては、上記主成分100重量部に対して、さらに希土類元素のうち少なくとも1種を酸化物換算で0.1重量部以上含有するものであっても良い。主成分100重量部に対して、さらにYおよび希土類元素のうち少なくとも1種を酸化物換算で0.1重量部以上含有せしめたのは、この範囲ならばQ値がさらに向上するからである。一方、0.1重量部よりも少ない場合にはその添加効果が小さいからである。そして、比誘電率を4以下とするためには、0.1〜15重量部含有することが望ましい。
【0027】
希土類元素は、Q値向上、より低誘電率という観点から、上記主成分100重量部に対して酸化物換算で0.1〜10重量部含有することが特に望ましい。
【0028】
希土類元素としては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luがあり、これらのうちY、La、Nd、Sm、Dy、Yb、Luが高Q値という理由で最も望ましい。
【0029】
本発明の高周波用配線基板の絶縁基体は、原料粉末として、例えば、B粉末、SiO粉末、希土類元素のうち少なくとも1種の酸化物粉末を用い、所定の割合で秤量し、湿式混合した後乾燥し、得られた粉末に適量のバインダを加えて成形し、この成形体を大気中1250〜1400℃で焼成することにより得られる。
【0030】
また、本発明の高周波用配線基板の絶縁基板では、主相がガラス相であり、他に結晶相として、クリストバライト、トリジマイト、クオーツ、希土類元素とSiとが化合した酸化物等が析出する場合があるが、組成によってその析出相が異なる。
【0031】
尚、本発明の高周波用配線基板の絶縁基板は、金属元素として、B、Siおよび希土類元素を含有するものであるが、例えば、粉砕ボールや原料粉末の不純物としてAl、Ba、Zr、Ni、Fe、Cr、Ca、P、Na、Ti等が混入する場合があるが、この場合も、上記組成を満足する限り低誘電率で、高Q値の磁器を得ることができる。
【0038】
【実施例】
実施例1
原料粉末として純度95%のB、純度99%のSiO粉末を用い、これらを焼結体が表1に示す組成となるように秤量し、15時間湿式混合した後、乾燥し、得られた粉末に適量のバインダを加えて造粒し、これを1000kg/cmの圧力の下で成形して直径60mm厚さ5mmの成形体を得た。この成形体を大気中表1に示す温度で2時間焼成して直径50mm厚さ0.2mmに研磨し基板とした。この基板の一面にCuからなる全面電極(グランド)を、他面に0.4mm幅のCuからなるマイクロストリップラインを形成し、図1に示す高周波伝送線路を作製し、20GHzでの伝送損失を測定した。
【0039】
比誘電率、Q値の測定は、直径10mm、厚さ約5mmの焼結体を作製して、これを誘電体共振器法で20GHzにおいて測定した。Q値に関してはQf=一定とみなして10GHzにおけるQ値を求めた。その結果を表1に示す。
【0040】
【表1】

Figure 0003623093
【0041】
表1によれば、本発明で用いられる絶縁基板は測定周波数10GHzでのQ値が2000以上と高い値を示し、20GHzでの伝送損失15dB/m以下であることが判る。しかも、比誘電率が3.8以下と低いことが判る。
【0042】
比較例として、比誘電率が4であり、測定周波数10GHzでのQ値が1000であるガラスからなる基板を用い、図1に示す高周波伝送線路での周波数約20GHzにおいて伝送損失を測定したところ24dB/mであった。これから、本発明の試料では、比較例よりも伝送損失が小さく、高周波伝送特性が良好であることが判る。
【0043】
実施例2
原料粉末として純度95%のB、純度99%のSiO粉末、純度99%以上のTiO粉末、ZrO粉末、HfO粉末を用い、これらを焼結体が表2に示す組成となるように秤量し、15時間湿式混合した後、乾燥し、得られた粉末に適量のバインダを加えて造粒し、これを1000kg/cmの圧力の下で成形して直径60mm厚さ5mmの成形体を得た。この成形体を表2に示す温度で2時間焼成して、直径50mm厚さ0.2mmに研磨し基板とした。この基板の一面にCuからなる全面電極(グランド)を、他面に0.4mm幅のCuからなるマイクロストリップラインを形成し、図1に示す高周波伝送線路を作製し、20GHzでの伝送損失を測定した。
【0044】
比誘電率、Q値の測定は、直径10mm、厚さ約5mmの焼結体を作製して、これを誘電体共振器法で20GHzにおいて測定した。Q値に関してはQf=一定とみなして10GHzにおけるQ値を求めた。その結果を表2に示す。
【0045】
【表2】
Figure 0003623093
【0046】
この表2より、本発明の試料では、10GHzにおけるQ値が2000以上であり、20GHzでの伝送損失15dB/m以下であることが判る。さらに、4a族元素酸化物が0.〜10重量部では比誘電率が4以下であり、マイクロストリップラインの幅を広くできることが判る。
【0047】
実施例3
原料粉末として純度95%のB、純度99%のSiO粉末、純度99%以上の希土類元素の酸化物粉末を用い、これらを焼結体が表3に示す組成となるように秤量し、15時間湿式混合した後、乾燥し、得られた粉末に適量のバインダを加えて造粒し、これを1000kg/cmの圧力の下で成形して直径60mm厚さ5mmの成形体を得た。この成形体を表3に示す温度で2時間焼成して、直径50mm厚さ0.2mmに研磨し基板とした。この基板の一面にCuからなる全面電極(グランド)を、他面に0.4mm幅のCuからなるマイクロストリップラインを形成し、図1に示す高周波伝送線路を作製し、20GHzでの伝送損失を測定した。
【0048】
比誘電率、Q値の測定は、直径10mm、厚さ約5mmの焼結体を作製して、これを誘電体共振器法で20GHzにおいて測定した。Q値に関してはQf=一定とみなして10GHzにおけるQ値を求めた。その結果を表3に示す。
【0049】
【表3】
Figure 0003623093
【0050】
この表3より、本発明の試料では、10GHzにおけるQ値が2000以上であり、20GHzでの伝送損失15dB/m以下であることが判る。さらに、希土類元素酸化物の添加量が0.1〜15重量部では比誘電率が4以下であり、マイクロストリップラインの幅を広くできることが判る。
【0055】
【発明の効果】
本発明の高周波用配線基板では、絶縁基板の10GHzでのQ値が2000以上と高い値を示すため、周波数20GHzにおいて伝送損失15dB/m以下を達成でき、高周波伝送特性を向上できる。さらに、絶縁基板の比誘電率が5未満と低いため、絶縁基板に形成される配線層の幅を広くできる。
【図面の簡単な説明】
【図1】本発明の高周波用配線基板を示す斜視図である。
【符号の説明】
1・・・絶縁基板
2・・・全面電極(グランド)
3・・・マイクロストリップライン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency wiring board in which a wiring layer including a microstrip line and a ground layer is provided.
[0002]
[Prior art]
In a high-frequency circuit used at a high frequency such as a microwave or a millimeter wave, it is necessary to use a material having a low relative dielectric constant and a low dielectric loss (tan δ) (a high Q value) for the substrate. For this reason, conventionally, an alumina porcelain having a relative dielectric constant of about 10 and a Q value of 20000 or more at a measurement frequency of 10 GHz has been mainly employed as a dielectric material (see, for example, JP-A-62-103904). ).
[0003]
On the other hand, cordierite has been known as a material having a low relative dielectric constant. However, since the firing temperature range is extremely narrow, it is difficult to obtain a dense sintered body. It is known that glass ceramics having a Q value of 4 to 6 and a Q value of about 1000 at a measurement frequency of 10 GHz are produced and used (for example, see Japanese Patent Application Laid-Open No. 61-234128).
[0004]
[Problems to be solved by the invention]
However, ceramics such as glass ceramics used as a low dielectric constant material have a relative dielectric constant as small as 4 to 6, but the Q value is about 1000 at 10 GHz. In recent years, high frequency band dielectric resonators have become widespread. Accordingly, a low dielectric constant material having a higher Q value has been demanded.
[0005]
On the other hand, alumina porcelain has a high Q value of 20000 or more at 10 GHz, but has a relatively high dielectric constant of about 10. Therefore, for example, when trying to form a high impedance microstrip line as shown in FIG. There has been a problem that the width becomes too small and disconnection occurs, or the relative line width varies greatly and the defect rate of the microwave integrated circuit increases. In addition, there is a problem that crosstalk occurs due to the narrowing between lines.
[0006]
On the other hand, the impedance of the microstrip line in this type of porcelain substrate is inversely proportional to the relative dielectric constant and the width of the microstrip line if the thickness of the substrate is constant. Impedance can also be increased by using a substrate material having a low dielectric constant. Therefore, a material having a lower dielectric constant has been demanded. Furthermore, when the transmission frequency is increased from microwaves to millimeter waves, transmission loss increases abruptly when the Q value is low, so a lower loss material has been demanded.
[0007]
An object of the present invention is to provide a high-frequency wiring board capable of improving high-frequency transmission characteristics by using a sintered body having a low dielectric constant and a high Q value as an insulating substrate material.
[0008]
[Means for Solving the Problems]
The high-frequency wiring board of the present invention is the above-described high-frequency wiring board in which a wiring layer comprising a microstrip line and a ground layer capable of transmitting a high-frequency signal having a frequency of 1 GHz or more is disposed on or inside the insulating substrate. When the insulating substrate is a complex oxide composed of B and Si as metal elements, and the weight ratio composition formula of each metal element oxide is expressed as xB 2 O 3 · ySiO 2 , the x and y are 0.1. ≦ x ≦ 20,80 ≦ y ≦ 99.9 , with satisfying x + y = 100, that the Q value at 10GHz is Ri der 2000 or more, the transmission loss at 20GHz of the wiring layer is not more than 15 dB / m It is characterized by.
[0009]
When the insulating substrate of the high-frequency wiring board is a complex oxide composed of B and Si as metal elements, and the weight ratio composition formula of each metal element oxide is expressed as xB 2 O 3 · ySiO 2 , a main component satisfying x, y satisfying 0.1 ≦ x ≦ 20, 80 ≦ y ≦ 99.9, x + y = 100, and at least one of Group 4a elements of the periodic table with respect to 100 parts by weight of the main component It is desirable to contain at least 0.1 part by weight of the seed in terms of oxide, or at least one part of the rare earth element in terms of oxide . Here, from 100 parts by weight of the main component, at least one of Group 4a elements of the Periodic Table is 0.1 to 10 parts by weight in terms of oxide, or at least one of rare earth elements in terms of oxide is 0. It is desirable to contain 1 to 15 parts by weight.
[0011]
[Action]
In the high-frequency wiring board according to the present invention, the insulating substrate can obtain characteristics with a relative dielectric constant of less than 5 and a Q value of 2000 or more at 10 GHz, and such a low dielectric constant and high Q value dielectric. By using a porcelain as an insulating substrate, high frequency transmission characteristics can be improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The high frequency wiring board of the present invention is formed by arranging a wiring layer capable of transmitting a high frequency signal having a frequency of 1 GHz or more on the surface or inside of an insulating substrate. For example, as shown in FIG. The wiring layers 2 and 3 are formed on the surface. That is, the entire surface electrode (ground) 2 is formed on the lower surface of the insulating substrate 1 and the microstrip line 3 is formed on the upper surface. A wiring layer is composed of the entire surface electrode (ground) 2 and the microstrip line 3. A high frequency signal of 1 GHz or higher, particularly 20 GHz or higher, and further 50 GHz or higher is transmitted to the wiring layer as a high frequency signal.
[0013]
Although the example in which the microstrip line is formed on the surface of the insulating substrate 1 has been described with reference to FIG. 1, for example, a strip line, a coplanar line, or a dielectric waveguide line may be formed. These wiring layers are preferably formed by simultaneous firing with the insulating substrate. Moreover, such a high-frequency wiring board can be used for packages, dielectric resonators, LC filters, capacitors, dielectric waveguides, dielectric antennas, and the like that are used at high frequencies such as those for microwaves and millimeter waves.
[0014]
In the high-frequency wiring board of the present invention, the insulating substrate 1 is a complex oxide composed of B and Si as metal elements, and the weight ratio composition formula of each metal element oxide is expressed as xB 2 O 3 · ySiO 2 . When expressed, x and y satisfy 0.1 ≦ x ≦ 20, 80 ≦ y ≦ 99.9, and x + y = 100.
[0015]
The reason why the component composition of the insulating substrate 1 is limited to the above range is as follows. That is, x indicating the weight percentage of B 2 O 3 is 0.1 ≦ x ≦ 20 (80 ≦ y ≦ 99.9) when x is smaller than 0.1 (y is larger than 99.9). In this case, the sintered body is not densified, and when x exceeds 20, (when y is smaller than 80), a good sintered body cannot be obtained and the Q value is lowered. X indicating the amount of B 2 O 3 is preferably 0.2 to 10% by weight (90 ≦ y ≦ 99.8) from the viewpoint that the Q value is 3000 or more.
[0016]
The reason why it is desirable that the Q value at a measurement frequency of 10 GHz satisfies 2000 or more is that when the Q value is 2000 or more, it can sufficiently cope with an insulating substrate in a high frequency band in recent years. The Q value is preferably as high as possible, but in particular, the Q value at a measurement frequency of 10 GHz is preferably 3000 or more.
[0017]
In the sintered body constituting the substrate, the main phase is a glass phase, and cristobalite, tridymite, quartz and the like may be precipitated as a crystalline phase, but the precipitated phase differs depending on the composition. In the dielectric ceramic composition of the present invention, only the glass phase may be used.
[0018]
The insulating substrate of the present invention uses, for example, B 2 O 3 powder and SiO 2 powder as raw material powders, weighed at a predetermined ratio, wet-mixed and dried, and added an appropriate amount of binder to the obtained powder. It shape | molds and it obtains by baking this molded object at 1250-1400 degreeC in air | atmosphere.
[0019]
The insulating substrate of the present invention is made of B or Si as a metal element. For example, Al, Ca, Ba, Zr, Ni, Fe, Cr, P, Na are used as impurities in a pulverized ball or raw material powder. Ti and the like may be mixed, but in this case as well, a high-Q ceramic with a low dielectric constant can be obtained as long as the above composition is satisfied.
[0020]
The insulating substrate of the high-frequency wiring board of the present invention is a composite oxide composed of B and Si as metal elements, and the weight ratio composition formula of each metal element oxide is represented as xB 2 O 3 · ySiO 2 . Wherein x and y are 0.1 ≦ x ≦ 20, 80 ≦ y ≦ 99.9, and x + y = 100, and 100 parts by weight of the main component includes elements of Group 4a of the periodic table. Of these, at least one kind may be contained in an amount of 0.1 part by weight or more in terms of oxide.
[0021]
Here, the main component is limited to such a composition for the above reason. And in this high frequency wiring board, 0.1 part by weight or more, preferably 0.1 to 10 parts by weight in terms of oxide of at least one of group 4a elements of the periodic table with respect to 100 parts by weight of the main component It contains.
[0022]
In this way, when 100 parts by weight of the main component contains at least one of the elements in Group 4a of the Periodic Table in terms of oxides in an amount of 0.1 parts by weight or more, the Q value is further improved within this range. Because it does. On the other hand, when the amount is less than 0.1 parts by weight, the effect of addition is small. In order to make the relative dielectric constant 4 or less, it is desirable to contain 0.1 to 10 parts by weight. The Group 4a element of the periodic table includes Ti, Zr, and Hf. Among them, Ti is desirable because the raw material is inexpensive and the Q value is high.
[0023]
The insulating substrate of the high-frequency wiring board of the present invention uses, for example, B 2 O 3 powder, SiO 2 powder, TiO 2 powder, ZrO 2 powder, and HfO 2 powder as raw material powder, weighed at a predetermined ratio, and wet It is obtained by mixing and drying, adding an appropriate amount of binder to the obtained powder, forming the powder, and firing the formed body at 1250 to 1400 ° C. in the atmosphere.
[0024]
Further, in the insulating substrate of the present invention, the main phase is a glass phase, and cristobalite, tridymite, quartz, Ti, Zr, oxides of Hf element, etc. may precipitate as crystal phases. The precipitated phases are different.
[0025]
The insulating substrate of the high-frequency wiring board of the present invention contains B, Si and Ti, Zr, and Hf elements as metal elements. For example, Al, Ba, Ni, Fe, Cr, Ca, P, Na, etc. may be mixed, but in this case as well, a high-Q ceramic with a low dielectric constant can be obtained as long as the above composition is satisfied.
[0026]
The insulating base of the high-frequency wiring board of the present invention may further contain 0.1 part by weight or more of the rare earth element in terms of oxide with respect to 100 parts by weight of the main component. . The reason why at least one of Y and a rare earth element is contained in an amount of 0.1 parts by weight or more in terms of oxide with respect to 100 parts by weight of the main component is that the Q value is further improved within this range. On the other hand, when the amount is less than 0.1 parts by weight, the effect of addition is small. And in order to make a dielectric constant 4 or less, it is desirable to contain 0.1-15 weight part.
[0027]
The rare earth element is particularly preferably contained in an amount of 0.1 to 10 parts by weight in terms of oxide with respect to 100 parts by weight of the main component from the viewpoint of improving the Q value and lower dielectric constant.
[0028]
Examples of rare earth elements include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Among these, Y, La, Nd, Sm, Dy, Yb, and Lu are most desirable because of high Q values.
[0029]
The insulating base of the high-frequency wiring board of the present invention uses, for example, at least one oxide powder of B 2 O 3 powder, SiO 2 powder, and rare earth element as a raw material powder, and weighs it at a predetermined ratio, and performs wet processing. It is obtained by mixing and drying, adding an appropriate amount of binder to the obtained powder, forming the powder, and firing the formed body at 1250 to 1400 ° C. in the atmosphere.
[0030]
Further, in the insulating substrate of the high-frequency wiring board of the present invention, the main phase is a glass phase, and cristobalite, tridymite, quartz, oxides in which rare earth elements and Si are combined may precipitate as crystal phases. However, the phase of precipitation varies depending on the composition.
[0031]
The insulating substrate of the high-frequency wiring board of the present invention contains B, Si and rare earth elements as metal elements. For example, Al, Ba, Zr, Ni, Fe, Cr, Ca, P, Na, Ti, etc. may be mixed, but in this case as well, a high-Q ceramic with a low dielectric constant can be obtained as long as the above composition is satisfied.
[0038]
【Example】
Example 1
Raw powder as a purity of 95% B 2 O 3, with a purity of 99% SiO 2 powder, and these sintered bodies were weighed so as to have the composition shown in Table 1 were mixed for 15 hours wet, dried, An appropriate amount of a binder was added to the obtained powder and granulated, and this was molded under a pressure of 1000 kg / cm 2 to obtain a molded body having a diameter of 60 mm and a thickness of 5 mm. The molded body was fired in the atmosphere at the temperature shown in Table 1 for 2 hours and polished to a diameter of 50 mm and a thickness of 0.2 mm to obtain a substrate. A full-surface electrode (ground) made of Cu is formed on one surface of this substrate, a microstrip line made of 0.4 mm width Cu is formed on the other surface, and a high-frequency transmission line shown in FIG. 1 is manufactured, and transmission loss at 20 GHz is reduced. It was measured.
[0039]
The dielectric constant and Q value were measured by preparing a sintered body having a diameter of 10 mm and a thickness of about 5 mm, and measuring this at 20 GHz by a dielectric resonator method. Regarding the Q value, Qf at 10 GHz was obtained assuming that Qf = constant. The results are shown in Table 1.
[0040]
[Table 1]
Figure 0003623093
[0041]
According to Table 1, it can be seen that the insulating substrate used in the present invention has a high Q value of 2000 or more at a measurement frequency of 10 GHz and a transmission loss of 15 dB / m or less at 20 GHz. Moreover, it can be seen that the relative dielectric constant is as low as 3.8 or less.
[0042]
As a comparative example, using a glass substrate having a relative dielectric constant of 4 and a Q value of 1000 at a measurement frequency of 10 GHz, the transmission loss was measured at a frequency of about 20 GHz in the high-frequency transmission line shown in FIG. / M. From this, it can be seen that the sample of the present invention has smaller transmission loss and better high frequency transmission characteristics than the comparative example.
[0043]
Example 2
B 2 O 3 with a purity of 95%, SiO 2 powder with a purity of 99%, TiO 2 powder with a purity of 99% or more, ZrO 2 powder, HfO 2 powder are used as the raw material powder, and the composition of which the sintered body is shown in Table 2 And then wet-mixed for 15 hours, dried, and granulated by adding an appropriate amount of binder to the obtained powder, which was molded under a pressure of 1000 kg / cm 2 and had a thickness of 60 mm. A 5 mm shaped body was obtained. This molded body was fired at the temperature shown in Table 2 for 2 hours, polished to a diameter of 50 mm and a thickness of 0.2 mm to obtain a substrate. A full-surface electrode (ground) made of Cu is formed on one surface of this substrate, a microstrip line made of 0.4 mm width Cu is formed on the other surface, and a high-frequency transmission line shown in FIG. 1 is manufactured, and transmission loss at 20 GHz is reduced. It was measured.
[0044]
The dielectric constant and Q value were measured by preparing a sintered body having a diameter of 10 mm and a thickness of about 5 mm, and measuring this at 20 GHz by a dielectric resonator method. Regarding the Q value, Qf at 10 GHz was obtained assuming that Qf = constant. The results are shown in Table 2.
[0045]
[Table 2]
Figure 0003623093
[0046]
From Table 2, it can be seen that in the sample of the present invention, the Q value at 10 GHz is 2000 or more and the transmission loss at 20 GHz is 15 dB / m or less. Further, the group 4a element oxide is less than 0. From 10 parts by weight, it can be seen that the relative dielectric constant is 4 or less, and the width of the microstrip line can be increased.
[0047]
Example 3
Raw powder as a purity of 95% B 2 O 3, with a purity of 99% SiO 2 powder, the oxide powder having a purity of 99% or more rare earth elements, weighing them as sintered body having the composition shown in Table 3 Then, after 15 hours wet mixing, drying, adding an appropriate amount of binder to the obtained powder and granulating, and molding this under a pressure of 1000 kg / cm 2 to form a molded body having a diameter of 60 mm and a thickness of 5 mm Obtained. The molded body was fired at the temperature shown in Table 3 for 2 hours, polished to a diameter of 50 mm and a thickness of 0.2 mm to obtain a substrate. A full-surface electrode (ground) made of Cu is formed on one surface of this substrate, a microstrip line made of 0.4 mm width Cu is formed on the other surface, and a high-frequency transmission line shown in FIG. 1 is manufactured, and transmission loss at 20 GHz is reduced. It was measured.
[0048]
The dielectric constant and Q value were measured by preparing a sintered body having a diameter of 10 mm and a thickness of about 5 mm, and measuring this at 20 GHz by a dielectric resonator method. Regarding the Q value, Qf at 10 GHz was obtained assuming that Qf = constant. The results are shown in Table 3.
[0049]
[Table 3]
Figure 0003623093
[0050]
From Table 3, it can be seen that in the sample of the present invention, the Q value at 10 GHz is 2000 or more and the transmission loss at 20 GHz is 15 dB / m or less. Further, it can be seen that when the addition amount of the rare earth element oxide is 0.1 to 15 parts by weight, the relative dielectric constant is 4 or less, and the width of the microstrip line can be widened.
[0055]
【The invention's effect】
In the high frequency wiring board of the present invention, since the Q value of the insulating substrate at 10 GHz is as high as 2000 or more, a transmission loss of 15 dB / m or less can be achieved at a frequency of 20 GHz, and high frequency transmission characteristics can be improved. Furthermore, since the dielectric constant of the insulating substrate is as low as less than 5, the width of the wiring layer formed on the insulating substrate can be increased.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a high-frequency wiring board according to the present invention.
[Explanation of symbols]
1 ... Insulating substrate 2 ... Full surface electrode (ground)
3 ... Microstrip line

Claims (3)

絶縁基板の表面あるいは内部に、周波数1GHz以上の高周波信号が伝送可能なマイクロストリップラインとグランド層からなる配線層を配設してなる高周波用配線基板において、前記絶縁基板が、金属元素としてB、Siからなる複合酸化物であって、各金属元素酸化物による重量比組成式をxB・ySiOと表した時、前記x、yが0.1≦x≦20、80≦y≦99.9、x+y=100を満足するとともに、10GHzでのQ値が2000以上であり、前記配線層の20GHzでの伝送損失が15dB/m以下であることを特徴とする高周波用配線基板。In a high-frequency wiring board in which a wiring layer composed of a microstrip line and a ground layer capable of transmitting a high-frequency signal having a frequency of 1 GHz or more is disposed on the surface or inside of the insulating board, the insulating board has B as a metal element, It is a complex oxide made of Si, and when the weight ratio composition formula by each metal element oxide is expressed as xB 2 O 3 · ySiO 2 , the x and y are 0.1 ≦ x ≦ 20, 80 ≦ y ≦ 99.9, with satisfying x + y = 100, high frequency wiring board, wherein the Q value at 10GHz is Ri der 2000 or more, the transmission loss at 20GHz of the wiring layer is not more than 15 dB / m. 絶縁基板が、金属元素としてB、Siからなる複合酸化物であって、各金属元素酸化物による重量比組成式をxB・ySiOと表した時、前記x、yが0.1≦x≦20、80≦y≦99.9、x+y=100を満足する主成分と、該主成分100重量部に対して周期律表第4a族元素のうち少なくとも1種を酸化物換算で0.1重量部以上、もしくは希土類元素のうち少なくとも1種を酸化物換算で0.1重量部以上含有することを特徴とする請求項1記載の高周波用配線基板。When the insulating substrate is a complex oxide composed of B and Si as metal elements, and the weight ratio composition formula of each metal element oxide is expressed as xB 2 O 3 · ySiO 2 , the x and y are 0.1. ≦ x ≦ 20, 80 ≦ y ≦ 99.9, x + y = 100, and at least one of Group 4a elements of the Periodic Table relative to 100 parts by weight of the main component is 0 in terms of oxide. The high-frequency wiring board according to claim 1, wherein the high-frequency wiring board contains 0.1 part by weight or more, or at least one of rare earth elements in terms of oxide. 主成分100重量部に対して周期律表第4a族元素のうち少なくとも1種を酸化物換算で0.1〜10重量部、もしくは希土類元素のうち少なくとも1種を酸化物換算で0.1〜15重量部含有することを特徴とする請求項2記載の高周波用配線基板。At least one of Group 4a elements of the Periodic Table relative to 100 parts by weight of the main component is 0.1 to 10 parts by weight in terms of oxide, or at least one of the rare earth elements is 0.1 to 0.1 in terms of oxide. The high-frequency wiring board according to claim 2, containing 15 parts by weight.
JP01705698A 1998-01-29 1998-01-29 High frequency wiring board Expired - Fee Related JP3623093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01705698A JP3623093B2 (en) 1998-01-29 1998-01-29 High frequency wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01705698A JP3623093B2 (en) 1998-01-29 1998-01-29 High frequency wiring board

Publications (2)

Publication Number Publication Date
JPH11214812A JPH11214812A (en) 1999-08-06
JP3623093B2 true JP3623093B2 (en) 2005-02-23

Family

ID=11933341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01705698A Expired - Fee Related JP3623093B2 (en) 1998-01-29 1998-01-29 High frequency wiring board

Country Status (1)

Country Link
JP (1) JP3623093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030170436A1 (en) 2001-12-25 2003-09-11 Ngk Spark Plug Co., Ltd. Dielectric material and dielectric sintered body, and wiring board using the same

Also Published As

Publication number Publication date
JPH11214812A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JP3393776B2 (en) Dielectric ceramic composition and dielectric resonator
JP3623093B2 (en) High frequency wiring board
JP3393775B2 (en) Dielectric ceramic composition and dielectric resonator
JP3220360B2 (en) Alumina porcelain composition and method for producing the same
JP3623078B2 (en) High frequency wiring board
JP3347576B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3398281B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3510948B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JPH11130528A (en) Dielectric ceramic composition and dielectric resonator produced by using the composition
JP4131996B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JP3523463B2 (en) High frequency dielectric ceramic composition, dielectric resonator, and dielectric waveguide
JP4038109B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3346721B2 (en) Non-radiative dielectric line
JP3220359B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3554136B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JPH0952762A (en) Aluminous ceramic composition
JP3554147B2 (en) High frequency wiring board
JPH11100258A (en) Wiring substrate for high frequency application
JP3523474B2 (en) High frequency dielectric ceramic composition, dielectric resonator, and dielectric waveguide
JP3377910B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3309048B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3510946B2 (en) Cordierite-based sintered body, method for producing the same, and dielectric resonator
JP3336179B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3523464B2 (en) High frequency dielectric ceramic composition, dielectric resonator, and dielectric waveguide
JP3393774B2 (en) Dielectric ceramic composition and dielectric resonator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees