JP3617084B2 - Floating charging method for sealed lead-acid batteries - Google Patents
Floating charging method for sealed lead-acid batteries Download PDFInfo
- Publication number
- JP3617084B2 JP3617084B2 JP22864094A JP22864094A JP3617084B2 JP 3617084 B2 JP3617084 B2 JP 3617084B2 JP 22864094 A JP22864094 A JP 22864094A JP 22864094 A JP22864094 A JP 22864094A JP 3617084 B2 JP3617084 B2 JP 3617084B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- voltage
- floating
- charging
- sealed lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Description
【0001】
【産業上の利用分野】
本発明は陰極吸収式密閉形鉛蓄電池の浮動充電方法に関するものである。
【0002】
【従来の技術とその課題】
密閉形鉛蓄電池は陰極吸収反応が発熱反応であるので、その発熱と蓄電池からの放熱の微妙なバランスの上に立って浮動充電をされている。したがって、発熱と放熱のバランスがくずれる、つまり蓄電池の放熱が発熱よりも小さくなった場合には蓄電池は熱逸走となる。この熱逸走をなくすため、蓄電池のキャビネットは形状を大きくし、側面には通気口を設けて熱の放散を大きくする工夫が採られている。しかし、この欠点はキャビネットの形状がむやみに大きくなり、都会のように十分にはキャビネットの設置面積を確保できない場合に支障をきたすことになる。
【0003】
一方、熱逸走を防止するには時々充電を中止する方法も考えられるが、停電に備えて常時給電の義務がある浮動充電ではそれは不可能なことであった。
【0004】
また、従来から熱逸走を防止する目的で例えば温度センサーにより50℃を検出して充電電圧を下げる方法もあったが、この場合は50℃に至らないと充電電圧は下がらないので、結果として45℃程度に維持された場合には熱逸走は防止できても蓄電池が高温のために寿命が低下するという問題があった。
【0005】
本発明はこの問題を解決する方法として新しい浮動充電方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明は浮動充電状態を維持しながら蓄電池の発熱を抑え、熱逸走を防止し、かつ蓄電池の寿命の延伸を目的とするものである。その方法は、あらかじめ、密閉形鉛蓄電池が浮動充電状態から開回路された際の電池の端子電圧と時間の関係を求めておき、所定の電圧で一定時間保持する浮動充電と、前記あらかじめ求めた電池の端子電圧と時間の関係に合わせて充電電圧を、100%充電状態で長時間放置後の開路電圧まで下げる浮動充電とを、周期的に繰り返すものである。
【0007】
【作用】
浮動充電電圧を、あらかじめ求めた電池の端子電圧と時間の関係に合わせて、100%充電状態で長時間放置後の開路電圧まで下げるので、蓄電池の充電電流が抑えられ、熱逸走が防止できるとともに寿命の延伸が可能である。
【0008】
【実施例】
200アンペアアワー密閉形蓄電池について、以下具体的に説明をする。
【0009】
図1は、密閉形鉛蓄電池が浮動充電状態から開回路された際の、電池の充電電圧(端子電圧)と経過時間との関係を示したものである。すなわち図1は、密閉形鉛蓄電池を、まず蓄電池を100%充電状態に維持するため、2.23V/セルで2日間浮動充電し、浮動充電を開始してまる2日で充電をやめ、3日目から電池を開放状態にした場合の、電池の端子電圧と時間の関係を示したものである。図1の「電圧」は、最初の2日間は充電電圧を示し、3日目以後は開放状態の端子電圧(開路電圧)を示す。充電をやめて7日後には、電池の端子電圧は2.11V/セル(100%充電状態で長時間放置後の開路電圧)に近づく。
【0010】
熱逸走試験は200Ah蓄電池を54セルキャビネットに収納しておこなった。本発明の実施例1の場合には、図2に示したパターンでの浮動充電を行った。すなわち、2.23V/セルで2日間保持する浮動充電と、さらに、あらかじめ求めておいた、図1に示す、電池を開放状態にした場合の電池の端子電圧と時間の関係に合わせて、充電電圧を2.23V/セルからあらかじめ設定した浮動充電時の端子電圧の下限である2.11V/セル(100%充電状態で長時間放置後の開路電圧)まで7日間で下げる浮動充電とを、周期的に繰り返した。
【0011】
一方、従来の比較例1の場合には、2.23V/セルの一定電圧で保持する浮動充電を行った。
【0012】
比較例1の場合には周囲温度が約75℃で充電電流が次第に増加する熱逸走の兆候が認められたが、実施例1の場合には90℃でもこのような熱逸走の兆候はなかった。
【0013】
これまでは熱逸走を防止するために蓄電池のキャビネットへの収納を抑えていたが、本方式では熱逸走の不安が小さいので下記の例とおり蓄電池の収納数を1.5倍に増加できた。
【0014】
キャビネット形状:間口1200×奥行600×高さ1900mm
200Ah蓄電池の現状収納数 :54セル
200Ah蓄電池の本発明による収納数:81セル
【0015】
【発明の効果】
従来、浮動充電電圧は1点固定で使用されていたため、熱逸走の防止や寿命の延伸、およびキャビネットの収納効率の改善の点で限界があった。本発明は浮動充電電圧を固定的なものとはしないので蓄電池の発熱を抑制することが可能であり、上記の3つの問題を一度に解決することができ、その工業的価値は非常に大である。
【図面の簡単な説明】
【図1】密閉形鉛蓄電池を、まず2.23V/セルで浮動充電し、浮動充電を開始して2日後に充電をやめ、電池を開放状態にした場合の、電池の端子電圧と時間の関係を示す図。
【図2】実使用における本発明方式の電圧制御パターンを示した図。[0001]
[Industrial application fields]
The present invention relates to a floating charging method for a cathode absorption type sealed lead-acid battery.
[0002]
[Prior art and its problems]
Since the sealed lead-acid battery has an exothermic cathodic absorption reaction, it is floatingly charged with a delicate balance between the heat generation and the heat radiation from the battery. Therefore, when the balance between heat generation and heat dissipation is lost, that is, when the heat dissipation of the storage battery becomes smaller than the heat generation, the storage battery becomes a heat escape. In order to eliminate this heat escape, the storage battery cabinet is made larger in shape, and a vent is provided on the side surface to increase heat dissipation. However, this disadvantage causes a problem when the cabinet shape becomes unnecessarily large and the installation area of the cabinet cannot be sufficiently secured as in the city.
[0003]
On the other hand, in order to prevent thermal runaway, it is possible to stop charging from time to time, but this is not possible with floating charging, which requires a constant power supply in preparation for a power failure.
[0004]
In addition, for the purpose of preventing thermal runaway, there has been a method of reducing the charging voltage by detecting, for example, 50 ° C. with a temperature sensor. In this case, the charging voltage does not decrease unless the temperature reaches 50 ° C. When the temperature is maintained at about ° C., there is a problem that the life of the battery is reduced due to the high temperature of the storage battery even though the thermal escape can be prevented.
[0005]
The present invention provides a new floating charging method as a method for solving this problem.
[0006]
[Means for Solving the Problems]
An object of the present invention is to suppress the heat generation of a storage battery while maintaining a floating charge state, prevent thermal escape, and extend the life of the storage battery. In this method, the relationship between the terminal voltage of the battery and the time when the sealed lead-acid battery is opened from the floating charge state is determined in advance, and the floating charge that is held for a predetermined time at a predetermined voltage is obtained in advance. Floating charging in which the charging voltage is lowered to the open circuit voltage after being left in a 100% charged state for a long time according to the relationship between the terminal voltage of the battery and time is periodically repeated.
[0007]
[Action]
The floating charging voltage is reduced to the open circuit voltage after being left for a long time in a 100% charged state in accordance with the relationship between the terminal voltage of the battery and the time obtained in advance, so that the charging current of the storage battery can be suppressed and thermal escape can be prevented. Life extension is possible.
[0008]
【Example】
The 200 amp hour sealed storage battery will be specifically described below.
[0009]
FIG. 1 shows the relationship between the battery charging voltage (terminal voltage) and the elapsed time when the sealed lead-acid battery is opened from the floating charging state. That is, FIG. 1 shows that a sealed lead-acid battery is first float-charged at 2.23 V / cell for 2 days in order to maintain the battery at 100% charge, and the charge is stopped in 2 days after the start of floating charge. It shows the relationship between battery terminal voltage and time when the battery is opened from the first day. “Voltage” in FIG. 1 indicates the charging voltage for the first two days, and indicates the terminal voltage (open circuit voltage) in the open state after the third day. Seven days after stopping charging, the terminal voltage of the battery approaches 2.11 V / cell (an open circuit voltage after being left in a 100% charged state for a long time).
[0010]
The thermal escape test was conducted by storing a 200 Ah storage battery in a 54-cell cabinet. In the case of Example 1 of the present invention, floating charging was performed with the pattern shown in FIG. That is, floating charging held at 2.23 V / cell for 2 days, and charging in accordance with the relationship between the battery terminal voltage and time when the battery is opened as shown in FIG. Floating charge that lowers the voltage from 2.23 V / cell to 2.11 V / cell (open circuit voltage after standing for a long time in 100% charge state), which is the lower limit of the terminal voltage at the time of floating charge set in advance in 7 days, Repeated periodically.
[0011]
On the other hand, in the case of the comparative example 1 of the related art, floating charging was performed with a constant voltage of 2.23 V / cell.
[0012]
In the case of Comparative Example 1, there was a sign of thermal runaway in which the charging current gradually increased at an ambient temperature of about 75 ° C., but in the case of Example 1, there was no sign of such thermal runaway even at 90 ° C. .
[0013]
Previously, storage of storage batteries in the cabinet was suppressed to prevent thermal escape, but with this method, the anxiety of thermal escape was small, so the number of storage batteries could be increased 1.5 times as shown below.
[0014]
Cabinet shape: Frontage 1200 x Depth 600 x Height 1900mm
Current storage capacity of 200 Ah storage battery: 54 cells Storage capacity of 200 Ah storage battery according to the present invention: 81 cells
【The invention's effect】
Conventionally, the floating charging voltage has been fixed at one point, so there are limitations in preventing thermal escape, extending the life, and improving the storage efficiency of the cabinet. Since the present invention does not fix the floating charging voltage, it is possible to suppress the heat generation of the storage battery, the above three problems can be solved at once, and its industrial value is very large. is there.
[Brief description of the drawings]
FIG. 1 shows the battery terminal voltage and time when a sealed lead-acid battery is first float-charged at 2.23 V / cell, and after 2 days from the start of floating charge, the charge is stopped and the battery is opened. The figure which shows a relationship.
FIG. 2 is a diagram showing a voltage control pattern of the method of the present invention in actual use.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22864094A JP3617084B2 (en) | 1994-08-30 | 1994-08-30 | Floating charging method for sealed lead-acid batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22864094A JP3617084B2 (en) | 1994-08-30 | 1994-08-30 | Floating charging method for sealed lead-acid batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0869821A JPH0869821A (en) | 1996-03-12 |
JP3617084B2 true JP3617084B2 (en) | 2005-02-02 |
Family
ID=16879514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22864094A Expired - Fee Related JP3617084B2 (en) | 1994-08-30 | 1994-08-30 | Floating charging method for sealed lead-acid batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3617084B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109307821A (en) * | 2018-11-30 | 2019-02-05 | 广东电网有限责任公司 | A kind of ageing properties test method of supercapacitor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018051866A1 (en) | 2016-09-14 | 2018-03-22 | 富士電機株式会社 | Lead storage battery device, device for controlling lead storage battery, and method for controlling lead storage battery |
JP6176378B1 (en) * | 2016-09-14 | 2017-08-09 | 富士電機株式会社 | Lead storage battery device, lead storage battery control device, and lead storage battery control method |
-
1994
- 1994-08-30 JP JP22864094A patent/JP3617084B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109307821A (en) * | 2018-11-30 | 2019-02-05 | 广东电网有限责任公司 | A kind of ageing properties test method of supercapacitor |
Also Published As
Publication number | Publication date |
---|---|
JPH0869821A (en) | 1996-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3505124B2 (en) | Emergency power supply system and system for automatically detecting the presence or absence of failure of a single cell in a battery used in the system | |
JP2016513350A (en) | Battery with internal phase change material | |
CN107634286B (en) | A kind of battery DC/exchange heating device and method | |
JP3617084B2 (en) | Floating charging method for sealed lead-acid batteries | |
JP2004111123A (en) | Method for controlling heater for sodium-sulfur battery module | |
JP4081698B2 (en) | Lead-acid battery charging method | |
CA2174845A1 (en) | Electrical storage cell polarization controller | |
JP2000058133A5 (en) | ||
JPS5931836B2 (en) | lead acid battery | |
JPS6319771A (en) | Function recovery agent of lead-acid battery and its function recovery method | |
US3849199A (en) | Electrochemical generator with a zinc electrode | |
JP6519793B2 (en) | Method of charging control valve type lead storage battery | |
JPS607061A (en) | Manufacture of plate for sealed lead storage battery | |
JP3951285B2 (en) | Control valve type lead acid battery | |
JPH0850925A (en) | Charging method for lead-acid battery | |
JPS6280964A (en) | Sealed lead-acid battery | |
JPH03147262A (en) | Collector for lead-acid battery | |
JP2555634B2 (en) | Manufacturing method of sealed lead-acid battery | |
JPH10189057A (en) | Charging method for lead-acid battery | |
JPS6273579A (en) | Sodium-sulfur battery | |
JPH0737234Y2 (en) | Battery assembly | |
JP3838298B2 (en) | Charging method of sealed lead-acid battery using antimony alloy lattice | |
JP3324287B2 (en) | Sealed lead-acid battery | |
JP3027297B2 (en) | Method of charging sodium-sulfur battery | |
JPH0654661B2 (en) | Sealed lead acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040330 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040705 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041019 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041101 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071119 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081119 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081119 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091119 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |