JP3618150B2 - 半導体装置及びその製造方法 - Google Patents
半導体装置及びその製造方法 Download PDFInfo
- Publication number
- JP3618150B2 JP3618150B2 JP26148795A JP26148795A JP3618150B2 JP 3618150 B2 JP3618150 B2 JP 3618150B2 JP 26148795 A JP26148795 A JP 26148795A JP 26148795 A JP26148795 A JP 26148795A JP 3618150 B2 JP3618150 B2 JP 3618150B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- silicon
- film
- bond
- silanol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Formation Of Insulating Films (AREA)
Description
【発明の属する技術分野】
本発明は半導体装置、特に金属層が形成された半導体基板の上にSOG膜よりなる絶縁膜を有する半導体装置及びその製造方法に関するものである。
【0002】
【従来の技術】
低誘電率のSOG膜よりなる従来の絶縁膜は、図10に示すような構造を持つ有機シラノール縮合体粒子よりなる集合層である。すなわち、有機シラノール縮合体微粒子は、シリコンとアルキル基との結合(有機部)がシリコンと酸素との結合(無機部)中に分子レベルで均一に分散していると共に、その表面にシラノール基(Si−OH)を有している。尚、図10において、RはCH3 、C2 H5 、C6 H5 等のアルキル基を示している。
【0003】
従来の絶縁膜は次のようにして形成される。すなわち、アルキル基を置換基として有するTEOS誘導体(シリコン−アルキル基結合がシリコン−酸素結合中に分子レベルで略均一に分散してなるもの)を加水分解した後に脱水縮合させることにより得られるシリカゾル溶液を半導体基板上に塗布した後、該シリカゾル溶液を熱処理することにより形成される。
【0004】
【発明が解決しようとする課題】
ところが、従来のSOG膜よりなる絶縁膜を構成する有機シラノール縮合体微粒子は、前述のように、シリコン−アルキル基結合(有機部)がシリコン酸素結合(無機部)中に分子レベルで均一に分散した構造であって、シリコンとアルキル基との結合はシリコンと酸素との結合よりも不安定である。このため、以下に説明するような種々の問題が発生するが、その前提として、金属層を有する半導体基板上に形成されたSOG膜よりなる絶縁膜にコンタクトホールを形成するプロセスについて説明する。
【0005】
まず、図11(a)に示すように、半導体基板100の上に形成されたアルミニウムよりなる第1層の金属配線101の上に全面に亘ってCVD法により膜厚50nmの第1層のSiO2 膜102を堆積する。次に、図11(b)に示すように、第1層のSiO2 膜102の上に前記のSOG膜よりなる層間絶縁膜103を堆積した後、該層間絶縁膜103の上にCVD法により膜厚100nmの第2層のSiO2 膜104を堆積する。
【0006】
次に、図11(c)に示すように、第2層のSiO2 膜104の上に有機物よりなるレジストパターン105を形成した後、図12(a)に示すように、レジストパターン105を用いて第1層のSiO2 膜102、層間絶縁膜103及び第2層のSiO2 膜104に対してエッチングを行なってコンタクトホール106を形成する。
【0007】
次に、図12(b)に示すようにレジストパターン105を酸素プラズマにより除去する。
【0008】
ところが、前述したようにシリコンとアルキル基との結合はシリコンと酸素との結合よりも不安定であるため、シリコン−アルキル基結合の酸化分解が層間絶縁膜103におけるコンタクトホール106の側壁に深く進行する。このため、図12(b)に示すように、層間絶縁膜103におけるコンタクトホール106に露出した部分にサイドエッチングが生じるという問題が発生する。
【0009】
次に、コンタクトホール106に第2層の金属配線107(図13を参照)を埋め込む際に行なう表面熱処理の熱により、図12(c)に示すように、層間絶縁膜103から水分が発生する。このため、層間絶縁膜103が吸湿して誘電率が増加したり、アルミニウムよりなる第1層の金属配線101の表面が酸化され、コンタクト抵抗の上昇を招くという問題がある。
【0010】
次に、図13に示すように、第2層の金属配線107を堆積すると、前述したサイドエッチングに起因して、第2層の金属配線107にボイド108が発生して、第2層の金属配線107が薄膜化したり又は断線したりするという問題が発生する。
【0011】
前記に鑑み、本発明は、レジストパターンを除去する際の酸素プラズマによってサイドエッチングされ難いと共に加熱されても水分を発生し難い絶縁膜を提供し、これにより、半導体装置における上層の金属配線の薄膜化及び断線を防止し、下層の金属配線と上層の金属配線との間のコンタクト抵抗の低減を図り、吸湿による誘電率の増加を抑制することを目的とする。
【0014】
【課題を解決するための手段】
請求項1の発明が講じた解決手段は、半導体基板上に形成された金属膜と、該金属膜の周囲に形成された絶縁膜とを備えた半導体装置を前提とし、前記絶縁膜は、フッ素とシリコンとの結合及び有機基とシリコンとの結合のうちの少なくとも1つの結合を含むシラノール縮合体微粒子が酸素とシリコンとの結合のみを含むシラノールにより化学修飾されたカプセル状粒子の集合層よりなる構成とするものである。
【0015】
請求項1の構成により、カプセル状粒子は、フッ素とシリコンとの結合及び有機基とシリコンとの結合のうちの少なくとも1つの結合を含むシラノール縮合体微粒子が酸素とシリコンとの結合のみを含むシラノールにより化学修飾された構造を有しているため、シラノール縮合体微粒子は酸素プラズマに直接に触れないと共に、表面の酸素とシリコンとの結合のみを含むシラノールは酸素プラズマにより酸化分解されないので、絶縁膜が酸化分解される事態を回避することができると共に絶縁膜から水分が発生し難い。また、絶縁膜はフッ素とシリコンとの結合及び有機基とシリコンとの結合のうちの少なくとも1つの結合を含むシラノール縮合体微粒子よりなるため、絶縁膜の密度が低下して比誘電率が小さくなる。
【0022】
請求項2の発明は、請求項1の発明に係る半導体装置の製造方法であって、フッ素とシリコンとの結合及び有機基とシリコンとの結合のうちの少なくとも1つの結合を含むシラノール縮合体微粒子を含むシリカゾル溶液に、シリコンとアルキル基との結合を含まないシリコンアルコキシドを混合して混合シリカゾル溶液を得る工程と、前記混合シリカゾル溶液を金属膜が形成された半導体基板上に供給した後、該半導体基板に熱処理を施すことにより、前記シラノール縮合体微粒子が酸素とシリコンとの結合のみを含むシラノールにより化学修飾されたカプセル状粒子の集合層よりなる絶縁膜を形成する工程とを備えている構成とするものである。
【0023】
請求項2の構成により、フッ素とシリコンとの結合及び有機基とシリコンとの結合のうちの少なくとも1つの結合を含むシラノール縮合体微粒子を含むシリカゾル溶液に、シリコンとアルキル基との結合を含まないシリコンアルコキシドを混合して得た混合シリカゾル溶液を半導体基板上に供給した後、該半導体基板に熱処理を施すと、半導体基板上にはシラノール縮合体微粒子が酸素とシリコンとの結合のみを含むシラノールにより化学修飾されたカプセル状粒子の集合層が形成される。
【0024】
請求項3の発明は、請求項2の構成に、前記シリコンアルコキシドは、テトラエトキシシラン、テトラメトキシシラン、トリエトキシシラン、トリメトキシシラン及びトリエトキシフルオロシランのうちの少なくとも1つを含む構成を付加するものである。
【0037】
【発明の実施の形態】
本発明の第1の実施形態に係る半導体装置における絶縁膜は、図1に示すように、有機シラノール縮合体微粒子1と無機シラノール縮合体微粒子2とが略均一に混在してなるバルク状の複合化層である。尚、有機シラノール縮合体微粒子1は図10に示したものと同様の分子構造を有しており、無機シラノール縮合体微粒子2は、図4に示すように、シリコン−アルキル基結合を有しておらずシリコン−酸素結合のみからなり表面にシラノール基(Si−OH)を有している。
【0038】
第1の実施形態によると、絶縁膜の最表面に位置する有機シラノール縮合体微粒子1においては、発明が解決しようとする課題の項で説明したように、酸素プラズマによりシリコン−アルキル基結合が酸化分解される。ところが、絶縁膜における最表面に位置する有機シラノール縮合体微粒子1の内部側には無機シラノール縮合体微粒子2が存在しており、該無機シラノール縮合体微粒子2はシリコン−酸素結合であるために酸素プラズマによって酸化分解されない。このため、酸素プラズマによる酸化分解は絶縁膜中に深く進行しない。
【0039】
本発明の第2の実施形態に係る半導体装置における絶縁膜は、図2に示すように、有機基とシリコンとの結合を含む有機シラノール縮合体微粒子3が酸素とシリコンとの結合のみを含む無機シラノール4に化学修飾されてなるカプセル状粒子5が多数個集合してなる集合層である。
【0040】
第2の実施形態によると、カプセル状粒子5は、有機シラノール縮合体微粒子3が無機のシラノール4により覆われた構造を有しているため、有機シラノール縮合体微粒子3が酸素プラズマによって酸化分解されない。このため、絶縁膜は酸素プラズマによって酸化分解されない。
【0041】
本発明の第3の実施形態に係る半導体装置における絶縁膜は、図3に示すように、酸素とシリコンとの結合のみを含む無機シラノール縮合体微粒子6が有機基とシリコンとの結合を含む有機シラノール7により化学修飾されてなるカプセル状粒子8が多数個集合してなる集合層である。
【0042】
第3の実施形態によると、絶縁膜の最表面に位置するカプセル状粒子8においては、有機のシラノール7が酸素プラズマにより酸化分解されるが、カプセル状粒子8の内部には無機シラノール縮合体微粒子6が存在しており、該無機シラノール縮合体微粒子6は酸素プラズマによって酸化分解されないので、酸素プラズマによる酸化分解は絶縁膜中に進行しない。
【0043】
尚、第1又は第2の実施形態における有機シラノール縮合体微粒子に代えて、図5に示すようなフッ素とシリコンとの結合を含むフッ化シラノール縮合体微粒子を用いてもよいと共に、第3の実施形態における有機シラノールに代えて、フッ素とシリコンとの結合を含むフッ素化シラノールを用いてもよい。
【0044】
以下、第1の実施形態に係る半導体装置の製造方法について説明する。
【0045】
まず、無機シリカゾルの溶液(市販の無機SOG溶液であって、SiO2 換算濃度は3〜20wt%である。)100mlと、有機シリカゾルの溶液(市販の有機SOG溶液であって、SiO2 換算濃度は3〜20wt%である。)50mlとを混合して混合シリカゾル溶液を得る。
【0046】
次に、混合シリカゾル溶液を、室温で3時間攪拌した後、図6(a)に示すように金属配線11及び第1のSiO2 膜12が形成された半導体基板10の上に3000rpmでスピンコートする。次に、スピンコートされた混合シリカゾル溶液をホットプレートにより、100℃の温度下における1分間のベーキングを行なった後、150℃の温度下における1分間のベーキングを行ない、その後、半導体基板10に対して電気炉により窒素雰囲気中における400℃の温度下で30分間の熱処理を行なったところ、半導体基板10上に膜厚380nmのSOG膜よりなる層間絶縁膜13が形成された。
【0047】
このようにして形成された層間絶縁膜13を赤外分光法により分析したところ、シリコン−メチル基の結合が観測され、有機シラノール縮合体微粒子と無機シラノール縮合体微粒子とが混在してなる複合化層が形成されていることを確認できた。また、この層間絶縁膜13の誘電率をCV法により測定したところ、比誘電率は約2.8であった。
【0048】
次に、層間絶縁膜膜13の上にCVD法により膜厚100nmの第2のSiO2 膜14を堆積した後、通常のリソグラフィ工程によってフォトレジスト15によるコンタクホールのパターン出しを行ない、その後、第1及び第2のSiO2 膜12,14及び層間絶縁膜膜13に対してドライエッチングを行なって、図6(b)に示すようにコンタクトホール16を形成する。次に、フォトレジスト15を酸素プラズマによる灰化により除去した後、電子顕微鏡によりコンタクホール16の形状を観察したところ、図6(b)に示すように、サイドエッチングは殆ど認められなかった。
【0049】
また、第1の実施形態に係る半導体装置の製造方法により得られた層間絶縁膜13に形成されたコンタクホール16のコンタクト抵抗を測定したところ、通常のCVD法により形成されたSiO2 膜(プラズマTEOS膜)よりなる層間絶縁膜に比べてコンタクト抵抗の上昇は認められなかった。また、加湿試験を行なっても誘電率の変化は殆ど認められなかった。
【0050】
尚、無機シリカゾル中に加える有機シリカゾルの量を増減することにより、吸湿性、耐酸素プラズマ性及び比誘電率を調整することができる。すなわち、有機シリカゾルを増加させると、吸湿性が減少し、耐酸素プラズマ性の劣化が少なくなり、また、比誘電率が低下する。
【0051】
また、有機シリカゾルの溶液に代えて、トリメトキシフルオロシランの加水分解及び脱水縮合により合成したフッ素化シリカゾルの溶液を無機シリカゾル中に加えてもよい。このようにすると、図5に示すようなフッ素−シリコン結合を有するフッ素シラノール縮合体微粒子が得られる。
【0052】
以下、第2の実施形態に係る半導体装置の製造方法について説明する。
【0053】
まず、有機シリカゾルの溶液(市販の有機SOG溶液であって、SiO2 換算濃度は3〜20wt%である。)100mlに、テトラエトキシシラン0.2mlと水0.05mlとを加えて有機シリカゾル溶液を得る。
【0054】
次に、有機シリカゾル溶液を、室温で48時間攪拌した後、図6(a)に示すように金属配線11及び第1のSiO2 膜12が形成された半導体基板10の上に3000rpmでスピンコートする。次に、スピンコートされた有機シリカゾル溶液をホットプレートにより150℃の温度下における2分間のベーキングを行なった後、半導体基板10に対して電気炉により窒素雰囲気中における450℃の温度下で30分間の熱処理を行なったところ、半導体基板10上に膜厚450nmのSOG膜よりなる層間絶縁膜13が形成された。
【0055】
図7は、層間絶縁膜13を構成するカプセル状粒子の部分拡大構造を示す模式図であって、有機シラノール縮合体微粒子3が無機のシラノール4により覆われている。
【0056】
このようにして形成された層間絶縁膜13の誘電率をCV法により測定したところ、比誘電率は約2.5であった。
【0057】
次に、層間絶縁膜膜13の上にCVD法により膜厚100nmの第2のSiO2 膜14を堆積した後、通常のリソグラフィ工程によってフォトレジスト15によるコンタクホールのパターン出しを行ない、その後、第1及び第2のSiO2 膜12,14及び層間絶縁膜膜13に対してドライエッチングを行なって、図6(b)に示すようにコンタクトホール16を形成する。次に、フォトレジスト15を酸素プラズマによる灰化により除去した後、電子顕微鏡によりコンタクホール16の形状を観察したところ、図6(b)に示すように、サイドエッチングは殆ど認められなかった。
【0058】
また、第2の実施形態に係る半導体装置の製造方法により得られた層間絶縁膜13に形成されたコンタクホール16のコンタクト抵抗を測定したところ、通常のCVD法により形成されたSiO2 膜(プラズマTEOS膜)よりなる層間絶縁膜に比べてコンタクト抵抗の上昇は認められなかった。また、加湿試験を行なっても誘電率の変化は殆ど認められなかった。
【0059】
尚、有機シリカゾル中に加えるテトラエトキシシランの量を増減することにより、吸湿性、耐酸素プラズマ性及び比誘電率を調整することができる。すなわち、テトラエトキシシランの量を増加させると、吸湿性が増大し、耐酸素プラズマ性が大幅に向上し、また、比誘電率が上昇する。
【0060】
以下、第3の実施形態に係る半導体装置の製造方法について説明する。
【0061】
まず、無機シリカゾルの溶液(市販の有機SOG溶液であって、SiO2 換算濃度は3〜20wt%である。)100mlに、トリエトキシメチルシランを0.2mlと水0.05mlとを加えて無機シリカゾル溶液を得る。
【0062】
次に、無機シリカゾル溶液を、室温で48時間攪拌した後、図6(a)に示すように金属配線11及び第1のSiO2 膜12が形成された半導体基板10の上に3000rpmでスピンコートする。次に、スピンコートされた無機シリカゾル溶液をホットプレートにより150℃の温度下における2分間のベーキングを行なった後、半導体基板10に対して電気炉により窒素雰囲気中における450℃の温度下で30分間の熱処理を行なったところ、半導体基板10上に膜厚450nmのSOG膜よりなる層間絶縁膜13が形成された。
【0063】
このようにして形成された層間絶縁膜13の誘電率をCV法により測定したところ、比誘電率は約2.5であった。
【0064】
次に、層間絶縁膜膜13の上にCVD法により膜厚100nmの第2のSiO2 膜14を堆積した後、通常のリソグラフィ工程によってフォトレジスト15によるコンタクホールのパターン出しを行ない、その後、第1及び第2のSiO2 膜12,14及び層間絶縁膜膜13に対してドライエッチングを行なって、図6(b)に示すようにコンタクトホール16を形成する。次に、フォトレジスト15を酸素プラズマによる灰化により除去した後、電子顕微鏡によりコンタクホール16の形状を観察したところ、図6(b)に示すように、サイドエッチングは殆ど認められなかった。
【0065】
また、第3の実施形態に係る半導体装置の製造方法により得られた層間絶縁膜13に形成されたコンタクホール16のコンタクト抵抗を測定したところ、通常のCVD法により形成されたSiO2 膜(プラズマTEOS膜)よりなる層間絶縁膜に比べてコンタクト抵抗の上昇は認められなかった。また、加湿試験を行なっても誘電率の変化は殆ど認められなかった。
【0066】
尚、無機シリカゾル中に加えるテトラエトキシシランの量を増減することにより、耐湿性、耐酸素プラズマ性及び比誘電率を調整することもできる。すなわち、テトラエトキシシランの量を増加させると、吸湿性が減少し、耐酸素プラズマ性の劣化が少なくなり、また、比誘電率が低下する。
【0067】
本発明の第4実施形態に係る半導体装置における絶縁膜は、図8に示すように、表面のシラノール基を構成するOH基の少なくとも一部がシリル基により置換されてなるシラノール縮合体微粒子の集合層である。尚、図8においてXはシリル基を示し、図9はシリル基の例を列挙している。
【0068】
以下、第4実施形態に係る半導体装置の第1の製造方法について説明する。
【0069】
無機シリカゾルの溶液(市販の無機SOG溶液であって、SiO2 換算濃度は3〜20wt%である。)100ml中にヘキサメチルジシロキサン10mlを加えてシリカゾル溶液を得る。
【0070】
次に、シリカゾル溶液を、室温で3時間攪拌した後、半導体基板上に3000rpmでスピンコートする。次に、スピンコートされた無機シリカゾル溶液をホットプレートにより、100℃の温度下における1分間のベーキングを行なった後、150℃の温度下における1分間のベーキングを行ない、その後、半導体基板を電気炉により窒素雰囲気中における450℃の温度下で30分間の熱処理を行なったところ、半導体基板上に膜厚380nmのSOG膜よりなる層間絶縁膜が形成された。
【0071】
このようにして形成された層間絶縁膜を赤外分光法により分析したところ、シリコン−メチル基の結合が観測され、シラノール縮合体微粒子の表面においてシリル化反応が生じたことを確認できた。また、この層間絶縁膜の誘電率をCV法により測定したところ、比誘電率は約2.8であった。
【0072】
次に、層間絶縁膜膜の上にCVD法により膜厚100nmのSiO2 膜を堆積した後、通常のリソグラフィ工程によってフォトレジストによるコンタクホールのパターン出しを行ない、その後、SiO2 膜及び層間絶縁膜膜に対してドライエッチングを行なってコンタクトホールを形成する。次に、フォトレジストを酸素プラズマによる灰化により除去した後、電子顕微鏡によりコンタクホールの形状を観察したところ、サイドエッチングは殆ど認められなかった。
【0073】
また、前記の層間絶縁膜に形成されたコンタクホールのコンタクト抵抗を測定したところ、通常のCVD法により形成されたSiO2 膜(プラズマTEOS膜)よりなる層間絶縁膜に比べてコンタクト抵抗の上昇は認められなかった。
【0074】
尚、無機シリカゾル溶液中に加えるヘキサメチルジシロキサンの量を増減することにより耐湿性、耐酸素プラズマ性及び比誘電率を調整することができる。
【0075】
また、シリル化剤としては、ヘキサメチルジシロキサンに代えて、トリエチルクロロシランやヘキサメチルジシラザン等を用いても同様の効果が得られる。
【0076】
また、シリカゾルの塗布性を調整するために、シリル化剤をヘキサン、アセトン、エタノール等の適当な非水溶媒に溶解した後、無機シリカゾル溶液と混合してもよい。
【0077】
以下、第4実施形態に係る半導体装置の第2の製造方法について説明する。
【0078】
無機シリカゾルの溶液(市販の無機SOG溶液であって、SiO2 換算濃度は3〜20wt%である。)を半導体基板上にスピンコート法により3000rpmで塗布して湿潤ゲル膜を形成した後、半導体基板を160℃に加熱しながらシリル化剤としてのヘキサメチルジシラザンを気化させたガスに10分間暴露する。その後、半導体基板を電気炉により窒素雰囲気中における450℃の温度下で30分間の熱処理を行なったところ、半導体基板上に膜厚380nmのSOG膜よりなる層間絶縁膜が形成された。
【0079】
このようにして形成された層間絶縁膜を赤外分光法により分析したところ、シリコン−メチル基の結合が観測され、無機シラノール縮合体微粒子の表面においてシリル化反応が生じたことを確認できた。また、この層間絶縁膜の誘電率をCV法により測定したところ、比誘電率は約2.9であった。
【0080】
次に、層間絶縁膜膜の上にCVD法により膜厚100nmのSiO2 膜を堆積した後、通常のリソグラフィ工程によってフォトレジストによるコンタクホールのパターン出しを行ない、その後、SiO2 膜及び層間絶縁膜膜に対してドライエッチングを行なってコンタクトホールを形成する。次に、フォトレジストを酸素プラズマによる灰化により除去した後、電子顕微鏡によりコンタクホールの形状を観察したところ、サイドエッチングは殆ど認められなかった。
【0081】
また、前記の層間絶縁膜に形成されたコンタクホールのコンタクト抵抗を測定したところ、通常のCVD法により形成されたSiO2 膜(プラズマTEOS膜)よりなる層間絶縁膜に比べてコンタクト抵抗の上昇は認められなかった。
【0082】
尚、ガス化したシリル化剤による暴露温度及び暴露時間を変えることにより、残留シラノール基のシリル化の割合を調整することができる。このようにして、耐湿性、耐酸素プラズマ性及び比誘電率の調整を行なうことができる。
【0083】
また、シリル化剤としては、ヘキサメチルジシラザンに代えて、トリエチルクロロシランやヘキサメチルジシラザン等を用いても同様の効果が得られる。
【0084】
以下、第4実施形態に係る半導体装置の第3の製造方法について説明する。
【0085】
無機シリカゾルの溶液(市販の無機SOG溶液であって、SiO2 換算濃度は3〜20wt%である。)を半導体基板上にスピンコート法により3000rpmで塗布して湿潤ゲル膜を形成した後、シリル化剤としてのヘキサメチルジシラザンを半導体基板上に滴下し、その後、10分間放置した後、スピン乾燥を行なう。その後、電気炉により窒素雰囲気中における450℃の温度下で30分間の熱処理を行なったところ、半導体基板上に膜厚380nmのSOG膜よりなる層間絶縁膜が形成された。
【0086】
このようにして形成された層間絶縁膜を赤外分光法により分析したところ、シリコン−メチル基の結合が観測され、無機シラノール縮合体微粒子の表面においてシリル化反応が生じたことを確認できた。また、この層間絶縁膜の誘電率をCV法により測定したところ、比誘電率は約3.0であった。
【0087】
次に、層間絶縁膜膜の上にCVD法により膜厚100nmのSiO2 膜を堆積した後、通常のリソグラフィ工程によってフォトレジストによるコンタクホールのパターン出しを行ない、その後、SiO2 膜及び層間絶縁膜膜に対してドライエッチングを行なってコンタクトホールを形成する。次に、フォトレジストを酸素プラズマによる灰化により除去した後、電子顕微鏡によりコンタクホールの形状を観察したところ、サイドエッチングは殆ど認められなかった。
【0088】
また、前記の層間絶縁膜に形成されたコンタクホールのコンタクト抵抗を測定したところ、通常のCVD法により形成されたSiO2 膜(プラズマTEOS膜)よりなる層間絶縁膜に比べてコンタクト抵抗の上昇は認められなかった。
【0089】
尚、シリル化剤との反応温度及び反応時間を変えることにより、残留シラノール基のシリル化の割合を調整することができる。このようにして、耐湿性、耐酸素プラズマ性及び比誘電率の調整を行なうことができる。
【0090】
また、前記第3の製造方法に代えて、シリル化剤を非水溶媒に溶解した後、半導体基板上の湿潤ゲル膜上に滴下してもよい。また、湿潤ゲル膜が形成された半導体基板を沸点以下に加熱したシリル化剤又はシリル化剤の溶液に浸漬してもよい。
【0091】
また、シリル化剤としては、ヘキサメチルジシラザンに代えて、トリエチルクロロシランやヘキサメチルジシロキサン等を用いても同様の効果が得られる。
【0092】
以下、第4実施形態に係る半導体装置の第4の製造方法について説明する。
【0093】
無機シリカゾルの溶液(市販の無機SOG溶液であって、SiO2 換算濃度は3〜20wt%である。)を半導体基板上にスピンコート法により3000rpmで塗布して湿潤ゲル膜を形成した後、シリル化剤としてヘキサメチルジシラザンの気体が充填された気密容器内に半導体基板を収納する。その後、前記気密容器内において200℃の温度下及び50気圧の圧力下において10分間シリル化反応を起こさせた後、温度を一定に保ったまま圧力を1気圧に戻し、湿潤ゲル膜の乾燥を行なった。その後、半導体基板に対して電気炉により窒素雰囲気中における450℃の温度下で30分間の熱処理を行なったところ、半導体基板上に膜厚380nmのSOG膜よりなる層間絶縁膜が形成された。
【0094】
このようにして形成された層間絶縁膜を赤外分光法により分析したところ、シリコン−メチル基の結合が観測され、無機シラノール縮合体微粒子の表面においてシリル化反応が生じたことを確認できた。また、この層間絶縁膜の誘電率をCV法により測定したところ、比誘電率は約3.0であった。
【0095】
次に、層間絶縁膜膜の上にCVD法により膜厚100nmのSiO2 膜を堆積した後、通常のリソグラフィ工程によってフォトレジストによるコンタクホールのパターン出しを行ない、その後、SiO2 膜及び層間絶縁膜膜に対してドライエッチングを行なってコンタクトホールを形成する。次に、フォトレジストを酸素プラズマによる灰化により除去した後、電子顕微鏡によりコンタクホールの形状を観察したところ、サイドエッチングは殆ど認められなかった。
【0096】
また、前記の層間絶縁膜に形成されたコンタクホールのコンタクト抵抗を測定したところ、通常のCVD法により形成されたSiO2 膜(プラズマTEOS膜)よりなる層間絶縁膜に比べてコンタクト抵抗の上昇は認められなかった。
【0097】
尚、シリル化剤との反応温度、反応圧力及び反応時間を変えることにより、残留シラノール基のシリル化の割合を調整することができる。このようにして、耐湿性、耐酸素プラズマ性及び比誘電率の調整を行なうことができる。
【0098】
また、前記第4の製造方法に代えて、湿潤ゲル膜が形成された半導体基板をシリル化剤が非水溶媒に溶解した溶液中に浸漬し、高温高圧下で反応させてもよい。非水溶媒としては、ヘキサン、アセトン、エタノール等を用いることができる。
【0099】
また、シリル化剤としては、ヘキサメチルジシラザンに代えて、トリエチルクロロシランやヘキサメチルジシロキサン等を用いても同様の効果が得られる。
【0101】
【発明の効果】
請求項1の発明に係る半導体装置によると、カプセル状粒子を構成するシラノール縮合体微粒子は酸素プラズマに直接に触れないと共に、表面の酸素とシリコンとの結合のみを含むシラノールは酸素プラズマにより酸化分解されないため、絶縁膜が酸化分解される事態を回避することができると共に絶縁膜から水分が発生し難いので、半導体装置における上層の金属配線の薄膜化及び断線を防止できると共に下層の金属配線と上層の金属配線との間のコンタクト抵抗の低減を図ることができる。また、絶縁膜はフッ素とシリコンとの結合及び有機基とシリコンとの結合のうちの少なくとも1つの結合を含むシラノール縮合体微粒子よりなるので、比誘電率が小さくなる。
【0105】
請求項2の発明に係る半導体装置の製造方法によると、半導体基板上にシラノール縮合体微粒子が酸素とシリコンとの結合のみを含むシラノールにより化学修飾されたカプセル状粒子の集合層が形成されるので、請求項2の発明に係る半導体装置を確実に製造することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る半導体装置における絶縁膜の構造を示す断面模式図である。
【図2】本発明の第2の実施形態に係る半導体装置における絶縁膜の構造を示す断面模式図である。
【図3】本発明の第3の実施形態に係る半導体装置における絶縁膜の構造を示す断面模式図である。
【図4】本発明の各実施形態における無機シラノール縮合体微粒子の分子構造を示す模式図である。
【図5】本発明の各実施形態におけるフッ化シラノール縮合体微粒子の分子構造を示す模式図である。
【図6】本発明の各実施形態に係る半導体装置の製造方法の各工程を示す断面図である。
【図7】本発明の第2実施形態に係る半導体装置におけるカプセル状粒子の分子構造を示す模式図である。
【図8】本発明の第4実施形態に係る半導体装置におけるシリル化されたシラノール縮合体微粒子の分子構造を示す模式図である。
【図9】図8に示すシリル化されたシラノール縮合体微粒子の分子構造におけるシリル基の一例を示す化学式である。
【図10】従来及び本発明の各実施形態における有機シラノール縮合体微粒子の分子構造を示す模式図である。
【図11】従来の半導体装置の製造方法の各製造工程を示す断面図である。
【図12】従来の半導体装置の製造方法の各製造工程を示す断面図である。
【図13】従来の半導体装置の製造方法の各製造工程を示す断面図である。
【符号の説明】
1 有機シラノール縮合体微粒子
2 無機シラノール縮合体微粒子
3 有機シラノール縮合体微粒子
4 無機シラノール
5 カプセル状粒子
6 無機シラノール縮合体微粒子
7 有機シラノール
8 カプセル状粒子
10 半導体基板
11 金属配線
12 第1のSiO2 膜
13 層間絶縁膜
14 第2のSiO2 膜
15 フォトレジスト
16 コンタクトホール
Claims (3)
- 半導体基板上に形成された金属膜と、該金属膜の周囲に形成された絶縁膜とを備えた半導体装置において、
前記絶縁膜は、フッ素とシリコンとの結合及び有機基とシリコンとの結合のうちの少なくとも1つの結合を含むシラノール縮合体微粒子が酸素とシリコンとの結合のみを含むシラノールにより化学修飾されたカプセル状粒子の集合層よりなることを特徴とする半導体装置。 - フッ素とシリコンとの結合及び有機基とシリコンとの結合のうちの少なくとも1つの結合を含むシラノール縮合体微粒子を含むシリカゾル溶液に、シリコンとアルキル基との結合を含まないシリコンアルコキシドを混合して混合シリカゾル溶液を得る工程と、
前記混合シリカゾル溶液を金属膜が形成された半導体基板上に供給した後、該半導体基板に熱処理を施すことにより、前記シラノール縮合体微粒子が酸素とシリコンとの結合のみを含むシラノールにより化学修飾されたカプセル状粒子の集合層よりなる絶縁膜を形成する工程とを備えていることを特徴とする半導体装置の製造方法。 - 前記シリコンアルコキシドは、テトラエトキシシラン、テトラメトキシシラン、トリエトキシシラン、トリメトキシシラン及びトリエトキシフルオロシランのうちの少なくとも1つを含むことを特徴とする請求項2に記載の半導体装置の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26148795A JP3618150B2 (ja) | 1995-10-09 | 1995-10-09 | 半導体装置及びその製造方法 |
US08/726,497 US5942802A (en) | 1995-10-09 | 1996-10-07 | Semiconductor device and method of producing the same |
US09/178,765 US6171979B1 (en) | 1995-10-09 | 1998-10-26 | Semiconductor device and method of producing the same |
US09/293,890 US6200912B1 (en) | 1995-10-09 | 1999-04-19 | Semiconductor device and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26148795A JP3618150B2 (ja) | 1995-10-09 | 1995-10-09 | 半導体装置及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09106983A JPH09106983A (ja) | 1997-04-22 |
JP3618150B2 true JP3618150B2 (ja) | 2005-02-09 |
Family
ID=17362599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26148795A Expired - Fee Related JP3618150B2 (ja) | 1995-10-09 | 1995-10-09 | 半導体装置及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3618150B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5942802A (en) * | 1995-10-09 | 1999-08-24 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method of producing the same |
KR100797202B1 (ko) | 2000-06-23 | 2008-01-23 | 허니웰 인터내셔널 인코포레이티드 | 손상된 실리카 유전 필름에 소수성을 부여하는 방법 및 손상된 실리카 유전 필름 처리 방법 |
WO2004068555A2 (en) | 2003-01-25 | 2004-08-12 | Honeywell International Inc | Repair and restoration of damaged dielectric materials and films |
US7709371B2 (en) | 2003-01-25 | 2010-05-04 | Honeywell International Inc. | Repairing damage to low-k dielectric materials using silylating agents |
US8475666B2 (en) | 2004-09-15 | 2013-07-02 | Honeywell International Inc. | Method for making toughening agent materials |
US7678712B2 (en) | 2005-03-22 | 2010-03-16 | Honeywell International, Inc. | Vapor phase treatment of dielectric materials |
JP6728252B2 (ja) * | 2017-02-28 | 2020-07-22 | 株式会社東芝 | 半導体装置及びその製造方法 |
-
1995
- 1995-10-09 JP JP26148795A patent/JP3618150B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09106983A (ja) | 1997-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3888794B2 (ja) | 多孔質膜の形成方法、配線構造体及びその形成方法 | |
KR100682614B1 (ko) | 실란계 나노 다공성 실리카 박막 및 그 제조방법 | |
US6318124B1 (en) | Nanoporous silica treated with siloxane polymers for ULSI applications | |
US7060634B2 (en) | Materials and methods for forming hybrid organic-inorganic dielectric materials for integrated circuit applications | |
US6042994A (en) | Nanoporous silica dielectric films modified by electron beam exposure and having low dielectric constant and low water content | |
US6177143B1 (en) | Electron beam treatment of siloxane resins | |
US6171979B1 (en) | Semiconductor device and method of producing the same | |
JP2004511896A (ja) | 誘電フィルム及び材料における疎水性を回復する方法 | |
JP3229294B2 (ja) | 被成膜面の改質方法及び半導体装置の製造方法 | |
JP2002520813A (ja) | ナノ多孔質シリカ上への気相堆積方法 | |
US6974762B2 (en) | Adhesion of carbon doped oxides by silanization | |
JP3618150B2 (ja) | 半導体装置及びその製造方法 | |
US6074962A (en) | Method for the formation of silica-based coating film | |
JP2915357B2 (ja) | 半導体装置、その製造方法及び多孔質膜の形成方法 | |
JPH10150033A (ja) | 層間絶縁膜形成用材料及び層間絶縁膜 | |
JP2000340651A (ja) | 低誘電率膜の製造法 | |
JP5304033B2 (ja) | 半導体装置の製造方法 | |
JP3877472B2 (ja) | 層間絶縁膜の形成方法 | |
JP2751863B2 (ja) | Sog材料およびこれを用いた半導体装置の製造方法 | |
JP3369622B2 (ja) | 半導体装置の製造方法 | |
JP2000021872A (ja) | 低誘電率樹脂組成物、低誘電率絶縁膜形成方法および半導体装置の製造方法 | |
JP2004273786A (ja) | 疎水性多孔質sog膜の作製方法 | |
JPH06283508A (ja) | 半導体装置の製造方法 | |
JP2002025999A (ja) | 絶縁膜、絶縁膜形成用材料および絶縁膜の形成方法 | |
JPH08241890A (ja) | シリカ系絶縁材料と絶縁膜の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041026 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041109 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071119 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081119 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091119 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |