JP3622927B2 - Anisotropic conductive film - Google Patents

Anisotropic conductive film Download PDF

Info

Publication number
JP3622927B2
JP3622927B2 JP24899294A JP24899294A JP3622927B2 JP 3622927 B2 JP3622927 B2 JP 3622927B2 JP 24899294 A JP24899294 A JP 24899294A JP 24899294 A JP24899294 A JP 24899294A JP 3622927 B2 JP3622927 B2 JP 3622927B2
Authority
JP
Japan
Prior art keywords
particles
pass
particle size
average particle
fail judgment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24899294A
Other languages
Japanese (ja)
Other versions
JP3622927B6 (en
JPH08115617A (en
Inventor
幸男 山田
尚 安藤
保博 須賀
博行 熊倉
博之 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP1994248992A priority Critical patent/JP3622927B6/en
Priority claimed from JP1994248992A external-priority patent/JP3622927B6/en
Publication of JPH08115617A publication Critical patent/JPH08115617A/en
Publication of JP3622927B2 publication Critical patent/JP3622927B2/en
Application granted granted Critical
Publication of JP3622927B6 publication Critical patent/JP3622927B6/en
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Non-Insulated Conductors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、いわゆるTAB型の端子等の電気的、機械的接続に用いられる異方性導電膜に関するものである。
【0002】
【従来の技術】
例えば、液晶表示装置においては、図1に示すように、液晶表示装置(LCD)1の電極2とテープ・オートメイテッド・ボンディング型(Tape Automated Bonding型、以下、TAB型と称する。)の端子板3の電極4間を接続するのに、異方性導電膜5を使用している。
【0003】
上記異方性導電膜5は、例えばウレタン,ポリエステル,クロロプレン等の熱可塑性のホットメルト樹脂或いはエポキシ等の熱硬化性樹脂等よりなる絶縁性接着剤6中に、平均粒径が10μm程度であり、ニッケル,金,半田等の金属粒子或いはスチレン樹脂等よりなる粒子表面をニッケル−金等の導電層により被覆した粒子等の導通のための導通用粒子7が分散されたものである。
【0004】
これを用いて液晶表示装置1の電極2とTAB型端子板3の電極4の接続を行う場合には、先ず、図1に示すように、上記電極2,4間に異方性導電膜5を挟むようにして配する。
【0005】
そして、例えば絶縁性接着剤6として熱可塑性のホットメルト樹脂を使用している場合には、加熱を行って異方性導電膜5の絶縁性接着剤6を溶融させるとともに液晶表示装置1とTAB型端子板3を圧接させる。
【0006】
すると、異方性導電膜5内の導通用粒子7が電極2,4間に潰されるような形で挟み込まれ、電極2,4間の接続が行われ、導通がなされることとなる。
【0007】
続いて冷却を行い、絶縁性接着剤6を固化して電極2,4間の導通を保った状態で液晶表示装置1とTAB型端子板3間を接着する。
【0008】
なお、上記のような異方性導電膜により液晶表示装置とTAB型端子板の電極間を接続した場合、上記接続が確実に行われているかどうかの接続状態の良否の判定は以下のようにして行っている。すなわち、通常、液晶表示装置はガラスよりなり、TAB型端子板の電極がITO膜よりなることから、これらを透かして電極間に潰されるような形で挟み込まれた導通用粒子の数を顕微鏡等により確認して行っている。
【0009】
ところで、近年においては、液晶表示装置或いはTAB型端子板上における電極間の間隔、すなわちピッチが小さくなってきており、上記のような平均粒径が10μm程度の導通用粒子を用いた異方性導電膜を用いると、導通用粒子が大き過ぎて、隣接する電極間にまたがり、これらを接続してしまい、ショート等が発生するという不都合が生じている。
【0010】
そこで、異方性導電膜に用いる導通用粒子として平均粒径5±0.1μm程度の大きさのものを使用するようになってきている。上記導通用粒子としては、ジビニルベンゼン,ベンゾグアナミン等よりなる粒子表面に導電層を設けたものが挙げられる。
【0011】
【発明が解決しようとする課題】
しかしながら、上記のように導通用粒子の平均粒径が5±0.1μm程度と小さいと、導通用粒子の変形の確認が難しく、上述のような方法で接続状態の良否の判定を行うことは難しい。また、導通用粒子として、ジビニルベンゼン,ベンゾグアナミン等よりなる粒子表面に導電層を設けたものを用いた場合、導通用粒子の固さが固く、その変形を確認することはさらに困難となる。
【0012】
そこで本発明は、従来の実情に鑑みて提案されたものであり、電極間に挟み込まれた導通用粒子が小さくても、接続状態の良否の判定が簡便に行われる異方性導電膜を提供することを目的とする。
【0013】
【課題を解決するための手段】
上述の目的を達成するための本発明の異方性導電膜は、絶縁性接着剤中に導通のための導通用粒子と接続状態の良否判定のための良否判定用粒子とが分散されており、良否判定用粒子の10%変位時における圧縮強度が、導通用粒子の10%圧縮強度よりも小さく、導通用粒子の平均粒径が3〜10μmであり、良否判定用粒子の平均粒径が5μmを超え、且つ導通用粒子の平均粒径の1.25〜4倍であり、良否判定用粒子1重量部に対して導通用粒子が10〜20重量部配合されていることを特徴とするものである。
【0014】
また、上述の圧縮強度は、粒子に圧縮を行い、その直径が10%変形したときの荷重を調査し、下記式1により算出するものである。
【0015】
St=2.8P/π・d・・・(式1)
なお、上記式1中Stは圧縮強度を示し、Pは10%変形したときの荷重を示し、dは粒子の直径を示す。
【0016】
さらに、本発明の異方性導電膜においては、導通用粒子及び良否判定用粒子は、ニッケルで被覆されたジビニルベンゼンを金メッキした粒子であることが好ましい。
【0017】
【作用】
本発明の異方性導電膜においては、絶縁性接着剤中に導通のための導通用粒子と接続状態の良否判定のための良否判定用粒子とが分散されており、良否判定用粒子の10%変位時における圧縮強度が、導通用粒子の10%圧縮強度よりも小さく、導通用粒子の平均粒径が3〜10μmであり、良否判定用粒子の平均粒径が5μmを超え、且つ導通用粒子の平均粒径の1.25〜4倍であり、良否判定用粒子1重量部に対して導通用粒子が10〜20重量部配合されているため、これを用いて電極間等の接続を行った場合、良否判定用粒子の方が導通用粒子よりも先に潰れ、良否判定用粒子の確認が容易となるとともに、良否判定用粒子が導通用粒子の電極間の接続を妨げることもない。
【0018】
【実施例】
以下、本発明の好適な実施例について実験結果に基づいて説明する。
【0019】
先ず、試料の製造を行った。すなわち、絶縁性接着剤として、フェノキシ樹脂(YP50:商品名、東都化成社製)40重量部とエポキシ樹脂(EP828:商品名、油化シェル社製)30重量部と潜在性硬化剤(HX3741:商品名、旭化成社製)30重量部を混合したものを用意し、これに表1及び表2中に示すような粒子をそれぞれ混入させて実施例1〜3及び比較例1〜11を製造した。
【0020】
【表1】

Figure 0003622927
【0021】
【表2】
Figure 0003622927
【0022】
なお、表1,2中の数字はそれぞれ重量部を示し、粒子Aはベンゾグアナミンに金メッキを行ったブライト20GNR4.6EH(商品名、日本化学工業社製)の平均粒径4.6μmのものであり、粒子Bはジビニルベンゼンにニッケル/金メッキを行ったミクロパールAu210(商品名、積水ファインケミカル社製)の平均粒径5.0μmのものであり、粒子Cはジビニルベンゼンにニッケル/金メッキを行ったミクロパールAu20525(商品名、積水ファインケミカル社製)の平均粒径10.0μmのものであり、粒子Dは粒子Cと同一商品の平均粒径が5.0μmのものであり、粒子Eは粒子Bと同一商品の平均粒径が11.0μmのものであり、粒子Fは粒子Bと同一商品の平均粒径が2.5μmのものであり、粒子Gは粒子Bと同一商品の平均粒径が3.0μmのものであり、粒子Iは粒子Cと同一商品の平均粒径が25μmのものであり、粒子Jは粒子Cと同一商品の平均粒径が15μmのものであり、粒子Kは10%架橋スチレン粒子を金メッキしたものの平均粒径が7.5μm(粒径分布:4〜12μm)のものである。
【0023】
また、これら粒子A〜Kの10%変位時における圧縮強度を各粒子の平均粒径と併せて表3に示す。なお、上記圧縮強度は島津製作所社製の微小圧縮試験機MCTM−200(機種名)を用い、圧縮試験モードで、試験荷重3.00gfで、負荷速度定数2(0.135gf/sec)で、変位スケール5.00(μm)で、圧子50(μmφ)の条件下で測定した。
【0024】
【表3】
Figure 0003622927
【0025】
次に、上記実施例1〜3及び比較例1〜11を剥離フィルム上に厚さが20μmとなるようにコーティングして異方性導電膜を製造した。なお、実施例1〜3及び比較例1〜11を用いた異方性導電膜を便宜上、それぞれ実施例1〜3及び比較例1〜11と称することとする。
【0026】
そして、上記実施例1〜3及び比較例1〜11の異方性導電膜を用い、厚さ75μmのポリイミド(ユーピレックス:商品名、宇部興産社製)よりなる基材上に厚さ25μmの錫メッキされた銅パターンをパターン間のピッチが70μmとなるように形成したTAB型端子板とITO膜よりなる電極が一面に形成されたガラス間の接続を行った。なお、上記接続は温度160℃で30kg/cmの圧力を15秒間加えて行った。
【0027】
続いて、上記のように実施例1〜3及び比較例1〜11の異方性導電膜を用いて接着を行ったTAB型端子板とITO膜よりなる電極間の導通、TAB型端子板の隣接する2つのピン間における絶縁、接着状態の良否について調査した。
【0028】
上記導通は初期の導電性と85℃,85RH%の条件下で1000時間放置した後の導電性について調査し、初期においては5Ω以下を○として評価し、10Ω以上を×として評価し、放置後においては10Ω以下を○として評価し、50Ω以上を×として評価した。
【0029】
また、上記絶縁は10Ω以上を○として評価し、10Ω未満を×として評価した。
【0030】
さらに、接着状態の良否は50倍の光学顕微鏡を用いて観察を行った場合に判定が可能かどうかを評価し、可能である場合を○として評価し、不可能である場合を×として評価した。実施例1〜3の結果を表4に示し、比較例1〜11の結果を表5に示す。
【0031】
【表4】
Figure 0003622927
【0032】
【表5】
Figure 0003622927
【0033】
表4の結果を見てわかるように、各々の異方性導電膜中における接続状態の良否判定用粒子(粒子C)の10%変位時における圧縮強度が、導通用粒子(粒子B,G)の10%変位時における圧縮強度よりも小さく、良否判定用粒子(粒子C)の粒径が導通用粒子(粒子B,G)の粒径よりも大きく、良否判定用粒子(粒子C)の平均粒径が5μm以上であり、且つ導通用粒子(粒子B,G)の平均粒径の1.25〜4倍であり、導通用粒子(粒子B,G)の平均粒径が3μm〜10μmであり、導通用粒子(粒子B,G)と良否判定用粒子(粒子C)の合計配合量が絶縁性接着剤100重量部に対して1〜20重量部であり、良否判定用粒子(粒子C)1重量部に対して導通用粒子(粒子B,G)が10〜20重量部配合されている実施例1〜3においては、各特性が良好なものとなっている。
【0034】
一方、表5の結果を見てわかるように、比較例1,2においては導通用粒子(粒子A,B)の平均粒径が小さく、また圧縮強度が大きいため、良否判定が困難である。また、比較例3においては、良否判定用粒子(粒子E)の圧縮強度が大きく潰れにくいため、導通用粒子(粒子D)がTAB型端子板とITO膜よりなる電極間を導通することが困難であり、抵抗が高く、導通特性が低くなっている。さらに、比較例4においては、導通用粒子(粒子F)の粒径が小さすぎるためにTAB型端子板とITO膜よりなる電極間の導通を確実に確保できず、導通特性が低くなっている。さらにまた、比較例5においては、良否判定用粒子(粒子D)の粒径が小さすぎるため良否の判定が困難である。
【0035】
また、比較例6においては、良否判定用粒子(粒子I)の粒径が大きすぎるために絶縁特性が低くなっている。さらに、比較例7においては、導通用粒子(粒子E)の粒径が大きすぎて絶縁を阻害し、絶縁特性が低くなっている。さらにまた、比較例8においては、導通用粒子(粒子K)の粒度分布が広すぎるために絶縁を阻害し、絶縁特性が低くなっている。
【0036】
また、比較例9においては、導通用粒子(粒子B)の配合量が多く、絶縁を阻害し、絶縁特性が低くなっている。さらに、比較例10においては、良否判定用粒子(粒子C)の配合量が少なく、該良否判定用粒子を確認するのが困難であり、良否判定が困難となっている。さらにまた、比較例11においては、良否判定用粒子(粒子C)の配合量が多く、絶縁を阻害し、絶縁特性が低くなっている。
【0037】
【発明の効果】
以上の説明からも明らかなように、本発明の異方性導電膜においては、絶縁性接着剤中に導通のための導通用粒子と接続状態の良否判定のための良否判定用粒子とが分散されており、良否判定用粒子の10%変位時における圧縮強度が、導通用粒子の10%圧縮強度よりも小さく、導通用粒子の平均粒径が3〜10μmであり、良否判定用粒子の平均粒径が5μmを超え、且つ導通用粒子の平均粒径の1.25〜4倍であり、良否判定用粒子1重量部に対して導通用粒子が10〜20重量部配合されているため、これを用いて電極間等の接続を行った場合、良否判定用粒子の方が導通用粒子よりも先に潰れ、良否判定用粒子の確認が容易となり、接続状態の良否の判定が簡便に行われるとともに、良否判定用粒子が電極間の接続を妨げることもない。
【図面の簡単な説明】
【図1】液晶表示装置の一例を示す断面図である。
【符号の説明】
5 異方性導電膜、6 絶縁性接着剤、7 導通用粒子[0001]
[Industrial application fields]
The present invention relates to an anisotropic conductive film used for electrical and mechanical connection of so-called TAB type terminals.
[0002]
[Prior art]
For example, in a liquid crystal display device, as shown in FIG. 1, an electrode 2 of a liquid crystal display device (LCD) 1 and a terminal board of a tape automated bonding type (Tape Automated Bonding type, hereinafter referred to as TAB type). An anisotropic conductive film 5 is used to connect the three electrodes 4.
[0003]
The anisotropic conductive film 5 has an average particle diameter of about 10 μm in an insulating adhesive 6 made of a thermoplastic hot melt resin such as urethane, polyester, chloroprene, or a thermosetting resin such as epoxy. Conductive particles 7 for conduction, such as particles in which the surface of particles made of metal particles such as nickel, gold, solder, or styrene resin is coated with a conductive layer such as nickel-gold, are dispersed.
[0004]
When using this to connect the electrode 2 of the liquid crystal display device 1 and the electrode 4 of the TAB type terminal board 3, first, as shown in FIG. Arrange them so that they are sandwiched.
[0005]
For example, when a thermoplastic hot melt resin is used as the insulating adhesive 6, the insulating adhesive 6 of the anisotropic conductive film 5 is melted by heating and the liquid crystal display device 1 and the TAB are used. The mold terminal board 3 is pressed.
[0006]
As a result, the conductive particles 7 in the anisotropic conductive film 5 are sandwiched between the electrodes 2 and 4 so that the electrodes 2 and 4 are connected to each other, thereby conducting electrical connection.
[0007]
Subsequently, cooling is performed, and the insulating adhesive 6 is solidified and the liquid crystal display device 1 and the TAB terminal board 3 are bonded together while the conduction between the electrodes 2 and 4 is maintained.
[0008]
When the liquid crystal display device and the electrodes of the TAB type terminal plate are connected by the anisotropic conductive film as described above, whether the connection is reliable or not is determined as follows. Is going. That is, the liquid crystal display device is usually made of glass, and the electrodes of the TAB type terminal plate are made of an ITO film, so that the number of conductive particles sandwiched between the electrodes through these can be measured with a microscope or the like. Confirmed by.
[0009]
By the way, in recent years, the distance between electrodes on a liquid crystal display device or TAB type terminal plate, that is, the pitch has been reduced, and anisotropy using conductive particles having an average particle size of about 10 μm as described above. When the conductive film is used, the conductive particles are too large, span between adjacent electrodes, connect them, and a short circuit or the like occurs.
[0010]
Therefore, particles having an average particle size of about 5 ± 0.1 μm have been used as conductive particles used for the anisotropic conductive film. Examples of the conductive particles include those in which a conductive layer is provided on the particle surface made of divinylbenzene, benzoguanamine or the like.
[0011]
[Problems to be solved by the invention]
However, if the average particle size of the conductive particles is as small as about 5 ± 0.1 μm as described above, it is difficult to confirm the deformation of the conductive particles, and it is difficult to determine whether the connection state is good or not by the method described above. difficult. Further, when conductive particles having a conductive layer provided on the particle surface made of divinylbenzene, benzoguanamine or the like are used as the conductive particles, the conductive particles are hard and it is more difficult to confirm the deformation.
[0012]
Therefore, the present invention has been proposed in view of conventional circumstances, and provides an anisotropic conductive film that can easily determine whether a connection state is good or not even if the conductive particles sandwiched between the electrodes are small. The purpose is to do.
[0013]
[Means for Solving the Problems]
In the anisotropic conductive film of the present invention for achieving the above-described object, conductive particles for conduction and particles for quality determination for quality determination of a connected state are dispersed in an insulating adhesive. The compressive strength at the time of 10% displacement of the pass / fail judgment particles is smaller than the 10% compressive strength of the conducting particles, and the mean particle size of the conducting particles is 3 to 10 μm. More than 5 μm and 1.25 to 4 times the average particle size of the conductive particles, and 10 to 20 parts by weight of conductive particles are blended with 1 part by weight of the pass / fail judgment particles. Is.
[0014]
Moreover, the above-mentioned compressive strength is calculated by the following formula 1 after investigating the load when the particle is compressed and its diameter is deformed by 10%.
[0015]
St = 2.8P / π · d 2 (Formula 1)
In the above formula 1, St represents the compressive strength, P represents the load when deformed by 10%, and d represents the particle diameter.
[0016]
Furthermore, in the anisotropic conductive film of the present invention, the conductive particles and the pass / fail judgment particles are preferably gold-plated divinylbenzene coated with nickel.
[0017]
[Action]
In the anisotropic conductive film of the present invention, the conductive particles for conduction and the quality determination particles for quality determination of the connection state are dispersed in the insulating adhesive. The compressive strength at% displacement is smaller than the 10% compressive strength of the conductive particles, the average particle size of the conductive particles is 3 to 10 μm, the average particle size of the pass / fail judgment particles exceeds 5 μm , and the conductive particles It is 1.25 to 4 times the average particle diameter of the particles, and 10 to 20 parts by weight of the conductive particles are blended with respect to 1 part by weight of the pass / fail judgment particles. In this case, the pass / fail judgment particles are crushed before the conduction particles, making it easier to check the pass / fail judgment particles, and the pass / fail judgment particles do not hinder the connection between the conduction particle electrodes. .
[0018]
【Example】
Hereinafter, preferred embodiments of the present invention will be described based on experimental results.
[0019]
First, a sample was manufactured. That is, as an insulating adhesive, 40 parts by weight of a phenoxy resin (YP50: trade name, manufactured by Toto Kasei Co., Ltd.), 30 parts by weight of an epoxy resin (EP828: trade name, manufactured by Yuka Shell Co., Ltd.) and a latent curing agent (HX3741: Examples 1 to 3 and Comparative Examples 1 to 11 were prepared by mixing 30 parts by weight (trade name, manufactured by Asahi Kasei Co., Ltd.) and mixing them with particles as shown in Table 1 and Table 2, respectively. .
[0020]
[Table 1]
Figure 0003622927
[0021]
[Table 2]
Figure 0003622927
[0022]
The numbers in Tables 1 and 2 indicate parts by weight, and the particles A are those of Bright 20GNR 4.6EH (trade name, manufactured by Nippon Chemical Industry Co., Ltd.) obtained by gold plating benzoguanamine and having an average particle diameter of 4.6 μm. Particle B is a micropearl Au210 (trade name, manufactured by Sekisui Fine Chemical Co., Ltd.) obtained by nickel / gold plating on divinylbenzene and having an average particle diameter of 5.0 μm. Pearl Au 20525 (trade name, manufactured by Sekisui Fine Chemical Co., Ltd.) has an average particle size of 10.0 μm, particle D has the same product as particle C and an average particle size of 5.0 μm, and particle E has particle B The average particle size of the same product is 11.0 μm, the particle F is the same product as the particle B and the average particle size is 2.5 μm, the particle G is the particle B Ri Der average particle diameter one product those 3.0 [mu] m, the particles I are those average particle diameter of the same product and particles C is 25 [mu] m, the particles J is the same product as the particles C average particle size 15μm of The particles K have a mean particle size of 7.5 μm (particle size distribution: 4 to 12 μm) obtained by gold-plating 10% crosslinked styrene particles.
[0023]
Table 3 shows the compressive strength at the time of 10% displacement of these particles A to K together with the average particle size of each particle. The above compressive strength is a compression test mode MCTM-200 (model name) manufactured by Shimadzu Corporation, with a test load of 3.00 gf and a load rate constant of 2 (0.135 gf / sec). The measurement was performed under the condition of a displacement scale of 5.00 (μm) and an indenter 50 (μmφ).
[0024]
[Table 3]
Figure 0003622927
[0025]
Next, Examples 1 to 3 and Comparative Examples 1 to 11 were coated on a release film so as to have a thickness of 20 μm to produce an anisotropic conductive film. For convenience, the anisotropic conductive films using Examples 1 to 3 and Comparative Examples 1 to 11 are referred to as Examples 1 to 3 and Comparative Examples 1 to 11, respectively.
[0026]
And using the anisotropic conductive film of the said Examples 1-3 and Comparative Examples 1-11, 25 micrometers thick tin on the base material which consists of a polyimide (UPILEX: brand name, Ube Industries, Ltd.) of thickness 75 micrometers. A TAB type terminal plate formed by plating plated copper patterns so that the pitch between patterns was 70 μm and a glass having electrodes made of ITO films formed on one surface were connected. The connection was performed at a temperature of 160 ° C. and a pressure of 30 kg / cm 2 was applied for 15 seconds.
[0027]
Subsequently, the conduction between the TAB terminal plate bonded with the anisotropic conductive films of Examples 1 to 3 and Comparative Examples 1 to 11 and the electrode made of the ITO film as described above, The quality of insulation and adhesion between two adjacent pins was investigated.
[0028]
The above continuity is investigated for the initial conductivity and the conductivity after being left for 1000 hours under the conditions of 85 ° C. and 85RH%. In the initial stage, 5Ω or less is evaluated as ○, 10Ω or more is evaluated as ×, In the evaluation, 10Ω or less was evaluated as ○, and 50Ω or more was evaluated as ×.
[0029]
In addition, the above-mentioned insulation was evaluated by evaluating 10 8 Ω or more as ◯, and evaluating less than 10 8 Ω as x.
[0030]
Furthermore, whether the adhesion state is good or not was evaluated by observing using a 50 × optical microscope. The evaluation was made as ◯ when it was possible, and was evaluated as x when it was impossible. . The results of Examples 1 to 3 are shown in Table 4, and the results of Comparative Examples 1 to 11 are shown in Table 5.
[0031]
[Table 4]
Figure 0003622927
[0032]
[Table 5]
Figure 0003622927
[0033]
As can be seen from the results in Table 4, the compressive strength at 10% displacement of the particles for determining pass / fail in each anisotropic conductive film (particles C) is determined to be conductive particles (particles B and G). less than the compressive strength at 10% displacement, greater than the particle size of the particle size conductive particles for quality determination particles (particles C) (particle B, G), the average of the quality determination particles (particles C) The particle size is 5 μm or more, and is 1.25 to 4 times the average particle size of the conductive particles (particles B and G), and the average particle size of the conductive particles (particles B and G) is 3 μm to 10 μm. Yes, the total blending amount of the conductive particles (particles B and G) and the quality determination particles (particle C) is 1 to 20 parts by weight with respect to 100 parts by weight of the insulating adhesive, and the quality determination particles (particle C). ) conducting particles (particles B with respect to 1 part by weight, carried G) is 10 to 20 parts by weight formulation example 1 In ~ 3, each characteristic is favorable.
[0034]
On the other hand, as can be seen from the results in Table 5, in Comparative Examples 1 and 2, since the average particle diameter of the conductive particles (particles A and B) is small and the compressive strength is large, it is difficult to determine pass / fail. Further, in Comparative Example 3, since the compressive strength of the pass / fail judgment particles (particle E) is large and difficult to be crushed, it is difficult for the conductive particles (particle D) to conduct between the TAB terminal plate and the electrode made of the ITO film. The resistance is high and the conduction characteristics are low. Furthermore, in Comparative Example 4, since the particle size of the conductive particles (particles F) is too small, conduction between the TAB terminal plate and the electrode made of the ITO film cannot be ensured reliably, and the conduction characteristics are low. . Furthermore, in Comparative Example 5, it is difficult to determine the quality because the particle size of the quality determination particles (particles D) is too small.
[0035]
In Comparative Example 6, the insulating property is low because the particle size of the pass / fail judgment particles (particle I) is too large. Furthermore, in Comparative Example 7, the particle size of the conductive particles (particle E) is too large to inhibit insulation, and the insulation characteristics are low. Furthermore, in Comparative Example 8, since the particle size distribution of the conductive particles (particles K) is too wide, the insulation is hindered and the insulating properties are low.
[0036]
Moreover, in the comparative example 9, there are many compounding quantities of the particle | grains for conduction | electrical_connection (particle | grains B), the insulation is inhibited and the insulation characteristic is low. Furthermore, in Comparative Example 10, the blending amount of the pass / fail judgment particles (particles C) is small, and it is difficult to check the pass / fail judgment particles, and pass / fail judgment is difficult. Furthermore, in Comparative Example 11, the blending amount of the pass / fail judgment particles (particles C) is large, which inhibits insulation and lowers the insulation characteristics.
[0037]
【The invention's effect】
As is clear from the above description, in the anisotropic conductive film of the present invention, conductive particles for conduction and particles for quality determination for quality determination of the connection state are dispersed in the insulating adhesive. And the compressive strength at the time of 10% displacement of the particles for pass / fail determination is smaller than the 10% compressive strength of the particles for conduction, and the average particle diameter of the particles for conduction is 3 to 10 μm. Since the particle diameter exceeds 5 μm and is 1.25 to 4 times the average particle diameter of the conductive particles, the conductive particles are blended in an amount of 10 to 20 parts by weight with respect to 1 part by weight of the pass / fail judgment particles. When connecting between electrodes using this, the pass / fail judgment particles are crushed earlier than the conduction particles, making it easier to check the pass / fail judgment particles, and the pass / fail judgment is easily performed. In addition, the pass / fail judgment particles may interfere with the connection between the electrodes. Absent.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of a liquid crystal display device.
[Explanation of symbols]
5 Anisotropic conductive film, 6 Insulating adhesive, 7 Conductive particles

Claims (2)

絶縁性接着剤中に導通のための導通用粒子と接続状態の良否判定のための良否判定用粒子とが分散されており、上記良否判定用粒子の10%変位時における圧縮強度が、上記導通用粒子の10%圧縮強度よりも小さく、上記導通用粒子の平均粒径が3〜10μmであり、上記良否判定用粒子の平均粒径が5μmを超え、且つ上記導通用粒子の平均粒径の1.25〜4倍であり、上記良否判定用粒子1重量部に対して上記導通用粒子が10〜20重量部配合されていることを特徴とする異方性導電膜。Conductive particles for conduction and pass / fail judgment particles for connection pass / fail judgment are dispersed in the insulating adhesive, and the compressive strength at the time of 10% displacement of the pass / fail judgment particles is the above-mentioned conductivity. Less than 10% compressive strength of the common particles, the average particle size of the conductive particles is 3 to 10 μm, the average particle size of the pass / fail judgment particles exceeds 5 μm , and the average particle size of the conductive particles is An anisotropic conductive film characterized in that it is 1.25 to 4 times, and 10 to 20 parts by weight of the conductive particles are blended with respect to 1 part by weight of the quality determination particles. 上記導通用粒子及び上記良否判定用粒子は、ニッケルで被覆されたジビニルベンゼンを金メッキした粒子であることを特徴とする請求項1記載の異方性導電膜。2. The anisotropic conductive film according to claim 1, wherein the conduction particles and the quality determination particles are particles obtained by gold-plating divinylbenzene coated with nickel.
JP1994248992A 1994-10-14 Anisotropic conductive film Expired - Lifetime JP3622927B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1994248992A JP3622927B6 (en) 1994-10-14 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1994248992A JP3622927B6 (en) 1994-10-14 Anisotropic conductive film

Publications (3)

Publication Number Publication Date
JPH08115617A JPH08115617A (en) 1996-05-07
JP3622927B2 true JP3622927B2 (en) 2005-02-23
JP3622927B6 JP3622927B6 (en) 2005-04-27

Family

ID=

Also Published As

Publication number Publication date
JPH08115617A (en) 1996-05-07

Similar Documents

Publication Publication Date Title
KR100539060B1 (en) Anisotropic conductive adhesive and adhesive film
KR102114626B1 (en) Anisotropic conductive film, connection method, and assembly
KR100801401B1 (en) Adhesives and Adhesive Films
KR100861757B1 (en) Connecting material for anisotropically electroconductive connection
KR101082238B1 (en) Connector, manufacture method for connector and anisotropic conductive film to be used therein
JPH11241054A (en) Anisotropically conductive adhesive and film for adhesion
JP3624818B2 (en) Anisotropic conductive connection material, connection body, and manufacturing method thereof
JP2020170706A (en) Conductive material
EP1138737B1 (en) Anisotropically electroconductive adhesive material and connecting method
JP4190424B2 (en) Conductive particles and adhesives
JPH07157720A (en) Film having anisotropic electrical conductivity
JP2001332136A (en) Anisotropic conductive connecting material
JP3418492B2 (en) Anisotropic conductive film
KR20200020578A (en) manufacturing method of circuit member for self-assembled conductive bonding film
JP4572562B2 (en) Film adhesive
US6673858B2 (en) Thermosetting adhesive material
JP3622927B2 (en) Anisotropic conductive film
JP3622927B6 (en) Anisotropic conductive film
JPH08193186A (en) Conductive particle for anisotropically conductive adhesive and anisotropically conductive adhesive containing same
JP3150054B2 (en) Anisotropic conductive film
JPH03129607A (en) Anisotropic conductive film
JPH08188760A (en) Anisotropic electroconductive adhesive and anisotropic electroconductive adhesive sheet using the same
JP2680412B2 (en) Anisotropic conductive film
JP2015135949A (en) Manufacturing method for mounting body, and anisotropic conductive film
JP3480754B2 (en) Method for producing anisotropic conductive film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040713

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

EXPY Cancellation because of completion of term