JP4038109B2 - High frequency dielectric ceramic composition and dielectric resonator - Google Patents

High frequency dielectric ceramic composition and dielectric resonator Download PDF

Info

Publication number
JP4038109B2
JP4038109B2 JP2002297536A JP2002297536A JP4038109B2 JP 4038109 B2 JP4038109 B2 JP 4038109B2 JP 2002297536 A JP2002297536 A JP 2002297536A JP 2002297536 A JP2002297536 A JP 2002297536A JP 4038109 B2 JP4038109 B2 JP 4038109B2
Authority
JP
Japan
Prior art keywords
dielectric
value
high frequency
substrate
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002297536A
Other languages
Japanese (ja)
Other versions
JP2003206177A (en
Inventor
健 岡村
哲也 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002297536A priority Critical patent/JP4038109B2/en
Publication of JP2003206177A publication Critical patent/JP2003206177A/en
Application granted granted Critical
Publication of JP4038109B2 publication Critical patent/JP4038109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、マイクロ波、ミリ波等の高周波域で用いられる高周波用誘電体組成物に係わり、例えば、マイクロ波、ミリ波集積回路等のマイクロ波、ミリ波帯域で用いられる回路素子用基板、誘電体共振器用支持台、誘電体共振器、誘電体導波路、誘電体アンテナ等の材料として有用な高周波用誘電体磁器組成物、並びに誘電体磁器を支持部材を介して基板に固定した誘電体共振器に関するものである。
【0002】
【従来技術】
マイクロ波、ミリ波集積回路をはじめとする高周波回路素子では、誘電体共振磁器を支持部材を介して基板に固定する構造が採用される場合がある。例えば、誘電体共振器制御型マイクロ波発信器は、図1に示すように、誘電体磁器1を支持部材2を介して磁器基板3に取り付け、誘電体磁器1の外部に漏れ出る電磁界Hを利用して磁器基板3に設けたストリップライン4に結合させる構造であり、これらを金属ケース5に収容させた構造を有している。
【0003】
この種の高周波回路においては、誘電体磁器1の電界が支持部材2を介して漏れるのを制御することによって、無負荷Qの高い共振系が構成されることになるため、支持部材2には比誘電率が低く誘電損失(tanδ)が小さい(Q値が大きい)材料を使用する必要がある。このため、従来、支持部材材料としては比誘電率が約7、測定周波数10GHzでのQ値が約15000のフォルステライトが採用され、また、磁器基板の材料としては主として比誘電率が約10、測定周波数10GHzでのQ値が20000以上のアルミナ磁器が採用されていた(例えば、特許文献1参照。)。
【0004】
一方、比誘電率が低い材料としては、従来、コーディエライトが知られているが、焼成温度範囲がきわめて狭いことから緻密な焼結体が得がたく、ガラス材を添加することによって、比誘電率が4〜6、測定周波数10GHzでのQ値が1000程度のガラスセラミックが知られている(例えば、特許文献2参照。)。
【0005】
【特許文献1】
特開昭62−103904号公報
【特許文献2】
特開昭61−234128号公報
【0006】
【発明が解決しようとする課題】
しかしながら、従来用いられていたアルミナ、及びフォルステライトの比誘電率はそれぞれ約10及び約7程度であり、近年における高周波数帯の誘電体共振器の普及にともない、より低い比誘電率の材料が求められていた。
【0007】
一方、低誘電率材料として用いられているガラスセラミック等の磁器は比誘電率が約4〜6と小さいが、Q値が10GHzで1000程度であり、近年における高周波数帯の誘電体共振器の普及に伴い、より高いQ値の低誘電率材料が求められていた。
【0008】
また、共振器の磁器基板に主として使用されているアルミナ磁器は比誘電率が約10と比較的高く、高インピーダンスのストリップラインを形成しようとすると、ライン幅が小さくなりすぎて(通常1μm以下)、断線が生じたり、相対的なライン幅のばらつきが大きくなり、マイクロ波集積回路の不良率が増大するという問題があった。
【0009】
他方、この種の磁器基板におけるストリップラインのインピーダンスは、基板の厚さが一定であれば、その比誘電率及びストリップラインの幅にそれぞれ反比例するため、ライン幅を小さくする代わりに、比誘電率の低い基板材料を使用することによってもインピーダンスを高めることができ、このため、より低誘電率材料が求められていた。
【0010】
本発明者等は上記問題を解決する一手段として、金属元素としてMg、Al、Siからなる複合酸化物であって、各金属元素の酸化物によるモル比組成式をxMgO−yAl23−zSiO2と表した時、前記x、y、zが10≦x≦40、10≦y≦40、20≦z≦80、x+y+z=100を満足し、比誘電率が6以下、かつ、測定周波数10GHzでのQ値が2000以上である高周波用誘電体磁器組成物、および誘電体共振器をすでに提案した(特願平7−195211号)。
【0011】
この高周波用誘電体磁器組成物はアルミナ、フォルステライトよりも低い比誘電率を有し、かつ、ガラスセラミックよりも高いQ値を有する優れたものであった。しかしながら、従来、コーディライトは焼成温度範囲が極めて狭いことから、緻密な焼結体が得がたく、上記発明者等が先に出願した高周波用誘電体磁器組成物も例外ではなかった。
【0012】
本発明は、低誘電率で、かつ、測定周波数10GHzにおいて高Q値を有するとともに、焼成条件を改善できる高周波用誘電体磁器組成物および誘電体共振器を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の高周波用誘電体磁器組成物は、金属元素としてMg、Al、Siからなる複合酸化物であって、各金属元素の酸化物によるモル比の組成式をxMgO−yAl23−zSiO2と表した時、前記x、y、zが、10≦x≦40、10≦y≦40、20≦z≦80、x+y+z=100を満足する主成分中に、YbをYb23換算で0.1〜15重量%含有するとともに、比誘電率が6以下、測定周波数10GHzでのQ値が3000以上であることを特徴とする。
【0014】
本発明の誘電体共振器は、基板上に支持部材を介して誘電体磁器を固定してなる誘電体共振器において、前記基板および/または前記支持部材を、前述した高周波用誘電体磁器組成物により構成したものである。
【0015】
【作用】
本発明の高周波用誘電体磁器組成物では、上記した主成分に対してYbをYb23換算で0.1〜15重量%含有することにより、焼成温度等の焼成条件を厳密に制御して得られた特性を大きく劣化させることなく、焼成条件を改善することができる。即ち、比誘電率が4〜6、測定周波数10GHzでのQ値が3000以上の特性を得ることができるとともに、例えば、焼成温度幅が10℃程度であったものを100℃程度まで向上することができ、製造を容易にし、量産性を向上することができる。
【0016】
また、このような低誘電率、高Q値の誘電体磁器を、例えば、誘電体共振器の支持部材および/または基板に用いることにより、高インピーダンスのマイクロ波用集積回路などの高周波用回路素子を信頼性を損なうことなく製造することができる。
【0017】
【発明の実施の形態】
本発明の高周波用誘電体磁器組成物は、モル比の組成式をxMgO−yAl23−zSiO2と表した時に、x、y、zが、10≦x≦40、10≦y≦40、20≦z≦80、x+y+z=100を満足するものを主成分とする。
【0018】
本発明の高周波用磁器組成物の主成分組成を前記範囲に限定したのは、次の理由による。即ち、MgOのモル百分率を示すxを10〜40モル%としたのは10モル%未満では良好な焼結体が得られずQ値が低く、また40モル%を越えると比誘電率が高くなるからである。特にMgO量を示すxは、Q値を5000以上とするという点から15〜35モル%が望ましい。
【0019】
また、Al23のモル百分率を示すyを10〜40モル%としたのはAl23量yが10モル%よりも小さい場合には、良好な焼結体が得られず、またQ値が低くなり、40モル%を越えると比誘電率が高くなるからである。Al23量を示すyは、Q値を5000以上とするという点から17〜35モル%が望ましい。
【0020】
SiO2のモル百分率zを20〜80モル%としたのは、zが20モル%よりも小さい場合には比誘電率が大きくなり、80モル%を越えると良好な焼結体が得られずQ値が低くなる。SiO2量を示すzはQ値を5000以上とするという点から30〜65モル%が望ましい。
【0021】
本発明によれば、上記主成分に対してYbをYb23換算で0.1〜15重量%含有するものである。YbをYb23換算で0.1〜15重量%含有したのは、Ybの含有量が0.1重量%より少ない場合、緻密化焼成温度は広くならず、15重量%より多い場合は、誘電損失が大きくなり、Q値が低くなるためである。Ybの含有量を増加させるほど緻密化焼成温度は広くなるが、一方比誘電率が増加し、またQ値が低下していくため、これらの特性と緻密化焼成温度との兼ね合いで、Ybの含有量を決定することが望ましい。
【0022】
本発明の高周波用誘電体磁器組成物は、Q値を5000以上とするためには15≦x≦35、17≦y≦35、30≦z≦70を満足することが望ましく、さらに、Q値を7000以上とするためには20≦x≦30、17≦y≦30、40≦z≦60を満足することが望ましい。本発明では、特に、コージェライトの組成、即ちx=22.2、y=22.2、z=55.6でYbをYb23換算で0.1〜10重量%含有することが望ましい。
【0023】
測定周波数10GHzでのQ値が3000以上を満足するようにしたのは、Q値が3000以上ある場合には、近年における高周波数帯の誘電体共振器にも十分対応することができるからである。Q値は、高ければ高い程望ましいが、特には、測定周波数10GHzでのQ値が5000以上であることが望ましい。
【0024】
また、本発明の誘電体磁器組成物では、主結晶相がコーディエライトであり、他に結晶相として、ムライト、スピネル、プロトエンスタタイト、クリノエンスタタイト、クリストバライト、フォルステライト、トリジマイト、サファリン、Yb2Si27等が析出する場合があるが、組成によってその析出相が異なる。
【0025】
また、本発明の誘電体共振器は、図1に示すように、基板3上に支持部材2を介して誘電体磁器1を固定してなり、支持部材2または基板3、或いは支持部材2及び基板3が、上記誘電体磁器組成物からなるものである。この場合、誘電体磁器1としては、周知の材料が用いられる。誘電体磁器1として、本発明の誘電体磁器組成物を用いても良い。
【0026】
本発明の高周波用誘電体磁器組成物は、原料粉末として、例えば、MgCO3粉末、Al23粉末、SiO2粉末、Yb23粉末を用い、所定の割合で秤量し、湿式混合した後乾燥し、この混合物を大気中1100〜1300℃で仮焼した後、粉砕した。得られた粉末に適量のバインダを加えて成形し、この成形体を大気中1300〜1400℃で焼成することにより得られる。
【0027】
Mg、Al、Si、Ybの金属元素からなる原料粉末は、それぞれ酸化物、炭酸塩、酢酸塩等の無機化合物、もしくは有機金属等の有機化合物いずれであっても、焼成により酸化物として形成されるものであれば良い。
【0028】
尚、本発明の高周波用誘電体磁器組成物は、金属元素として、Mg、Al、Si、Ybからなるものであるが、例えば、粉砕ボールや原料粉末の不純物として、Ca、Ba、Zr、Ni、Fe、Cr、P、Na、Ti等が混入する場合がある。
【0029】
また、本発明の高周波用誘電体磁器組成物では、低誘電率および高Q値が求められるものであれば、例えば、回路素子用基板、誘電体共振器の誘電体磁器、誘電体導波路、誘電体アンテナ等、どのようなものでも適用できるが、上記したように、誘電体共振器の支持部材または基板に最適である。
【0030】
【実施例】
原料粉末として純度99%のMgCO3、純度99.7%のAl23、純度99.4%のSiO2粉末、純度99.9%のYb23を用い、これらを焼結体が表1に示す組成となるように秤量し、15時間湿式混合した後、乾燥し、この混合物を大気中で1200℃2時間仮焼した後、粉砕した。得られた粉末に適量のバインダを加えて造粒し、これを1000kg/cm2の圧力の下で成形して直径12mm厚さ8mmの成形体を得た。この成形体を大気中1200〜1550℃で2時間焼成して磁器を作製し、これらを研摩し、直径10mm厚さ6mmの誘電体磁器試料を得た。
【0031】
これらの試料を用いて誘電体円柱共振器法にて周波数10GHzにおける比誘電率とQ値を測定し、その結果を表1に示す。
【0032】
【表1】

Figure 0004038109
【0033】
この表1によれば、本発明に係る高周波用誘電体磁器組成物は、比誘電率が6以下と低く、しかも測定周波数10GHzでのQ値が3000以上と高い値を示すことがわかる。また、焼成温度の範囲もYb含有量が増加するに従って拡大していることが判る。
【0034】
尚、図2に試料No.12のX線回折チャート図を示す。この図2から、コーディエライトの他に、Yb2Si27が析出していることが判る。
【0035】
【発明の効果】
本発明の高周波用誘電体磁器組成物では、6以下の低い比誘電率を有し、10GHzでのQ値が3000以上の高いQ値を維持した状態で、緻密化焼成温度の範囲が拡大し、生産性を向上することができる。そして、例えば、誘電体共振器の支持部材または基板に用いることにより、高インピーダンスのマイクロ波用集積回路などの高周波用回路素子を信頼性を損なうことなく製造できる。また、低誘電率および高Q値であるため、例えば、マイクロ波、ミリ波集積回路等のマイクロ波、ミリ波帯域で用いられる回路素子用基板、誘電体共振器用支持台、誘電体共振器、誘電体導波路、誘電体アンテナ等の材料として最適である。
【図面の簡単な説明】
【図1】高周波用回路素子の一例を示す誘電体共振器制御型マイクロ波発信器の概略断面図である。
【図2】表1の試料No.12の結晶構造を示すX線回折図である。
【符号の説明】
1・・・誘電体磁器
2・・・支持部材
3・・・磁器基板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high frequency dielectric composition used in a high frequency region such as a microwave or a millimeter wave, for example, for circuit elements used in a microwave or millimeter wave band such as a microwave or a millimeter wave integrated circuit. A high-frequency dielectric ceramic composition useful as a material for a substrate, a dielectric resonator support base, a dielectric resonator, a dielectric waveguide, a dielectric antenna, and the like, and a dielectric ceramic fixed to the substrate via a support member The present invention relates to a dielectric resonator.
[0002]
[Prior art]
In high frequency circuit elements such as microwave and millimeter wave integrated circuits, a structure in which a dielectric resonant ceramic is fixed to a substrate through a support member may be employed. For example, as shown in FIG. 1, a dielectric resonator-controlled microwave oscillator is configured such that a dielectric ceramic 1 is attached to a ceramic substrate 3 via a support member 2 and leaks out of the dielectric ceramic 1. Is used to couple to the strip line 4 provided on the porcelain substrate 3, and these are housed in the metal case 5.
[0003]
In this type of high-frequency circuit, by controlling the leakage of the electric field of the dielectric ceramic 1 through the support member 2, a resonance system with a high unloaded Q is configured. It is necessary to use a material having a low relative dielectric constant and a low dielectric loss (tan δ) (a high Q value). For this reason, forsterite having a relative dielectric constant of about 7 and a Q value of about 15000 at a measurement frequency of 10 GHz is conventionally used as the support member material, and the relative dielectric constant of about 10 is mainly used as the material for the ceramic substrate. An alumina porcelain having a Q value of 20000 or more at a measurement frequency of 10 GHz has been employed (for example, see Patent Document 1).
[0004]
On the other hand, cordierite has been known as a material having a low relative dielectric constant. However, since the firing temperature range is extremely narrow, a dense sintered body is difficult to obtain. A glass ceramic having a dielectric constant of 4 to 6 and a Q value of about 1000 at a measurement frequency of 10 GHz is known (for example, see Patent Document 2).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 62-103904 [Patent Document 2]
JP-A-61-234128 [0006]
[Problems to be solved by the invention]
However, the relative dielectric constants of alumina and forsterite used in the past are about 10 and about 7, respectively. With the recent widespread use of high frequency dielectric resonators, materials with lower relative dielectric constants have been developed. It was sought after.
[0007]
On the other hand, a ceramic such as glass ceramic used as a low dielectric constant material has a relative dielectric constant as small as about 4 to 6, but has a Q value of about 1000 at 10 GHz, which is a recent high frequency band dielectric resonator. With widespread use, a low dielectric constant material having a higher Q value has been demanded.
[0008]
In addition, the alumina ceramic mainly used for the ceramic substrate of the resonator has a relatively high relative dielectric constant of about 10, and when a high impedance strip line is formed, the line width becomes too small (usually 1 μm or less). There is a problem in that disconnection occurs, relative line width variation increases, and the defect rate of the microwave integrated circuit increases.
[0009]
On the other hand, the impedance of the strip line in this type of porcelain substrate is inversely proportional to the relative permittivity and the width of the strip line if the thickness of the substrate is constant. Therefore, instead of reducing the line width, the relative permittivity Impedance can also be increased by using a low substrate material, and therefore a lower dielectric constant material has been demanded.
[0010]
As a means for solving the above problems, the inventors of the present invention are complex oxides composed of Mg, Al, and Si as metal elements, and the molar ratio composition formula of each metal element by an oxide is expressed as xMgO-yAl 2 O 3 —. When expressed as zSiO 2 , the x, y, and z satisfy 10 ≦ x ≦ 40, 10 ≦ y ≦ 40, 20 ≦ z ≦ 80, x + y + z = 100, the relative dielectric constant is 6 or less, and the measurement frequency A high frequency dielectric ceramic composition having a Q value at 10 GHz of 2000 or more and a dielectric resonator have already been proposed (Japanese Patent Application No. 7-195211).
[0011]
This high frequency dielectric ceramic composition was excellent in that it had a relative dielectric constant lower than that of alumina or forsterite and a higher Q value than that of glass ceramic. Conventionally, however, cordierite has a very narrow firing temperature range, so that it is difficult to obtain a dense sintered body, and the high frequency dielectric ceramic composition previously filed by the inventors has not been an exception.
[0012]
An object of the present invention is to provide a high-frequency dielectric ceramic composition and a dielectric resonator that have a low dielectric constant and a high Q value at a measurement frequency of 10 GHz and can improve firing conditions.
[0013]
[Means for Solving the Problems]
The high-frequency dielectric ceramic composition of the present invention is a composite oxide composed of Mg, Al, and Si as metal elements, and the composition formula of the molar ratio of each metal element by oxide is xMgO-yAl 2 O 3 -zSiO. In the main component satisfying x, y and z satisfying 10 ≦ x ≦ 40, 10 ≦ y ≦ 40, 20 ≦ z ≦ 80, and x + y + z = 100 when expressed as 2 , Yb is converted to Yb 2 O 3 0.1 to 15% by weight, a relative dielectric constant of 6 or less, and a Q value at a measurement frequency of 10 GHz is 3000 or more.
[0014]
The dielectric resonator of the present invention is a dielectric resonator in which a dielectric ceramic is fixed on a substrate via a support member. The dielectric resonator composition for high frequency described above is used as the substrate and / or the support member. It is comprised by.
[0015]
[Action]
In the high frequency dielectric ceramic composition of the present invention, the firing conditions such as the firing temperature are strictly controlled by containing 0.1 to 15% by weight of Yb in terms of Yb 2 O 3 with respect to the main component described above. The firing conditions can be improved without significantly degrading the properties obtained. That is, it is possible to obtain characteristics with a relative dielectric constant of 4 to 6 and a Q value of 3000 or more at a measurement frequency of 10 GHz, and for example, improving the firing temperature range of about 10 ° C. to about 100 ° C. Can be manufactured easily, and mass productivity can be improved.
[0016]
Further, by using such a dielectric ceramic having a low dielectric constant and a high Q value, for example, as a support member and / or a substrate of a dielectric resonator, a high-frequency circuit element such as a high-impedance microwave integrated circuit. Can be manufactured without impairing reliability.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In the dielectric ceramic composition for high frequency of the present invention, x, y, z are 10 ≦ x ≦ 40, 10 ≦ y ≦ 40, when the molar ratio composition formula is expressed as xMgO—yAl 2 O 3 —zSiO 2. , 20 ≦ z ≦ 80, x + y + z = 100 is satisfied as a main component.
[0018]
The main component composition of the high frequency porcelain composition of the present invention is limited to the above range for the following reason. That is, x indicating the molar percentage of MgO was set to 10 to 40 mol%. If less than 10 mol%, a good sintered body could not be obtained and the Q value was low, and if it exceeded 40 mol%, the relative dielectric constant was high. Because it becomes. In particular, x indicating the amount of MgO is preferably 15 to 35 mol% from the viewpoint that the Q value is 5000 or more.
[0019]
Further, the y indicating the mole percentage of Al 2 O 3 was set to 10 to 40 mol%. When the amount y of Al 2 O 3 was smaller than 10 mol%, a good sintered body could not be obtained. This is because the dielectric constant increases when the Q value decreases and exceeds 40 mol%. Y representing the amount of Al 2 O 3 is preferably 17 to 35 mol% from the viewpoint that the Q value is 5000 or more.
[0020]
The reason why the molar percentage z of SiO 2 is 20 to 80 mol% is that when z is smaller than 20 mol%, the relative dielectric constant increases, and when it exceeds 80 mol%, a good sintered body cannot be obtained. Q value decreases. Z indicating the amount of SiO 2 is preferably 30 to 65 mol% from the viewpoint that the Q value is 5000 or more.
[0021]
According to the present invention, 0.1 to 15% by weight of Yb in terms of Yb 2 O 3 is contained with respect to the main component. The reason why Yb is contained in an amount of 0.1 to 15% by weight in terms of Yb 2 O 3 is that when the content of Yb is less than 0.1% by weight, the densification firing temperature is not widened, and when it is more than 15% by weight. This is because the dielectric loss increases and the Q value decreases. As the content of Yb is increased, the densification firing temperature becomes wider. On the other hand, the relative permittivity increases and the Q value decreases, so the balance between these characteristics and the densification firing temperature is It is desirable to determine the content.
[0022]
The high frequency dielectric ceramic composition of the present invention desirably satisfies 15 ≦ x ≦ 35, 17 ≦ y ≦ 35, and 30 ≦ z ≦ 70 in order to obtain a Q value of 5000 or more. In order to make 7000 or more, it is desirable to satisfy 20 ≦ x ≦ 30, 17 ≦ y ≦ 30, and 40 ≦ z ≦ 60. In the present invention, in particular, it is desirable to contain 0.1 to 10% by weight of Yb in terms of Yb 2 O 3 at a cordierite composition, that is, x = 22.2, y = 22.2, z = 55.6. .
[0023]
The reason why the Q value at the measurement frequency of 10 GHz satisfies 3000 or more is that when the Q value is 3000 or more, it can sufficiently cope with a dielectric resonator in a high frequency band in recent years. . The Q value is preferably as high as possible, but in particular, the Q value at a measurement frequency of 10 GHz is preferably 5000 or more.
[0024]
In the dielectric ceramic composition of the present invention, the main crystal phase is cordierite, and other crystal phases include mullite, spinel, protoenstatite, clinoenstatite, cristobalite, forsterite, tridymite, safarin, Yb. 2 Si 2 O 7 or the like may precipitate, but the precipitation phase varies depending on the composition.
[0025]
Further, as shown in FIG. 1, the dielectric resonator of the present invention has a dielectric ceramic 1 fixed on a substrate 3 via a support member 2, and the support member 2 or the substrate 3 or the support member 2 and The substrate 3 is made of the above dielectric ceramic composition. In this case, a known material is used as the dielectric ceramic 1. As the dielectric ceramic 1, the dielectric ceramic composition of the present invention may be used.
[0026]
The dielectric ceramic composition for high frequency of the present invention is, for example, MgCO 3 powder, Al 2 O 3 powder, SiO 2 powder, Yb 2 O 3 powder as raw material powder, weighed at a predetermined ratio, and wet mixed. After drying, the mixture was calcined at 1100 to 1300 ° C. in the atmosphere and then pulverized. An appropriate amount of a binder is added to the obtained powder and molded, and the molded body is fired at 1300 to 1400 ° C. in the atmosphere.
[0027]
Raw material powders composed of Mg, Al, Si, and Yb metal elements are formed as oxides by firing regardless of whether they are inorganic compounds such as oxides, carbonates, and acetates, or organic compounds such as organic metals. Anything is acceptable.
[0028]
The high-frequency dielectric ceramic composition of the present invention is composed of Mg, Al, Si, Yb as the metal element. For example, as impurities in the pulverized ball or the raw material powder, Ca, Ba, Zr, Ni , Fe, Cr, P, Na, Ti, etc. may be mixed.
[0029]
Further, in the high frequency dielectric ceramic composition of the present invention, if a low dielectric constant and a high Q value are required, for example, a circuit element substrate, a dielectric ceramic dielectric ceramic, a dielectric waveguide, Any device such as a dielectric antenna can be applied, but as described above, it is most suitable for a support member or substrate of a dielectric resonator.
[0030]
【Example】
Raw powder as a purity of 99% MgCO 3, purity of 99.7% Al 2 O 3, purity 99.4% of SiO 2 powder, using Yb 2 O 3 having a purity of 99.9%, these sintered body It weighed so that it might become the composition shown in Table 1, and wet-mixed for 15 hours, Then, it dried, This mixture was calcined in air | atmosphere at 1200 degreeC for 2 hours, Then, it pulverized. An appropriate amount of a binder was added to the obtained powder and granulated, and this was molded under a pressure of 1000 kg / cm 2 to obtain a molded body having a diameter of 12 mm and a thickness of 8 mm. This molded body was fired in the atmosphere at 1200 to 1550 ° C. for 2 hours to produce porcelain, which was polished to obtain a dielectric porcelain sample having a diameter of 10 mm and a thickness of 6 mm.
[0031]
Using these samples, the dielectric constant and Q value at a frequency of 10 GHz were measured by the dielectric cylindrical resonator method, and the results are shown in Table 1.
[0032]
[Table 1]
Figure 0004038109
[0033]
According to Table 1, it can be seen that the high frequency dielectric ceramic composition according to the present invention has a low relative dielectric constant of 6 or less and a high Q value of 3000 or more at a measurement frequency of 10 GHz. Moreover, it turns out that the range of baking temperature is also expanded as Yb content increases.
[0034]
In FIG. 12 shows an X-ray diffraction chart of 12. FIG. 2 shows that Yb 2 Si 2 O 7 is precipitated in addition to cordierite.
[0035]
【The invention's effect】
The dielectric ceramic composition for high frequency of the present invention has a low relative dielectric constant of 6 or less, and the range of densification firing temperature is expanded while maintaining a high Q value of 3000 or more at 10 GHz. , Productivity can be improved. For example, by using the dielectric resonator support member or the substrate, a high-frequency circuit element such as a high-impedance microwave integrated circuit can be manufactured without impairing reliability. In addition, since it has a low dielectric constant and a high Q value, for example, microwaves such as microwaves and millimeter wave integrated circuits, circuit element substrates used in the millimeter wave band, dielectric resonator support bases, dielectric resonators, It is optimal as a material for dielectric waveguides, dielectric antennas and the like.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a dielectric resonator-controlled microwave transmitter showing an example of a high-frequency circuit element.
2 is a sample No. of Table 1. FIG. 12 is an X-ray diffraction diagram showing a crystal structure of 12.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Dielectric ceramic 2 ... Support member 3 ... Porcelain substrate

Claims (2)

金属元素としてMg、Al、Siからなる複合酸化物であって、各金属元素の酸化物によるモル比の組成式を
xMgO−yAl23−zSiO2
と表した時、前記x、y、zが
10≦x≦40
10≦y≦40
20≦z≦80
x+y+z=100
を満足する主成分中に、YbをYb23換算で0.1〜15重量%含有するとともに、比誘電率が6以下、測定周波数10GHzでのQ値が3000以上であることを特徴とする高周波用誘電体磁器組成物。
It is a complex oxide composed of Mg, Al, and Si as metal elements, and the composition formula of the molar ratio of each metal element by the oxide is represented by xMgO-yAl 2 O 3 -zSiO 2
When x, y, z are 10 ≦ x ≦ 40
10 ≦ y ≦ 40
20 ≦ z ≦ 80
x + y + z = 100
In the main component satisfying the above, 0.1 to 15 wt% of Yb in terms of Yb 2 O 3 is contained, the relative dielectric constant is 6 or less, and the Q value at a measurement frequency of 10 GHz is 3000 or more. A high frequency dielectric ceramic composition.
基板上に支持部材を介して誘電体磁器を固定してなる誘電体共振器において、前記基板および/または前記支持部材が、金属元素としてMg、Al、Siからなる複合酸化物であって、各金属元素の酸化物によるモル比の組成式を
xMgO−yAl23−zSiO2
と表した時、前記x、y、zが
10≦x≦40
10≦y≦40
20≦z≦80
x+y+z=100
を満足する主成分中に、YbをYb23換算で0.1〜15重量%含有するとともに、比誘電率が6以下、測定周波数10GHzでのQ値が3000以上であることを特徴とする誘電体共振器。
In a dielectric resonator formed by fixing a dielectric ceramic through a support member on a substrate, the substrate and / or the support member is a complex oxide composed of Mg, Al, Si as a metal element, The composition formula of the molar ratio of the metal element oxide is expressed as xMgO-yAl 2 O 3 -zSiO 2.
When x, y, z are 10 ≦ x ≦ 40
10 ≦ y ≦ 40
20 ≦ z ≦ 80
x + y + z = 100
In the main component satisfying the above, 0.1 to 15 wt% of Yb in terms of Yb 2 O 3 is contained, the relative dielectric constant is 6 or less, and the Q value at a measurement frequency of 10 GHz is 3000 or more. Dielectric resonator.
JP2002297536A 2002-10-10 2002-10-10 High frequency dielectric ceramic composition and dielectric resonator Expired - Fee Related JP4038109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297536A JP4038109B2 (en) 2002-10-10 2002-10-10 High frequency dielectric ceramic composition and dielectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297536A JP4038109B2 (en) 2002-10-10 2002-10-10 High frequency dielectric ceramic composition and dielectric resonator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10714096A Division JP3377910B2 (en) 1996-04-26 1996-04-26 High frequency dielectric ceramic composition and dielectric resonator

Publications (2)

Publication Number Publication Date
JP2003206177A JP2003206177A (en) 2003-07-22
JP4038109B2 true JP4038109B2 (en) 2008-01-23

Family

ID=27655725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297536A Expired - Fee Related JP4038109B2 (en) 2002-10-10 2002-10-10 High frequency dielectric ceramic composition and dielectric resonator

Country Status (1)

Country Link
JP (1) JP4038109B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180262A (en) * 2010-10-26 2013-06-26 京瓷株式会社 Cordierite ceramic, and member for semiconductor manufacture devices which comprises same
CN115504776B (en) * 2022-09-28 2023-07-28 隆地华创(浙江)科技有限公司 Y (Y) (3-x) R x MgAl 3 SiO 12 Garnet type microwave dielectric ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JP2003206177A (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP3393776B2 (en) Dielectric ceramic composition and dielectric resonator
JP3393775B2 (en) Dielectric ceramic composition and dielectric resonator
JP4038109B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3347576B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3398281B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3377910B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3510948B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3220359B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3330005B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3309048B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3336179B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3350380B2 (en) Dielectric ceramic composition and dielectric resonator
JPH0952761A (en) Aluminous ceramic composition and its production
JP3346721B2 (en) Non-radiative dielectric line
JP3554136B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3623078B2 (en) High frequency wiring board
JP3623093B2 (en) High frequency wiring board
JP2000327412A (en) Dielectric ceramic composition for high frequency and dielectric resonator
JP3510946B2 (en) Cordierite-based sintered body, method for producing the same, and dielectric resonator
JPH11100258A (en) Wiring substrate for high frequency application
JP3523463B2 (en) High frequency dielectric ceramic composition, dielectric resonator, and dielectric waveguide
JPH10177817A (en) Dielectric ceramic composition and dielectric resonator
JP3523474B2 (en) High frequency dielectric ceramic composition, dielectric resonator, and dielectric waveguide
JP3523464B2 (en) High frequency dielectric ceramic composition, dielectric resonator, and dielectric waveguide
JP3554147B2 (en) High frequency wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees