JP3621391B2 - 光情報再生装置および光情報再生方法 - Google Patents

光情報再生装置および光情報再生方法 Download PDF

Info

Publication number
JP3621391B2
JP3621391B2 JP2002105399A JP2002105399A JP3621391B2 JP 3621391 B2 JP3621391 B2 JP 3621391B2 JP 2002105399 A JP2002105399 A JP 2002105399A JP 2002105399 A JP2002105399 A JP 2002105399A JP 3621391 B2 JP3621391 B2 JP 3621391B2
Authority
JP
Japan
Prior art keywords
modulation
recording medium
optical
optical recording
laser oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002105399A
Other languages
English (en)
Other versions
JP2002342966A (ja
Inventor
和彦 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002105399A priority Critical patent/JP3621391B2/ja
Publication of JP2002342966A publication Critical patent/JP2002342966A/ja
Application granted granted Critical
Publication of JP3621391B2 publication Critical patent/JP3621391B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
光ディスク等の光記録媒体にレーザビームの集光スポットを導く光情報再生装置および光情報再生方法に関するものである。
【0002】
【従来の技術】
光ディスクの記録密度を向上し、大容量化する技術は従来から盛んに検討されてきた。そして、記録密度を向上するために記録・再生用のレーザ光ビームの集光スポット径を縮小することは非常に有効であり、平均面記録密度は、概ね集光スポット径dSPOTの自乗に反比例して増加することが知られている。集光スポット径dSPOTは次式(1)に示すように、使用するレーザの波長λに比例し、集光用の対物レンズの開口数NAに反比例する。
SPOT=k・(λ/NA) ‥‥(1)
但し、比例定数kはレンズに入射する光波の波面分布によって決まる。式(1)の関係から、集光スポット径dSPOTを縮小するために3通りの方法が採られている。1つは、使用するレーザの短波長化、もう1つは、集光させる対物レンズの開口数の増加、あと1つは、集光光学系での超解像の利用、である。
【0003】
以下、集光光学系に超解像を利用して小さな集光スポット径を得る例について説明する。この例は従来いくつか発表されており、例えば、山中等による文献(1)「超解像による光ディスクの高密度記録」(『光学』第18巻、第12号(1989年))や、H.アンドウ(H.Ando)による文献(2)“フェイズ シフティング アポダイザー オブ スリー オア モア ポーションズ” (ジャパニーズ・ジャーナル オブ アプライド フィジックス 第31巻(1992))(“Phase−Shifting Apodizer of Three or More Portions”(Jpn.J.Appl.Phys.,Vol.31(1992)))等がある。これらの文献に述べられている方法は、いずれも同様な原理に基づいて図38乃至図40に示すように集光スポット径を縮小している。
【0004】
図38に従来の超解像光ヘッドの光学系の構成例を示す。同図において、101はレーザ発振器、102はコリメートレンズ、103はビーム整形プリズム、105は対物レンズであり、106は記録媒体、107は遮光板である。
【0005】
次に動作について説明する。光源であるレーザ発振器101からのレーザ光は、コリメートレンズ102とビーム整形プリズム103を介してコリメートされ、平行光になる。平行光になったレーザビーム104は対物レンズ105によって記録媒体106の記録面上に焦点を合わせて集光される。ここで、遮光板107がレーザビーム104中に置かれ、レーザビーム104の一部を遮光している。このときのレーザビーム104の集光スポット径dSPOTは遮光板107の位置と形状、すなわち、幅と長さによって変化する。
【0006】
以下、図39に基づいて超解像による集光スポット径縮小の原理図を説明する。図中に示すように遮光板107の長さがコリメートビーム104のビーム径Dより長い場合、遮光板107の幅をΔWとすると、遮光板の幅方向の集光スポット径dSPOTtは、ビーム径Dに対する遮光板107の幅ΔWの比で決まる。そして、遮光板107の長さ方向の集光スポット径dSPOTrは、ほとんど幅ΔWとは無関係である。ここで、幅ΔWが大きくなるにつれて集光スポットにはサイドロープ108が高く出てくるが、メインローブ109の集光スポット径dSPOTtは小さくなる。
【0007】
図40にΔW/Dと集光スポットdSPOTtの関係を示す。同図に示すようにΔW/Dを大きくとるほど集光スポット径dSPOTtが縮小され、同時にサイドローブの強度が増加することがわかる。サイドローブの増加はクロストーク増大を招くので、あまり大きく許容することができない。ここで、遮光板107を使用しない場合ΔW/D=0となり、このときの集光スポット径をdSPOT0と設定すると、サイドローブの強度をメインローブの0.1倍以下の範囲で許容する場合、集光スポット径dSPOTtを、dSPOT0に比べて10%程度縮小可能なことがわかる。このように、超解像光ヘッドにおいてはコリメートビームの中央付近を遮断することによって、レーザ波長λとレンズ開口数NAを一定のまま、集光スポット径を縮小することが可能である。なお、遮光板107の向きを同一面内で90度回転したときは、集光スポット径dSPOTtはdSPOT0のままになり、dSPOTrの方が縮小される。
【0008】
このように、超解像の原理は、対物レンズ105の入射面上でのコリメートビーム104の波面に変調を与えることによって集光スポットの強度分布を変化させることができる、という収束光波の性質を利用したものである。すなわち、図39に示した遮光板107は、対物レンズ105の入射面上でのコリメートビーム104の振幅分布を、中央付近で0にするように空間変調したことに相当する。従って、遮光された部分のレーザパワーを損失する。
【0009】
また、超解像の原理に基づけば、対物レンズ105の入射面上でのコリメートビーム104の位相分布に変調を与えることによって集光スポットの強度分布を変化させることも可能である。つまり、対物レンズ105の入射面上での位置に応じて適切な位相変移を与えると、集光スポット形状を整形することができる。前述した文献(2)はこの方法をとっている。この場合にはコリメートビーム104は遮光されないので、遮光によるレーザパワーの部分的な損失がない。
【0010】
さらに、透過光に位相変調を与えるために屈折率に分布を持たせる方法が知られている。波長λの光が厚みLの変調板を透過するとき、変調板の2つの部分で透過光の感受する屈折率に差Δnがあると、両部分を通過した光ビームには次式(2)で表わされる位相差Δφが生じる。
Δφ=2π(L/λ)・Δn ‥‥(2)
これにより、透過光の位相が変調されることになる。尚、透過光の位相変調は屈折率差によって光路長に差をつける方法に限らず、変調板の厚みを変化させて光路長に差をつけても同様に透過光の位相変調が可能である。
【0011】
ところで、光ディスクの記録密度は、記録トラックに平行な方向の記録密度(すなわち線記録密度BPI)と、記録トラックに直行する方向の記録密度(すなわちトラック密度TPI)との積で表わされる。従って、光ディスクの面記録密度を向上するためにはBPI,TPIのそれぞれを向上させればよい。そして、図39の従来例はBPIの向上を図るものであった。ここで、例えば図39に示す遮光板107の代りに同心円状で中央部のみ遮光する遮光板を使用すれば、集光スポット形状は同心円状になり、メインローブ109の周囲をサイドローブ108が取り巻く形になる。この場合、メインローブ109の集光スポット径はやはり縮小される。この集光スポットを用いるとBPIとTPIを同時に向上することが可能である。
【0012】
以上に述べたように、超解像による集光スポット径の縮小は記録密度向上に対して有用な技術であり、従来の技術によれば、透過光の振幅や位相を遮光板や位相板など固定的な光学素子で変化させて、一定の集光スポット径を得ることができる。しかしながら、従来の技術では一つの集光装置で超解像のパラメータ、すなわち、対物レンズの入射面上でのコリメートビームの波面に与える変調量を動作中に変更して、光ディスク装置の集光スポット径、もしくは、集光スポット形状を動的に変化させることはできない。
【0013】
【発明が解決しようとする課題】
一方、現在市場では、ISO規格などで標準化された光ディスク規格に準拠した光ディスクが利用されている。これらの多くのディスクは、トラックピッチが1.6(μm)、線記録密度が25(kbit/inch)である。また、大容量光ディスクの開発もすすめられており、従来よりも記録密度を向上した大容量の光ディスクが実用化されるとトラックピッチは縮小され、線記録密度は増加される。従って、情報の記録再生には、従来よりも小さな集光スポット径が必要になり、集光スポット径は短波長レーザや開口数の大きい対物レンズ、あるいは前述した超解像を適用して得られる。このときの集光スポット径は、当然ながら新たに作られた大容量光ディスクのトラックピッチや線記録密度に適合するように設計される。
【0014】
ここで問題となるのは、光ディスク駆動装置の互換性である。すなわち、光ディスク駆動装置に、新たに開発された大容量の光ディスクと従来の規格の光ディスクとの両方を駆動できる機能を持たせる場合、次の問題がある。1つは、トラッキングサーボの問題である。トラッキングのためのサーボセンサ信号は、光ディスク上の案内溝すなわちグループとランドの周期構造による集光スポットの回析現象に基づいて検出される。したがって、狭小トラックピッチに適合するように集光スポットを設計すると、従来の幅広トラックピッチの光ディスクを駆動する場合にトラッキング用のサーボエラー信号を十分に得ることができないという問題点がある。
【0015】
次に、エンボス信号読取り時の問題である。情報が光ディスク上に位相ピットの形で記録されているエンボス信号に対して、信号再生は、集光光が位相ピットで回析を受けることにより、受光される反射光量がピットの有無に応じて変化する、という原理に基づいて行われる。したがって、集光スポット径が位相ピットに対して小さすぎると、回析による変化量が十分でなくなり、エンボス信号の再生振幅が減少して読取り精度の低下や読取り不能が生じるという問題点がある。
【0016】
最後に、書換え型の光ディスクにおける、媒体上の情報を消去する時の問題がある。光磁気媒体や相変化媒体など集光光の熱エネルギーによって記録や消去を行う光ディスクでは、幅広トラックの低密度媒体に既に記録されている信号を小径の集光スポットで消去しようとすると、消去できる幅が狭いために記録マークを全幅にわたって消去できず、消し残りが出る。これは、繰り返し記録するときにクロストークとして残り、再生誤りの頻度が高くなるという問題点がある。
【0017】
この発明は、上記のような問題点を解消するためになされたもので、光情報再生装置および光情報再生方法において、信号の読取り不能状態を回避できる可能性が増加し、データ保存の信頼性の向上を図ることを目的とする。
【0018】
【課題を解決するための手段】
この発明に係る光情報再生装置は、レーザ発振器と当該レーザ発振器から出射される前記レーザビームが集光される光記録媒体との間の光路中にあって、前記集光の状態を変化させる変調手段と、前記光記録媒体の再生時に前記光記録媒体に含まれるセクタの読取りが正常かどうかを検知して検知信号を出力する検知手段と、前記検知手段が読取り不能と検知した場合、前記変調手段に入力する変調信号をあらかじめ定めておいた範囲で変化させ、かつ、所定回数以内でリトライ再生を行う手段と、前記所定回数をオーバーしたときは異常セクタと判断する手段とを備えたものである。
【0019】
この発明に係る光情報再生装置における変調手段は、レーザビームの透過率または位相を変化可能な複数のセグメントからなる変調板を有するものである。
【0020】
この発明に係る光情報再生装置は、変調手段は、セグメントに分割された液晶スイッチである。
【0021】
この発明に係る光情報再生装置は、レーザ発振器の後段に、当該レーザ発振器から出射されるレーザビームをコリメートビームに変換するコリメートレンズを更に備え、該コリメートレンズの後段に変調手段を配設するものである。
【0022】
この発明に係る光情報再生方法は、レーザ発振器からレーザビームを出射し、光記録媒体上に集光された前記レーザビームを用いて当該光記録媒体上より再生信号を得、該得られた再生信号に基づいて前記光記録媒体に含まれるセクタの読取りが正常かどうかを検知し、前記セクタの読取りが不能と検知された場合、前記レーザ発振器と前記光記録媒体との間の光路中に位置し、集光スポットの強度分布の制御を行う変調手段に入力される変調信号をあらかじめ定めておいた範囲で変化させ、かつ、所定回数以内でリトライ再生が行われ、前記所定回数をオーバーしたときは異常セクタと判断するものである。
【0023】
この発明に係る光情報再生方法は、集光の状態の変化を、レーザビームの透過率または位相を変化することによって行うものである。
【0024】
この発明に係る光情報再生方法は、集光の状態の変化を、レーザビームの2次元的に分割された複数の領域における透過率または位相を変化することによって行うものである。
【0025】
この発明に係る光情報再生装置は、レーザ発振器の後段にコリメートレンズを更に備え、前記レーザ発振器から出射されるレーザビームをコリメートビームに変換し、当該コリメートビームの2次元的に分割された複数の領域における透過率または位相を変化することによって集光の状態を変化させるものである。
【0026】
この発明に係る光情報再生装置は、レーザ発振器と当該レーザ発振器から出射される前記レーザビームが集光される光記録媒体との間の光路中にあって、前記集光の状態を変化させる変調手段と、前記光記録媒体のコントロールトラック情報からトラックピッチを読み取り、当該トラックピッチに適合した集光スポット径が設定されるように、前記変調手段を制御する制御手段と、前記光記録媒体の再生時に前記光記録媒体に含まれるセクタの読取りが正常かどうかを検知して検知信号を出力する検知手段と、前記検知手段が読取り不能と検知した場合、前記変調手段に入力する変調信号をあらかじめ定めておいた範囲で変化させ、かつ、所定回数以内でリトライ再生を行う手段と、前記所定回数をオーバーしたときは異常セクタと判断する手段とを備えるものである。
【0027】
この発明に係る光情報再生方法は、レーザ発振器からレーザビームを出射し、光記録媒体上に集光された前記レーザービームを用いて、前記光記録媒体のコントロールトラック情報からトラックピッチを読み取り、当該トラックピッチに適合した集光スポット径が設定されるように、前記レーザ発振器と前記光記録媒体との間の光路中に位置する変調手段を制御し、前記光記録媒体上より再生信号を得、該得られた再生信号に基づいて前記光記録媒体に含まれるセクタの読取りが正常かどうかを検知し、前記セクタの読み取りが不能である場合、前記変調手段に入力する変調信号をあらかじめ定めておいた範囲で変化させ、かつ、所定回数以内でリトライ再生を行い、前記所定回数をオーバーしたときは異常セクタと判断するものである
【0028】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の一形態について説明する。図1はこの発明の実施の一形態による光ビーム集光装置の全体図である。図において110は制御手段、111は変調手段である。尚、図1上で図38に示す従来の光ビーム集光装置と同一類似部材については同一符号を付して説明を省略する。
【0029】
次に動作について説明する。光源であるレーザ発振器101からのレーザ光は、コリメートレンズ102とビーム整形プリズム103を介してコリメートされ、平行光になる。平行光になったコリメートビーム104は対物レンズ105を介して記録媒体(光記録媒体)106の記録面上に焦点を合わせて集光される。ここで、変調手段111がコリメートビーム104中に設けられていて、変調手段111はコリメートビーム104の一部を遮光している。
【0030】
以下、変調手段111について説明する。図2は変調手段111の構成原理の実施の形態1を示す。図において、112は変調手段111のビーム透過面中央部、113はその側部である。そして、中央部(中央部に位置決めされた変調部)112は光透過率が外部からの信号によって制御可能に構成されている。次に動作について説明する。制御手段110を操作して中央部112の光透過率を0、すなわち遮光状態にしたときは、図38の従来の遮光板107と同様に1方向に径を縮小した超解像スポットを得る。また、制御手段110を操作して中央部112の光透過率を1、すなわち素通しにしたときは、超解像を用いない通常の集光スポットを得る。
【0031】
これにより、記録密度の高い媒体に対しては小径の集光スポットを用いて駆動し、記録密度の低い媒体に対しては通常の集光スポットを用いて駆動することができる。従って、従来規格の媒体と大容量媒体を同一の光ヘッドで扱うことができる。
【0032】
実施の形態2.
図3に変調手段111の構成原理の実施の形態2を示す。実施の形態1においては中央部112のみの光透過率を制御可能としたが、実施の形態2においては中央部112の光透過率と側部113,113の光透過率を制御手段110からの信号によって制御可能とした。これにより、実施の形態2は実施の形態1に比べて、中央部112の光透過率を1、側部113,113の光透過率を0とすることにより、通常の集光スポットより1方向の径が大きい集光スポットを得ることができる点が異なる。実施の形態2の変調手段111によれば、超解像を用いずに短波長レーザ等の使用で大容量媒体を駆動する光ヘッドを使用して、記録密度の低い媒体を駆動するときに、光ディスクの半径方向にスポットを拡大して幅広トラックピッチに対応するのに有効である。
【0033】
実施の形態3.
図4に変調手段111の構成原理の実施の形態3を示す。実施の形態2においては光透過率を制御可能としたが、実施の形態3においては変調手段111の中央部112の透過光に対する屈折率と側部(その他の部分に位置決めされた変調部)113,113の透過光に対する屈折率を制御手段110からの信号によって制御可能とした。これにより、実施の形態2の場合透過光の振幅分布に変調を与えたが、実施の形態3では透過光の位相分布に変調を与える。この点で実施の形態3は実施の形態2と異なる。従って、実施の形態3は実施の形態2と同様に集光スポット径の縮小や拡大が可能であり、さらに、実施の形態2では達成することができない遮光によるパワー損失を防止することができる。
【0034】
尚、実施の形態3では、透過光の位相分布に変調を与える場合だけを説明しているが、これに限らず、透過光の振幅分布と位相分布の両方を同時に変調すればより良い集光スポット形状を得られることは、言うまでもない。
【0035】
実施の形態4.
実施の形態1乃至3においては変調手段111を3分割した場合について説明したが、変調手段111の分割パターンは、3分割に限らない。例えば、図5に示す実施の形態4のようにコリメートビーム104と同心円をなす円状の内部141とリング状の外部142に2分割してもよい。このように2分割された内部141及び外部142の光透過率や屈折率を制御手段110で制御して全方向に径を縮小した超解像スポット、あるいは逆に拡大した集光スポットを得ることができる。
【0036】
図6は変調手段111を略X状に4分割する例を示す。この場合、対角する2素子143と145又は144と146に同じ変調量を発生するように制御信号を与えると、1方向には径を縮小し、これと直交する方向には径を拡大した集光スポットを得ることができる。
【0037】
図7は図5及び図6の実施の形態を組み合わせた例を示す。図7の実施の形態によれば、図5,図6の実施の形態において可能とされた変調手段111の制御を組み合わせることができる。従って、図5,図6の実施の形態で述べたような形で集光スポット形状の設定を柔軟に変更できる。従って、図7の実施の形態によれば、各種のトラック密度や記録密度の媒体に最適な条件を得ることができる。
【0038】
実施の形態5.
実施の形態1乃至4においては変調手段111の光透過率や屈折率を制御してコリメートビーム104を変調する場合について説明したが、図8に示す実施の形態5のように変調手段111の変調板211を機械的に回転させてコリメートビーム104を変調してもよい。以下、図8に基づいて実施の形態5を説明する。同図に示すように変調板211は円板状に形成されていて、さらに変調板211の厚みはビーム幅に対して無視できるように設定されている。この変調板211は回転軸211a,211aを介してコリメートビーム104の光軸上に回動自在に支持されている。尚、変調板211の回動は図1に示す制御手段110で制御される。
【0039】
この変調板211は図9に示すように中央部211b及び側部211c,211cから構成されている。中央部211bは光透過率が0に設定されていて、側部211c,211cは光透過率が1に設定されている。従って、変調板211をコリメートビーム104に対して直角に向けたとき、コリメートビーム104の中央部が遮光される。一方、変調板211をコリメートビーム104に対して平行に向けたとき、コリメートビーム104は変調されずに通過する。これにより、実施の形態1と同様の効果を得ることができる。
【0040】
図10に示す変調板211は、図5に示す実施の形態4と同様に分割されていて、光透過率が斜線部211bで0、他の部分211cで1に設定されている。従って、変調板211を回動させることにより、実施の形態4と同様の効果を得る。
【0041】
図11に示す変調手段111は、回転軸211a,211aを共用して変調板212と変調板213を直角に組み合わせたものである。従って、一方の変調板がコリメートビーム104に対して垂直、他方が平行になるように変調手段111の回転角度を切り替えることにより、2種類の超解像効果、あるいは、ビーム径の縮小と拡大を切り替えることができる。
【0042】
このように実施の形態5によれば、記録密度の高い媒体に対しては小径の集光スポットを用いて駆動し、記録密度の低い媒体に対しては通常の集光スポットを用いて駆動することができる。従って、従来規格の媒体と大容量媒体を同一の光ヘッドで扱うことができる。あるいは、記録密度の低い媒体を駆動するときに、光ディスクの半径方向にスポットを拡大して幅広トラックピッチに対応するのに有効である。
【0043】
実施の形態6.
実施の形態5では変調手段111の変調板211を回動させてレーザビームを変調する場合について説明したが、変調手段111を図12に示すように形成してもよい。同図に示すように変調手段221は中空円筒状、または、中空角筒状に形成されている。これらの変調手段221はいづれもコリメートビーム104を遮光する位置に回動自在に支持されている。変調手段221の光透過率の具体的なパターン例を図13と図14に示す。
【0044】
図13に示す変調手段221は実施の形態1に述べた原理と同じ原理で超解像集光スポットを得るものである。すなわち、光透過率が斜線部分で0、他の部分で1に設定されていて、変調板222をコリメートビーム104に対して垂直に向けたとき、ビーム中央部が遮光されて縮小された集光スポット径を得る。また、変調手段221を回動して変調板223をコリメートビーム104に対して垂直に向けたとき、ビームは周辺部分が遮光されて拡大された集光スポット径を得る。
【0045】
図14に示す変調手段221は、円筒の周面に変調パターンをつけたものである。尚、変調手段221の形状は、これらの例には限らない。
【0046】
実施の形態7.
実施の形態5では変調板211を回転軸211a,211aを中心に回動する場合について説明したが、図15に示すように実施の形態5と同様の機能を備えた上で、変調手段231をコリメートビーム104の光軸を中心に回動させる機能を付加してもよい。この場合、実施の形態7の透過光変調パターンを実施の形態5に示した透過光変調パターンと同一に形成すると、実施の形態5と同様にビームの集光スポットを1方向に縮小することができ、さらに変調手段231をコリメートビーム104の光軸を中心に回動して集光スポットをあらゆる方向に縮小することができる。
【0047】
これを利用して、シーク中はディスクの半径方向の集光スポット径を小さくしてサーボ信号を大きく得て、再生中はディスクの周方向の集光スポット径を小さくしてデータ再生信号を大きく得る、という動作が実現できる。
【0048】
実施の形態8.
変調手段を機械的に駆動する光学素子で構成する実施の形態8を図16に示す。同図に示すように実施の形態8の変調手段は2枚の変調板241,242で構成されている。変調板241,242は、ビーム幅に対して無視できる厚みをもち、軸241a,242aを中心に回転する機能を持つ。この場合、変調板241,242の回転軸241a,242aをコリメートビーム104の両側に支持して、変調板241,242の互いの端縁が中央で合うようにする。
【0049】
次に動作について説明する。先ず、変調板241,242の向きをコリメートビーム104に平行にしてコリメートビーム104に変調をかけないモードに設定することができる。また、変調板241,242の一方の半面をコリメートビーム104が透過するように位置決めしてコリメートビーム104に第1の変調をかけるモードに設定することができる。さらに、他方の変調板241,242の他の半面をコリメートビーム104が透過するように位置決めしてコリメートビーム104に第2の変調をかけるモードに設定することができる。このように実施の形態8によれば、少なくとも3つの変調モードを設定できる。尚、2枚の変調板241,242は、所望の集光スポット形状を得るように、同期して回転させてもよく、また独立に回転させてもよい。
【0050】
実施の形態9.
変調手段を機械的に駆動する光学素子で構成する実施の形態9を図17に示す。同図に示すように実施の形態9の変調手段はコリメートビーム104の進行方向に対して垂直方向の面内で1次元または2次元方向に移動する平面状の変調板251を備えている。すなわち、実施の形態9の変調板251は平面移動で変調パターンが選択される。尚、変調板251の光透過率の具体的なパターン例を図18と図19に示す。
【0051】
図18に示す変調板251の例では複数個の変調パターンを1次元方向に並べており、所望の集光スポット形状を得る変調パターンを1次元方向に移動して選択する。各変調パターンについては、従来の超解像技術や前記実施の形態で説明したもの等を使用する。また機構的な構成上、変調パターンの個数を実施の形態5〜8よりも容易に増やせるので、集光スポット形状を多数切り替えるのに有利である。
【0052】
図19に示す変調板251の例では複数個の変調パターンを2次元方向に並べており、所望の集光スポット形状を得る変調パターンを2次元方向に移動して選択する。図19においても図18に示す変調板251と同様に各変調パターンについては、従来の超解像技術や前記実施の形態で説明したもの等を使用する。また機構的な構成上、変調パターンの個数を前記実施の形態5〜8よりも容易に増やせるので、集光スポット形状を多数切り替えるのに有利である。
【0053】
実施の形態10.
変調手段を機械的に駆動する光学素子で構成する実施の形態10を図20に示す。実施の形態5〜9の場合、透過光の振幅でレーザビームを変調したが、実施の形態10は位相に変調をかけるものである。従って、透過光に対する屈折率を空間的に変調する変調板を使用する点を除いて、実施の形態10と実施の形態5〜9とは同様に構成されている。
【0054】
実施の形態5〜9においては、例えば、光透過率が斜線部分で0、他の部分で1として透過光の振幅を変調した。しかしながら、実施の形態10のように斜線部分の透過光の感受する屈折率と他の部分の透過光の感受する屈折率に差をつけて透過光の位相を変調しても、実施の形態5〜9と同様に集光スポット形状を制御することが可能である。
【0055】
尚、実施の形態5〜10のように機械的に変調手段を切り替える方式は機構が単純で設計製作し易く、また、低コスト化を図ることも期待できる。
【0056】
実施の形態11.
図21に示す実施の形態11の変調手段は電気的に駆動する光学素子で構成されたものである。変調手段には複数のセグメント313〜317から成る平面状の変調板311を使用した。この場合、変調板311の各セグメント313〜317は外部に設けられた制御回路312からの電気信号によって独立に制御する。コリメートビーム104は、この変調板311を透過する。変調板(液晶スイッチ)311は周知のように、制御電極への印加電圧により光透過量を変化させることができるので、各セグメント313〜317は、各セグメントを透過するコリメートビーム104の透過光量を変調することができる。従って、変調板311は透過ビームの強度分布に空間変調を与えることができる。
【0057】
変調板311のセグメントの分割パターンの具体的例を図22に示す。変調板311は前述したようにセグメント313〜317に5分割され、セグメント313はコリメートビーム104の中央部に配設され、セグメント314〜317はその周辺部に配設されている。図22には4通りの変調パターン例が示されている。同図において斜線部分はビームを遮光し、その他の部分はビームを透過させるように設定されている。これにより、図22(a)では縮小した集光スポットを得ることができ、図22(b)では拡大した集光スポットを得ることができる。また、図22(c)では縦長の集光スポットを得ることができ、図22(d)では横長の集光スポットを得ることができる。
【0058】
尚、変調板311のセグメントの分割パターンは、この例に限らず、所望の集光スポット形状が得られるように設計することが可能である。また、変調板311の動作は、一般に前記の機械的な手段に比べると切り替え速度が速く、高速な応答が実現できる。
【0059】
実施の形態12.
実施の形態11においては変調板311でレーザビームの透過光量を変調したが、実施の形態12はレーザビームの位相を変調するように構成した。すなわち、実施の形態12の変調手段は複数のセグメント323〜327から成る平面状の位相変調器321を備えている。位相変調器321は、例えばLiNbo3 等の電気光学結晶板と、複数の平行平板電極対で構成される。各電極対は外部に設けられた制御回路322からの電気信号によって独立に制御する。コリメートビーム104はこの変調板321を透過する。電気光学結晶板は周知のように、結晶への印加電界により屈折率を変化させることができるので、各電極対は、占有部分の透過ビームの屈折率に差を与えてその位相を変調し、変調板321全体で透過ビームの位相分布に空間変調を与えることができる。
【0060】
セグメント323〜327の分割パターンの具体的例として、図24に4通りの変調パターンの例を示す。変調板321は図中の斜線部分とその他の部分とで透過光に所要の位相差が生じるように、制御される。これにより、図24(a)では縮小した集光スポットを得ることができ、図24(b)では拡大した集光スポットを得ることができる。また、図24(c)では縦長の集光スポットを得ることができ、図24(d)では横長の集光スポットを得ることができる。
【0061】
実施の形態13.
図25に複数のセグメント333〜335から成るバルク状の位相変調器331を備えた位相変調手段を示す。位相変調器331は、たとえばKDP等の電気光学結晶板と、平行平板電極対で構成される。電極対は外部の制御回路332からの電気信号によって独立に制御する。コリメートビーム104は、この変調器331を透過する。
【0062】
セグメント333〜335の分割の具体的例として、3分割した例を図26に示す。中央部分のセグメント333と両端部分の2つのセグメント334に逆向きの電圧Vを与えて屈折率に差をつける。これにより、セグメント333〜335内を透過するコリメートビーム104に対する屈折率差により位相を変調し、位相変調手段の出射面での透過ビームの位相分布に空間変調を与える。これにより、実施の形態3と同様の動作原理により、集光スポット形状を制御することができる。
また別の例として、位相変調手段を中央部の1セグメント333だけで構成することも可能である。この場合、両側部のセグメント334,334は屈折率1の空気である。
【0063】
尚、実施の形態11〜13のように電気的な手段によって切り替える方式は、一般的にみて実施の形態5〜10の機械的な手段に比べると切り替え速度が速く、高速な応答が期待できる。また、この方式は可動部分がないため、高い信頼性も期待できる。
【0064】
実施の形態14.
以下に実施の形態1〜13のビーム集光装置が搭載された光ディスク装置の集光スポット切り替え方法を説明する。現在実用化されているISO規格光ディスクのトラックピッチは、前述したように1.6μmであり、次世代のISO規格として検討がすすんでいる光ディスクのトラックピッチは、1.3〜1.4μmである。また、さらに将来開発されるものとして、トラックピッチが1.2μmや1.0μmや0.8μmの光ディスクが考えられる。
【0065】
このようにトラックピッチが異なる光ディスクを同一の光ディスク装置で駆動する場合のアルゴリズムを図27に示す。先ず、光ディスクを光ディスク装置に装着して起動する(ステップ399)。次に、ディスク回転数を安定化し(ステップ400)、レーザを点灯する(ステップ401)。次いでフォーカスサーボを引き込み(ステップ402)、引き込み完了後コントロールトラックPEPエリアへ移動してPEPのコントロールトラック情報を読み取る(ステップ403)。この情報にはトラックピッチに関する情報も含まれている。
次に、読み取られたトラックピッチの値にしたがって集光スポット径の切り替えを行う。これにより、光ディスク装置はトラックピッチに適合した集光スポット径に設定される(ステップ404)。続いて、従来どおりトラッキングサーボを引き込み(ステップ405)。記録再生可能な状態に入る(ステップ406)。
【0066】
ここで、光ディスク装置に図5に示す実施の形態4の変調手段を使用した場合の集光スポット径のモード設定方法を図28に基づいて説明する。先ず、PEP情報から、駆動したディスクのトラックピッチが1.0μmであると判明したときは、変調手段111でコリメートビーム中央部分を遮光して集光スポット径を縮小する。また、駆動したディスクのトラックピッチが1.6μmのときは変調手段111でコリメートビーム周辺部分を遮光して集光スポット径を拡大する。さらに、駆動したディスクのトラックピッチが1.2μmのときは変調手段111で遮光せず、従来どおりの集光スポット径を得る。
【0067】
以上に示す方法でトラックピッチに応じて集光スポット径を切り替えることにより、各種トラックピッチの光ディスクを1台の光ディスク装置で駆動できるようになり、規格の異なる光ディスクへの互換性を十分な性能と信頼性をもって確保することが可能になる。
【0068】
実施の形態15.
実施の形態15の集光スポット切り替え方法を説明するアルゴリズムを図29に示す。実施の形態15はステップ399で光ディスクを起動し、ステップ404でトラックピッチに応じた適切な集光スポット径に切り替える処理までは同じである。しかしながら、実施の形態15はステップ404の後、ステップ410でトラッキングサーボセンサ信号振幅をモニタ回路421(図30参照)でモニタし、振幅が最大になるように変調手段111における変調量を調整する。
【0069】
前述したセンサ信号振幅のモニタ回路421を図30に示す。光ディスク装置は、ステップ410でトラッキングサーボ信号最適化の自動調整によってトラッキングに最適な集光スポット径に設定した後、ステップ405で従来どおりトラッキングサーボを引き込み、記録再生可能な状態に入る(ステップ406)。なおトラッキングサーボ信号として、トラック横断信号をモニタすることも、個別のセンサ信号をモニタすることも、その差をとったトラッキングエラー信号をモニタすることも可能である。
【0070】
実施の形態15に示す処理を実行することにより、光ディスク媒体と光ディスク装置の組み合わせ毎に異なるトラッキングサーボ信号特性のばらつきを吸収し、サーボ安定性マージンを拡大することが可能になる。さらに、トラッキングエラー信号波形が最適化されると、トラックシーク時のミスカウントを防止することにも効果があり、平均シーク時間の短縮とシーク信頼性の向上も実現される。
【0071】
実施の形態16.
図31に実施の形態16の集光スポット切り替え方法を説明したアルゴリズムを示す。実施の形態16はステップ399で光ディスクを起動し、ステップ405でトラッキングサーボを引き込むまでは同じである。しかしながら実施の形態16はステップ405の後、ステップ411でエンボス信号の再生信号振幅をモニタ回路431(図32参照)でモニタし、最高周波数の再生信号の振幅が最大になるように変調手段111における変調量を調整する。前述した再生信号振幅のモニタ回路431を図32に示す。光ディスク装置は、ステップ411で再生信号最適化の自動調整によってデータ再生に最適な集光スポット径に設定した後、ステップ406で従来どおりの記録再生可能な状態に入る。
【0072】
ここで、実施の形態11に示した変調手段を使用すれば、変調手段で集光スポット形状を調整する際、トラッキングサーボ信号と再生信号それぞれの振幅を独立に調整可能となる。そして、実施の形態16に示す処理を実行することにより、光ディスク媒体と光ディスク装置の組み合わせ毎に異なるデータ再生信号特性のばらつきを吸収し、再生信号検出マージンを拡大することが可能になる。この結果、記録密度やトラックピッチの異なる、多世代、多種類の規格の光ディスクに対して信号の読取り精度を向上することが可能になり、誤りが少なく信頼性の高いデータ再生が実現される。
【0073】
実施の形態17.
実施の形態14〜16においては、コントロールトラック情報に基づいて集光スポットに切り替える場合について説明したが、これとは別に、光ディスクの駆動状態に応じて集光スポットを切り替えることによって、光ディスク装置の性能向上が可能である。
【0074】
図33に光ディスク駆動状態に対応した集光スポット511の形状とトラック512の寸法の関係を示す。シーク時には、シークに最適なトラッキングサーボ信号すなわちトラック横断信号が得られる集光スポット幅になるように、実施の形態15に示したような方法等で変調手段111の変調量を設定する。また、再生時には、最適な再生信号が得られる集光スポット長および幅になるように、実施の形態16に示したような方法等で変調手段111の変調量を設定する。
【0075】
さらに、記録時はスポット径を絞らない。ここで、変調手段111でコリメートビームに振幅変調をかける方式では、既に指摘したようにレーザパワーの損失が大きい。一方、光ディスク装置では、半導体レーザの最大出力パワーの限界によってデータ転送速度(すなわちディスク回転数)の上限が制限され、あるいは、記録媒体で使用可能な記録パワーの上限が抑えられる。これにより、レーザパワーの損失は性能上問題が大きい。したがって記録時や消去時には、できれば振幅変調をかけずに駆動するのが望ましい。ところで、記録時の集光スポット径は、再生時ほど縮小しなくとも動作可能である。本実施の形態に示す方法によれば、再生時には集光スポット径を縮小しつつ記録時には振幅変調をかけない動作が可能になった。
消去時には記録マークの存在する記録トラック幅一杯まで集光スポット幅を拡大する。
【0076】
以上に示した方法によって、実施の形態17は記録密度やトラックピッチの異なる多世代、多種類の規格の光ディスクに対して、信号の読取り精度の向上による誤りの少ない信頼性の高いデータ再生と、消し残りの防止によるクロストークのない信頼性の高いデータ記録を実現した。また、実施の形態17によれば、高密度記録データの再生に超解像技術を使用しながら高出力の記録パワーも可能とした。これにより、規格の異なる多種の光ディスクへの互換性をさらに強化することが可能になる。
【0077】
実施の形態18.
実施の形態18は集光スポット切り替え機能を適用して性能を向上させる点で実施の形態17と共通する。しかしながら、実施の形態18はデータ再生時に誤りが多く再生不能になったセクタに対して、再度読出すリトライ処理がなされるときに集光スポット形状を変化させる方法を採用している点で実施の形態17と相違する。
【0078】
図34に実施の形態18のアルゴリズムを示す。図34のアルゴリズムによれば、ステップ415でセクタ読取りが実行され、ステップ416でセクタ読取りが正常でないと判定された場合、ステップ417で集光スポット形状が変更され、ステップ415で再度セクタ読取りが実行される。このように、実施の形態18は最適と判断した集光スポットを得られるように設定していた変調信号を、あらかじめ定めておいた範囲で変化させ、リトライ再生を行う。これにより、信号の読取り不能状態を回避できる可能性が増加し、データ保存の信頼性の向上を図ることができる。
【0079】
実施の形態19.
図36には実施の形態14で示したコントロールトラックPEPエリアの記録ピット531の形状とこの上を走査する集光スポット511、および、このときの再生信号波形を示す。
【0080】
情報は、非常に低密度で記録されており、記録ピット531のある領域と全く無い領域が非常に長い間隔で交替するような方式で符号化されている。記録ピット531は直径0.4μm、周期0.8μm程度で規則的に並んでいる。そして、従来は記録ピット531に比べて大きな径の集光スポットで再生していたので問題がなかった。しかしながら、集光スポット511が縮小されると、記録ピットのある領域を再生していながら、丁度集光スポット511が記録ピット列の間を通過している時は再生信号が得られず、再生データが誤まるという問題がある。
【0081】
そこで実施の形態19では、図35のアルゴリズムに示すようにステップ418でPEPエリア再生時に集光スポット径を拡大した。この結果、いかなる光ディスクに対しても、コントロールトラックPEPエリアの読取り精度を向上することが可能になり、平均駆動開始時間が短縮された。PEPエリアは光ディスクの最も基本的なパラメータを収容した部分であり、ディスク起動時にまず、読取る部分である。その読取りの信頼性を向上できる効果は大きい。
【0082】
実施の形態20.
実施の形態20は集光スポット径を縦横両方向に拡大して、集光するための対物レンズ105(図1参照)の開口数NAを等価的に減少させるものである。周知のごとくレンズによる集光系では、開口数NAが大きくなるほど焦点深度が浅くなる。
【0083】
一般に光ディスク装置のフォーカス制御系においては、開口数NAが大きくなり焦点深度が浅くなるほど、ディスクの面ぶれやディスク面の傾斜に対するフォーカスサーボの追従能力が落ちる。特に、フォーカス引き込み時は、これらの面ぶれを始めとする外乱に弱く、フォーカス引き込み失敗が起こりやすい。失敗時はリトライすることになり、起動時間が延びる。
【0084】
そこで実施の形態20では、図37のアルゴリズムに示すように、フォーカス引き込み開始(ステップ402)以前に集光スポット径を縦横両方向に拡大するように設定し(ステップ419)、その状態でフォーカス引き込みを完了させるようにした。そのあと実施の形態14〜16にしたがって集光スポットを設定する(ステップ420)。この結果、フォーカス引き込みの安定性が向上することになり、平均駆動開始時間が短縮された。また、いかなる光ディスクに対しても、フォーカス引き込み範囲を拡大することが可能になるので、ディスクの受容範囲を拡大することができ、互換性、汎用性の向上にもなる。
【0085】
【発明の効果】
以上のように、この発明によれば、レーザビ一ムを出射するレーザ発振器と、前記レーザ発振器と当該レーザ発振器から出射される前記レーザビームが集光される光記録媒体との間の光路中にあって、前記集光の状態を変化させる変調手段と、前記光記録媒体の再生時に前記光記録媒体に含まれるセクタの読取りが正常かどうかを検知して検知信号を出力する検知手段とを備え、前記検知信号に基づいて前記変調手段を制御して前記集光の状態を変化させるように構成したので、信号の読取り不能状態を回避できる可能性が増加し、データ保存の信頼性の向上を図ることができる効果がある。
【図面の簡単な説明】
【図1】この発明に係る集光スポット形状可変型光ビーム集光装置の全体図である。
【図2】この発明に係る透過率可変変調板の平面図である。
【図3】この発明に係る空間振幅変調する変調手段の平面図である。
【図4】この発明に係る空間位相変調する変調手段の平面図である。
【図5】この発明に係る変調手段の空間変調パターンの平面図である。
【図6】この発明に係る変調手段の空間変調パターンの平面図である。
【図7】この発明に係る変調手段の空間変調パターンの平面図である。
【図8】この発明に係る回転変調板を用いた空間振幅変調を説明した説明図である。
【図9】この発明に係る回転変調板の平面図である。
【図10】この発明に係る回転変調板の平面図である。
【図11】この発明に係る2面回転変調板の平面図,正面図,側面図である。
【図12】この発明に係る筒状回転変調板を用いた空間振幅変調を説明した説明図である。
【図13】この発明に係る角筒状回転変調板の斜視図である。
【図14】この発明に係る円筒状回転変調板の斜視図である。
【図15】この発明に係る2軸回転変調板の斜視図である。
【図16】この発明に係る2枚1組の回転変調板の斜視図である。
【図17】この発明に係る並進移動変調板を用いた空間振幅変調を説明した説明図である。
【図18】この発明に係る1次元並進移動用変調板の平面図である。
【図19】この発明に係る2次元並進移動用変調板の平面図である。
【図20】この発明に係る変調手段の位相変調のかけ方を説明した説明図である。
【図21】この発明に係る平面状の液晶スイッチを用いた空間振幅変調を説明した説明図である。
【図22】この発明に係る液晶スイッチの制御法を説明した説明図である。
【図23】この発明に係る平面状位相変調器を用いた空間位相変調を説明した説明図である。
【図24】この発明に係る平面状位相変調器の制御法を説明した説明図である。
【図25】この発明に係るバルク状位相変調器を用いた空間位相変調を説明した説明図である。
【図26】この発明に係るバルク状位相変調器の側面図である。
【図27】この発明に係る多種トラックピッチに対する互換性確保処理法を説明したアルゴリズムを示す図である。
【図28】この発明に係るトラックピッチと集光スポット径の設定法を説明した説明図である。
【図29】この発明に係るトラッキング用の集光スポット最適化処理法を説明したアルゴリズムを示す図である。
【図30】この発明に係るトラッキングサーボセンサ信号の振幅モニタ回路のブロック図である。
【図31】この発明に係る信号再生用の集光スポット最適化処理法を説明したアルゴリズムを示す図である。
【図32】この発明に係る再生信号の振幅モニタ回路のブロック図である。
【図33】この発明に係る光ディスク駆動状態別の集光スポット形状制御を説明した説明図である。
【図34】この発明に係る集光スポット径の調節による再生リトライ処理能力向上法を説明したアルゴリズムを示す図である。
【図35】この発明に係る集光スポット径の調節によるPEP読取り能力向上処理法を説明したアルゴリズムを示す図である。
【図36】この発明に係るPEP読取り時の集光スポットと記録ピットの位置関係を説明した説明図である。
【図37】この発明に係る集光スポット径の調節によるフォーカス引き込み安定化処理法を説明したアルゴリズムを示す図である。
【図38】従来の超解像光ビーム集光装置の全体図である。
【図39】従来の超解像による集光スポット径縮小の原理を説明した説明図である。
【図40】従来の遮光板幅と集光スポット径の関係を説明した説明図である。
【符号の説明】
101 レーザ発振器、102 コリメートレンズ、104 コリメートビーム、105 対物レンズ、106 記録媒体(光記録媒体)、110 制御手段、111,221,231 変調手段、211,212,213,241,242,251,311,321 変調板、112,211b 中央部(中央部に位置決めされた変調部)、113,211c 側部(その他の部分に位置決めされた変調部)、313,314,315,316,317,323,324,325,326,327 セグメント。

Claims (10)

  1. レーザビ一ムを出射するレーザ発振器と、
    前記レーザ発振器と当該レーザ発振器から出射される前記レーザビームが集光される光記録媒体との間の光路中にあって、前記集光の状態を変化させる変調手段と、
    前記光記録媒体の再生時に前記光記録媒体に含まれるセクタの読取りが正常かどうかを検知して検知信号を出力する検知手段と、
    前記検知手段が読取り不能と検知した場合、前記変調手段に入力する変調信号をあらかじめ定めておいた範囲で変化させ、かつ、所定回数以内でリトライ再生を行う手段と、
    前記所定回数をオーバーしたときは異常セクタと判断する手段とを備えることを特徴とする光情報再生装置。
  2. 変調手段は、レーザビームの透過率または位相を変化可能な複数のセグメントからなる変調板を有することを特徴とする請求項1に記載の光情報再生装置。
  3. 変調手段は、セグメントに分割された液晶スイッチであることを特徴とする請求項1又は請求項2記載の光情報再生装置。
  4. レーザ発振器の後段に、当該レーザ発振器から出射されるレーザビームをコリメートビームに変換するコリメートレンズを更に備え、該コリメートレンズの後段に変調手段を配設する請求項1から請求項3のうちのいずれか1項記載の光情報再生装置。
  5. レーザ発振器からレーザビームを出射し、
    光記録媒体上に集光された前記レーザビームを用いて、当該光記録媒体上より再生信号を得、
    該得られた再生信号に基づいて前記光記録媒体に含まれるセクタの読取りが正常かどうかを検知し、
    前記セクタの読取りが不能と検知された場合、前記レーザ発振器と前記光記録媒体との間の光路中に位置し、集光スポットの強度分布の制御を行う変調手段に入力される変調信号をあらかじめ定めておいた範囲で変化させ、かつ、所定回数以内でリトライ再生が行われ、
    前記所定回数をオーバーしたときは異常セクタと判断される
    ことを特徴とする光情報再生方法。
  6. 集光の状態の変化を、レーザビームの透過率または位相を変化することによって行うことを特徴とする請求項5記載の光情報再生方法。
  7. 集光の状態の変化を、レーザビームの2次元的に分割された複数の領域における透過率または位相を変化することによって行うことを特徴とする請求項6記載の光情報再生方法。
  8. レーザ発振器の後段にコリメートレンズを更に備え、前記レーザ発振器から出射されるレーザビームをコリメートビームに変換し、当該コリメートビームの2次元的に分割された複数の領域における透過率または位相を変化することによって集光の状態を変化させることを特徴とする請求項5から請求項7のうちのいずれか1項記載の光情報再生方法。
  9. レーザビ一ムを出射するレーザ発振器と、
    前記レーザ発振器と当該レーザ発振器から出射される前記レーザビームが集光される光記録媒体との間の光路中にあって、前記集光の状態を変化させる変調手段と、
    前記光記録媒体のコントロールトラック情報からトラックピッチを読み取り、当該トラックピッチに適合した集光スポット径が設定されるように、前記変調手段を制御する制御手段と、
    前記光記録媒体の再生時に前記光記録媒体に含まれるセクタの読取りが正常かどうかを検知して検知信号を出力する検知手段と、
    前記検知手段が読取り不能と検知した場合、前記変調手段に入力する変調信号をあらかじめ定めておいた範囲で変化させ、かつ、所定回数以内でリトライ再生を行う手段と、
    前記所定回数をオーバーしたときは異常セクタと判断する手段とを備えることを特徴とする光情報再生装置。
  10. レーザ発振器からレーザビームを出射し、
    光記録媒体上に集光された前記レーザービームを用いて、前記光記録媒体のコントロールトラック情報からトラックピッチを読み取り、
    当該トラックピッチに適合した集光スポット径が設定されるように、前記レーザ発振器と前記光記録媒体との間の光路中に位置する変調手段を制御し、
    前記光記録媒体上より再生信号を得、
    該得られた再生信号に基づいて前記光記録媒体に含まれるセクタの読取りが正常かどうかを検知し、
    前記セクタの読み取りが不能である場合、前記変調手段に入力する変調信号をあらかじめ定めておいた範囲で変化させ、かつ、所定回数以内でリトライ再生を行い、
    前記所定回数をオーバーしたときは異常セクタと判断されることを特徴とする光情報再生方法。
JP2002105399A 2002-04-08 2002-04-08 光情報再生装置および光情報再生方法 Expired - Lifetime JP3621391B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002105399A JP3621391B2 (ja) 2002-04-08 2002-04-08 光情報再生装置および光情報再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105399A JP3621391B2 (ja) 2002-04-08 2002-04-08 光情報再生装置および光情報再生方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP09684693A Division JP3770921B2 (ja) 1993-03-31 1993-03-31 光ディスク装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002130827A Division JP2002373443A (ja) 2002-05-02 2002-05-02 光情報再生装置および光情報再生方法

Publications (2)

Publication Number Publication Date
JP2002342966A JP2002342966A (ja) 2002-11-29
JP3621391B2 true JP3621391B2 (ja) 2005-02-16

Family

ID=19193799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105399A Expired - Lifetime JP3621391B2 (ja) 2002-04-08 2002-04-08 光情報再生装置および光情報再生方法

Country Status (1)

Country Link
JP (1) JP3621391B2 (ja)

Also Published As

Publication number Publication date
JP2002342966A (ja) 2002-11-29

Similar Documents

Publication Publication Date Title
JP3770921B2 (ja) 光ディスク装置
JP2733399B2 (ja) 光ピックアップ装置、及びホログラム素子
US7768881B2 (en) Medium, apparatus, and method of recording optical-information
JPS5918771B2 (ja) 回折トラツクに沿つて記録したしたパルス時間変調波の再生装置
CN102385874B (zh) 再现装置和再现方法
EP0313394B1 (en) Method and apparatus for recording and reproducing information
JP5017957B2 (ja) ホログラム記録再生装置およびホログラム記録再生方法
JPH07192287A (ja) 光ピックアップ装置
JPH10289475A (ja) 露光装置
JP3621391B2 (ja) 光情報再生装置および光情報再生方法
JPH06208739A (ja) 光磁気ディスク及び該ディスクの着磁方法
KR20050085346A (ko) 타원형 스폿 프로파일을 사용하여 기록형 광 기록매체에정보를 기록하는 장치 및 방법
US6031810A (en) Using two laser sources on a magneto-optical recording medium for preventing light intensity shortage
JPH11110791A (ja) 光情報記録媒体の再生ピックアップ装置
KR101013765B1 (ko) 광 픽업장치 및 광 디스크장치와 광 기록 또는 재생 방법
JPS61214149A (ja) 光デイスクおよびその製造方法
JP2002373443A (ja) 光情報再生装置および光情報再生方法
JP2002342976A (ja) 光情報再生装置および光情報再生方法
JP2006509320A (ja) 長円形のスポットプロフィールを使用して追記型の光記録担体に情報を記録するための装置及び方法
JP3736812B2 (ja) 光学式ピックアップ装置
JPH06243510A (ja) 光ディスク及び光ディスク原盤製造装置
JP4320915B2 (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP3964209B2 (ja) 光ピックアップ装置及び光ディスク装置
JPH0540945A (ja) 光学式情報記録再生装置
JPH0827944B2 (ja) 光ディスクの製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9