JP2004111123A - Method for controlling heater for sodium-sulfur battery module - Google Patents

Method for controlling heater for sodium-sulfur battery module Download PDF

Info

Publication number
JP2004111123A
JP2004111123A JP2002269614A JP2002269614A JP2004111123A JP 2004111123 A JP2004111123 A JP 2004111123A JP 2002269614 A JP2002269614 A JP 2002269614A JP 2002269614 A JP2002269614 A JP 2002269614A JP 2004111123 A JP2004111123 A JP 2004111123A
Authority
JP
Japan
Prior art keywords
heater
sodium
battery module
sulfur battery
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002269614A
Other languages
Japanese (ja)
Other versions
JP4313011B2 (en
Inventor
Keiichi Mori
森 啓一
Kazuto Furuta
古田 一人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002269614A priority Critical patent/JP4313011B2/en
Publication of JP2004111123A publication Critical patent/JP2004111123A/en
Application granted granted Critical
Publication of JP4313011B2 publication Critical patent/JP4313011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To increase a dischargeable power of a battery in the daytime by reducing an amount of power consumption of a heater used to maintain a sodium-sulfur battery module in a predetermined temperature range, improving an efficiency of the battery and shifting a power consumption period of the heater which has been heretofore extended to a time zone of the daytime to only a night. <P>SOLUTION: A method for controlling heaters 7, 9 is used to maintain the sodium-sulfur battery module 1 in which a plurality of sodium-sulfur battery cells are connected and housed in a heat insulation container, in the predetermined temperature range. In the method, at least a part of the heaters 7, 9 is set in such a manner that a set temperature of the heater from a charging finishing time to a discharge starting time is lowered than the set temperature of the heater from the discharge finishing time of the module 1 to the charge finishing time. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は、複数のナトリウム−硫黄単電池から構成されるモジュールを所定の温度範囲に維持するために用いられるヒーターの制御方法に関する。
【0002】
【従来の技術】ナトリウム−硫黄電池は、一方に陰極活物質である溶融金属ナトリウム、他方には陽極活物質である溶融硫黄を配し、両者をナトリウムイオンに対して選択的な透過性を有するβ−アルミナ固体電解質で隔離した高温二次電池である。このナトリウム−硫黄電池の電池反応による起電力は、約2V程度であるので、単電池では実用電圧には満たない。
【0003】このため、所定数の単電池を断熱容器内に直並列に接続して収容したナトリウム−硫黄電池モジュールを形成して実用に供される。また、ナトリウム−硫黄電池は、運転期間中その機能及び性能を発揮するために所定の温度範囲に維持する必要があるため、断熱容器の内側面や底面に沿ってヒーターが配置され、当該ヒーターにて電池温度を適正な温度範囲に維持するようにしている。
【0004】通常、このようなナトリウム−硫黄電池モジュールの運転方法としては、商用電力の負荷平準化を目的として夜間に所定時間充電し、昼間の所定時間に放電する充放電サイクルを毎日繰り返す方法が採られている。ナトリウム−硫黄電池の放電反応は発熱反応であるため、前記ヒーターの設定温度が270〜280℃と低くとも、電池自身の発熱によって、陽極側に生成する多硫化ナトリウムの組成が最も融点が高くなるNa組成(融点285℃)に到達するまでは、多硫化ナトリウムの融点を超える温度を維持することができ、放電が可能である。
【0005】しかし、充電反応は吸熱反応であるため、前記ヒーターの設定温度が285℃以下と低い場合には、陰極側へ戻るべきNaがNaのような高融点化合物の状態で正極に残留するため充電回復性が低下する。このような状態となった場合は、次の放電時に目標とする放電電気量が得られないため、少なくとも充電時には、300℃以上に保持する必要がある。
【0006】そして、従来においては、この充電時に必要な温度に基づいて、ヒーターの設定温度を決定し、そのヒーター設定温度(例えば305℃)を充放電サイクル全体に渡って変更することなく一定としていた(先行技術文献は特に見当たらない。)。
【0007】
【発明が解決しようとする課題】しかしながら、従来のようにヒーターの設定温度が一定である場合には、電池温度が最も低下する充電期間の末期からヒーターに通電が開始され、本来は電池からの出力が期待される放電開始以後においても、しばらくの間はヒーターへの通電状態が継続してヒーター電力の消費が発生し、更にヒーターの消費電力量も含めた電池の充放電効率という点で十分に満足な結果が得られていなかった。また、本来電池から電力を出力したい放電中に、ヒーター電力を消費することから、AC端の電力(=電池電力−ヒータ電力)が低下し、負荷平準化用途として十分な特性を発現できないという問題点があった。
【0008】更に、従来においては土・日曜日などの休日や長期休暇などナトリウム−硫黄電池モジュールを運転しない期間が有る場合においても、ヒーターの設定温度を通常の運転時の温度と同じにしていたため、前記期間において不要なヒーター消費電力が発生し、それによって年間トータルの電池効率が低下するという問題もあった。
【0009】本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、ナトリウム−硫黄電池モジュールを所定の温度範囲に維持するために用いられるヒーターの消費電力量を低減させ、電池の効率を向上させるとともに、従来昼間の時間帯にまで及んでいたヒーターの電力消費期間を夜間に移行することにより、昼間の電池の放電可能電力を増加させることが可能なヒーターの制御方法を提供することにある。
【0010】
【課題を解決するための手段】本発明によれば、複数のナトリウム−硫黄単電池を接続して断熱容器に収容してなるナトリウム−硫黄電池モジュールを所定の温度範囲に維持するために用いられるヒーターの制御方法であって、前記ヒーターの少なくとも一部について、前記ナトリウム−硫黄電池モジュールの放電終了時から充電終了時までの前記ヒーターの設定温度に対して、充電終了時から放電開始時までの前記ヒーターの設定温度を下げることを特徴とするナトリウム−硫黄電池モジュール用ヒーターの制御方法(第1発明)、が提供される。
【0011】また、本発明によれば、複数のナトリウム−硫黄単電池を接続して断熱容器に収容してなるナトリウム−硫黄電池モジュールを所定の温度範囲に維持するために用いられるヒーターの制御方法であって、前記ナトリウム−硫黄電池モジュールを運転しない期間が連続して24時間以上有る場合に、当該期間の前記ヒーターの設定温度を、前記ナトリウム−硫黄電池モジュールの運転期間中の前記ヒーターの設定温度よりも下げるようにしたことを特徴とするナトリウム−硫黄電池モジュール用ヒーターの制御方法(第2発明)、が提供される。
【0012】
【発明の実施の形態】図1は、ナトリウム−硫黄電池モジュールの構造の一例を示す断面図である。ナトリウム−硫黄電池モジュール1は、複数のナトリウム−硫黄単電池3を互いに接続し、断熱容器5に収容して形成される。そして、このナトリウム−硫黄電池モジュール1が正常にその機能を発揮できるように、当該モジュール1を所定の温度範囲に維持するためのヒーターが断熱容器内に配置される。ヒーターは、通常、断熱容器の底面に沿って配された底面ヒーター9と、内側面に沿って配された側面ヒーター7とからなり、各ヒーターには、温度計測用の熱電対(図示せず)を近接配置して、温度管理を行っている。
【0013】なお、断熱容器5内の間隙部には、▲1▼単電池の固定、▲2▼短絡防止、▲3▼活物質漏洩時の活物質吸収体、▲4▼非常時の自己消火用酸素遮断体等の目的で、セルベン、ケイ砂等の耐熱性、耐腐食性及び電気絶縁性を有する粒状防火材10が充填されている。
【0014】この粒状防火材10は、輸送や電池の昇降温に伴う沈降を抑制するため、バインダーによって固化されていることが望ましいが、バインダーで固化せず、例えば加振によって事前に粒状防火材10の充填密度を高めることで沈降を抑制したり、断熱容器5内の上部、特に角部11に充填されている粒状防火材のみバインダーで固化することにより、使用バインダー量を削減するようにしてもよい。
【0015】第1発明に係るヒーターの制御方法は、このようなナトリウム−硫黄電池モジュールにおける前記ヒーターの少なくとも一部について、ナトリウム−硫黄電池モジュールの放電終了時から充電終了時までのヒーターの設定温度に対して、充電終了時から放電開始時までのヒーターの設定温度を下げるようにし、好ましくは、放電開始時から放電終了時までのヒーターの設定温度を更に下げることを特徴とするものである。
【0016】前述のとおり、ナトリウム−硫黄電池の充電反応が吸熱反応であるのに対し、放電反応は発熱反応であり、放電中は単電池自らが発熱するため、充電時に比して放電時はヒーターの設定温度を下げることが可能である。そこで、第一発明においては、ヒーターの少なくとも一部について、ナトリウム−硫黄電池モジュールの放電終了時から充電終了時まで(放電から充電に移行するまでの休止期間を加えた充電期間)のヒーターの設定温度に対して、充電終了時から放電開始時まで(充電から放電に移行するまでの休止期間)のヒーターの設定温度を下げ、より好ましくは、放電開始時から放電終了時まで(放電期間)のヒーターの設定温度を更に下げるようにした。
【0017】こうすることにより、電池からの出力が期待される放電期間には、ヒーターに通電しなくても、電池の自己発熱によりヒーターの設定温度を維持できるようになり、ヒーターの消費電力を削減することが可能となって、ヒーターの消費電力量も含めた電池の効率が向上する。また、図2の模式図に示すように、従来は昼間の放電期間にまで及んでいたヒーターの電力消費期間(加熱期間)が、夜間である充電末へ移行することにより、昼間の時間帯の実質的な放電可能出力を増加させることとなる。
【0018】なお、この制御方法を実施するに当たっては、例えば、ナトリウム−硫黄電池モジュールの放電開始時、放電終了時及び充電終了時を検知し、それら検知した時点でヒーターの設定温度を変更するという手法を採用することができる。また、ナトリウム−硫黄電池モジュールを一定のスケジュールで運転している場合には、当該スケジュールにおいて予め決められたナトリウム−硫黄電池モジュールの放電開始時、放電終了時及び充電終了時のそれぞれの時間に合わせてヒーターの設定温度を変更するようにしてもよい。
【0019】第2発明に係るヒーターの制御方法は、前記のようなナトリウム−硫黄電池モジュールにおいて、ナトリウム−硫黄電池モジュールを運転しない期間が連続して24時間以上有る場合に、当該期間のヒーターの設定温度を、ナトリウム−硫黄電池モジュールの運転期間中のヒーターの設定温度よりも下げるようにしたことを特徴とするものである。
【0020】ナトリウム−硫黄電池は高温動作型の電池のため、降温時に陽極活物質である硫黄が約120℃で凝固した後、更に温度が低下すると、硫黄、陽極容器、β−アルミナ固体電解質管といった電池構成部材の熱膨張係数の違いにより応力が発生し、変形が生じるおそれがある。
【0021】しかし、陽極活物質である硫黄が凝固しない温度範囲であれば、こうした応力は発生しないため、土・日曜日などの休日や長期休暇などナトリウム−硫黄電池モジュールを運転しない期間が連続して24時間以上有る場合には、その期間中のヒーターの設定温度を、陽極活物質が凝固しない温度範囲において通常の運転期間中よりも低下させることができる。
【0022】このようにナトリウム−硫黄電池モジュールを運転しない期間のヒーター設定温度を変更することにより、常にヒーター設定温度を一定としていた従来の方法に比して、前記期間におけるヒーターの消費電力を低減し、年間トータルの電池効率を向上させることが可能となる。
【0023】なお、ヒーターの設定温度を低下させる範囲としては、前記のように陽極活物質である硫黄が凝固しない温度範囲であるとともに、次回の運転開始時までに速やかに放電可能な温度に戻せる温度範囲とすることが肝要であり、具体的なヒーター設定温度としては、例えば、土・日曜日などのように2日間運転を休止する場合には250℃程度まで、4日間以上運転を休止する場合には150℃程度まで低下させることが可能である。
【0024】
【実施例】以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0025】
(実施例1)
図1に示すような構造のナトリウム−硫黄電池モジュール(単電池数320本、PCS=95%、360kWh放電)において、側面ヒーター7及び底面ヒーター9の設定温度を、▲1▼放電開始時から放電終了時まで、▲2▼放電終了時から充電終了時まで、▲3▼充電終了時から放電開始時まで、の各期間で表1のように制御しながら運転し、1充放電サイクル当たりのヒーター消費電力量、充放電効率、最高温度及び放電出力を測定した。その結果を表2に示す。
【0026】
(比較例1)
前記実施例1と同じナトリウム−硫黄電池モジュールにおいて、側面ヒーター及び底面ヒーターの設定温度を何れも305℃に固定して運転し、1サイクル当たりのヒーター消費電力量、充放電効率、最高温度及び放電出力を測定した。その結果を表2に示す。
【0027】
【表1】

Figure 2004111123
【0028】
【表2】
Figure 2004111123
【0029】表2に示すとおり、ナトリウム−硫黄電池モジュールの放電終了時から充電終了時までのヒーターの設定温度に対して、充電終了時から放電開始時までのヒーターの設定温度を下げ、放電開始時から放電終了時までのヒーターの設定温度を更に下げるようにした実施例1は、ヒーター設定温度を充放電サイクル全体に渡って変更することなく一定とした比較例1に比して、ヒーター消費電力量が半減し、充放電効率が向上した。また、放電出力についても、放電中のヒーター電力量が0となったため、従来の出力44kW(=電池出力50kW−ヒーター電力6kW)から、本発明では出力50kWへと向上した。
【0030】
(実施例2)
前記実施例1と同じナトリウム−硫黄電池モジュールにおいて、土・日曜日の2日間に渡って運転を休止し、この期間の側面ヒーター及び底面ヒーターの設定温度を、何れも陽極活物質の凝固点より高い265℃に設定し、次の月曜日の0〜7時の間に側面ヒーターの設定温度が295℃、底面ヒーターの設定温度が305℃という通常運転時の設定温度に戻るように温度調整プログラミングを実施して、この2日間のヒーター消費電力量を測定した。その結果を表3に示す。
【0031】
(比較例2)
前記実施例1と同じナトリウム−硫黄電池モジュールにおいて、土・日曜日の2日間に渡って運転を休止し、この期間のヒーターの設定温度を通常運転時の設定温度から変更することなく、側面ヒーターの設定温度が295℃、底面ヒーターの設定温度が305℃となるようにして、この2日間のヒーター消費電力量を測定した。その結果を表3に示す。
【0032】
【表3】
Figure 2004111123
【0033】表3に示すとおり、ナトリウム−硫黄電池モジュールの運転休止期間中のヒーターの設定温度を、運転期間中のヒーターの設定温度よりも下げるようにした実施例2は、運転休止期間中も運転期間中と同じヒーターの設定温度のままとした比較例2に比して、土・日曜日の2日間でヒーター消費電力量を約15kWh少なくすることができ、電池運用に関わる総合効率が約0.5%向上した。
【0034】
(実施例3)
前記実施例1と同じナトリウム−硫黄電池モジュールにおいて、土・日曜日と、4日間以上の長期休暇期間(12月30日〜1月6日、4月27日〜5月5日、8月12日〜8月16日)にて運転を休止し、この期間の側面ヒーター及び底面ヒーターの設定温度を、土・日曜日については250℃まで下げ、4日間以上の長期休暇期間については150℃まで下げ、それぞれ次の運転再開日の0〜7時の間に通常運転時の設定温度である300℃に戻るように温度調整プログラミングを実施して、休止期間中の放熱量を測定するとともに、このようにヒーター制御した場合のナトリウム−硫黄電池モジュールの年間効率を求めた。その結果を表4に示す。
【0035】
(比較例3)
前記実施例1と同じナトリウム−硫黄電池モジュールにおいて、土・日曜日と、4日間以上の長期休暇期間(12月30日〜1月6日、4月27日〜5月5日、8月12日〜8月16日)にて運転を休止し、この期間の側面ヒーター及び底面ヒーターの設定温度を、通常運転時の設定温度である300℃から変更することなく一定として、休止期間中の放熱量を測定するとともに、このようにヒーター制御した場合のナトリウム−硫黄電池モジュールの年間効率を求めた。その結果を表4に示す。
【0036】
【表4】
Figure 2004111123
【0037】表4に示すとおり、ナトリウム−硫黄電池モジュールの運転休止期間中のヒーターの設定温度を、運転期間中のヒーターの設定温度よりも下げるようにした実施例3は、運転休止期間中も運転期間中と同じヒーターの設定温度のままとした比較例3に比して、休止期間の放熱量が大幅に減少させることができ、年間効率が向上した。
【0038】
【発明の効果】以上説明したように、本発明によれば、ナトリウム−硫黄電池モジュールを所定の温度範囲に維持するために用いられるヒーターの消費電力量を低減させ、それによって、電池運用に関わる総合効率を向上させることができる。また、従来昼間の時間帯にまで及んでいたヒーターの電力消費期間を夜間に移行することにより、昼間の電池の放電可能電力を増加させることが可能となる。
【図面の簡単な説明】
【図1】ナトリウム−硫黄電池モジュールの構造の一例を示す断面図である。
【図2】従来技術と本発明とにおいて、ヒーターの電力消費期間と電池の放電可能出力を比較した模式図である。
【符号の説明】
1…ナトリウム−硫黄電池モジュール、3…ナトリウム−硫黄単電池、5…断熱容器、7…側面ヒーター、9…底面ヒーター、10…粒状防火材、11…角部。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a heater used to maintain a module including a plurality of sodium-sulfur cells in a predetermined temperature range.
[0002]
2. Description of the Related Art A sodium-sulfur battery has molten metal sodium as a cathode active material on one side and molten sulfur as an anode active material on the other side, and both have selective permeability to sodium ions. It is a high temperature secondary battery isolated by a β-alumina solid electrolyte. The electromotive force due to the battery reaction of this sodium-sulfur battery is about 2 V, so that a single cell does not reach the practical voltage.
For this reason, a sodium-sulfur battery module in which a predetermined number of cells are connected in series and parallel in an insulated container is formed and put to practical use. In addition, since the sodium-sulfur battery needs to be maintained in a predetermined temperature range in order to exhibit its function and performance during the operation period, a heater is arranged along the inner side surface and the bottom surface of the heat insulating container, and the heater is disposed on the heater. To maintain the battery temperature in an appropriate temperature range.
Normally, as a method of operating such a sodium-sulfur battery module, a method of charging and discharging for a predetermined time at night and discharging at a predetermined time in daytime, which is repeated daily, for the purpose of leveling the load of commercial power, is repeated every day. Has been adopted. Since the discharge reaction of the sodium-sulfur battery is an exothermic reaction, even if the set temperature of the heater is as low as 270 to 280 ° C., the composition of sodium polysulfide generated on the anode side has the highest melting point due to heat generation of the battery itself. Until the composition reaches the Na 2 S 4 composition (melting point: 285 ° C.), a temperature exceeding the melting point of sodium polysulfide can be maintained, and discharge is possible.
However, since the charging reaction is an endothermic reaction, when the set temperature of the heater is as low as 285 ° C. or lower, the Na to be returned to the cathode side is converted into a high melting point compound such as Na 2 S 4 in the positive electrode state. , The charge recoverability is reduced. In such a state, the target amount of discharge electricity cannot be obtained at the next discharge, and therefore it is necessary to maintain the temperature at 300 ° C. or higher at least during charging.
Conventionally, a heater set temperature is determined on the basis of a temperature required at the time of charging, and the heater set temperature (for example, 305 ° C.) is kept constant without changing over the entire charge / discharge cycle. (Prior art documents are not particularly found.)
[0007]
However, when the set temperature of the heater is constant as in the prior art, the heater is energized at the end of the charging period when the battery temperature is the lowest, and originally the power from the battery is reduced. Even after the start of discharge, where output is expected, the heater continues to be energized for a while and consumes heater power for a while, and it is sufficient in terms of battery charge and discharge efficiency, including heater power consumption. Did not give satisfactory results. In addition, since the heater power is consumed during the discharge, which is intended to output power from the battery, the power at the AC end (= battery power−heater power) decreases, and sufficient characteristics cannot be exhibited for load leveling. There was a point.
Further, conventionally, even when there is a period during which the sodium-sulfur battery module is not operated, such as a holiday such as Saturday and Sunday or a long holiday, the set temperature of the heater is set to be the same as the temperature during normal operation. Unnecessary heater power consumption occurs during the above-mentioned period, and there is also a problem that the annual battery efficiency is reduced.
The present invention has been made in view of such a conventional situation, and has as its object to reduce the power consumption of a heater used to maintain a sodium-sulfur battery module within a predetermined temperature range. By reducing the amount and improving the efficiency of the battery, it is possible to increase the dischargeable power of the battery during the day by shifting the power consumption period of the heater, which used to extend to the daytime, to nighttime. An object of the present invention is to provide a method for controlling a heater.
[0010]
According to the present invention, a plurality of sodium-sulfur cells are connected to each other and used to maintain a sodium-sulfur battery module housed in a heat insulating container within a predetermined temperature range. A method for controlling a heater, wherein at least a part of the heater is configured such that a set temperature of the heater from the end of discharging to the end of charging of the sodium-sulfur battery module is changed from the end of charging to the start of discharging. A method for controlling a heater for a sodium-sulfur battery module (1st invention), characterized in that the set temperature of the heater is reduced.
Further, according to the present invention, a method of controlling a heater used to maintain a sodium-sulfur battery module, which is connected to a plurality of sodium-sulfur cells and accommodated in a heat insulating container, in a predetermined temperature range. When the period during which the sodium-sulfur battery module is not operated is continuous for 24 hours or more, the set temperature of the heater during the period is set to the setting of the heater during the operation period of the sodium-sulfur battery module. A method for controlling a heater for a sodium-sulfur battery module (second invention), characterized in that the temperature is made lower than the temperature.
[0012]
FIG. 1 is a sectional view showing an example of the structure of a sodium-sulfur battery module. The sodium-sulfur battery module 1 is formed by connecting a plurality of sodium-sulfur single cells 3 to each other and storing them in a heat insulating container 5. Then, a heater for maintaining the sodium-sulfur battery module 1 in a predetermined temperature range is arranged in the heat-insulating container so that the module can normally exhibit its function. The heater usually includes a bottom heater 9 arranged along the bottom surface of the heat insulating container and a side heater 7 arranged along the inner surface. Each heater has a thermocouple (not shown) for measuring temperature. ) Are placed close to each other to control the temperature.
The gap in the heat insulating container 5 includes: (1) fixing of cells, (2) prevention of short circuit, (3) active material absorber in case of leakage of active material, (4) self-extinguishing in case of emergency. For the purpose of an oxygen barrier or the like, a granular fireproof material 10 having heat resistance, corrosion resistance and electrical insulation such as Cerven or silica sand is filled.
The particulate fire protection material 10 is desirably solidified with a binder in order to suppress the sedimentation caused by transportation and temperature rise and fall of the battery. By reducing the sedimentation by increasing the packing density of 10 or reducing the amount of binder used by solidifying with the binder only the particulate fireproof material filled in the upper part, particularly the corners 11 in the heat insulating container 5. Is also good.
According to a first aspect of the invention, there is provided a method of controlling a heater according to the first aspect, wherein at least a part of the heater in the sodium-sulfur battery module has a heater set temperature from the end of discharging to the end of charging of the sodium-sulfur battery module. On the other hand, the set temperature of the heater from the end of charge to the start of discharge is reduced, and preferably, the set temperature of the heater from the start of discharge to end of discharge is further reduced.
As described above, the charging reaction of a sodium-sulfur battery is an endothermic reaction, whereas the discharging reaction is an exothermic reaction. The cell itself generates heat during discharging. It is possible to lower the set temperature of the heater. Therefore, in the first invention, for at least a part of the heater, setting of the heater from the end of discharging to the end of charging of the sodium-sulfur battery module (charging period including a pause period from transition from discharging to charging). With respect to the temperature, the set temperature of the heater from the end of charge to the start of discharge (pause period from transition from charge to discharge) is lowered, and more preferably, from the start of discharge to end of discharge (discharge period). The set temperature of the heater was further lowered.
By doing so, during the discharge period when the output from the battery is expected, it is possible to maintain the set temperature of the heater by the self-heating of the battery without energizing the heater, thereby reducing the power consumption of the heater. As a result, the efficiency of the battery including the power consumption of the heater is improved. In addition, as shown in the schematic diagram of FIG. 2, the power consumption period (heating period) of the heater, which conventionally extends to the discharge period in the daytime, shifts to the end of charging, which is nighttime, so that the time period during the daytime is reduced. The substantial dischargeable output is increased.
In implementing this control method, for example, the start of discharge, the end of discharge, and the end of charge of the sodium-sulfur battery module are detected, and the set temperature of the heater is changed at the time of detection. Techniques can be employed. In addition, when the sodium-sulfur battery module is operated according to a fixed schedule, the sodium-sulfur battery module is controlled according to the predetermined times at the start of discharge, the end of discharge, and the end of charge of the sodium-sulfur battery module predetermined in the schedule. Alternatively, the set temperature of the heater may be changed.
The method for controlling a heater according to the second aspect of the present invention is the method of controlling the heater in the above-described sodium-sulfur battery module when the sodium-sulfur battery module is not operated for a continuous period of 24 hours or more. The set temperature is set lower than the set temperature of the heater during the operation period of the sodium-sulfur battery module.
Since the sodium-sulfur battery is a high-temperature operation type battery, after the sulfur as the anode active material solidifies at about 120 ° C. when the temperature is lowered, if the temperature further decreases, the sulfur, the anode container, the β-alumina solid electrolyte tube Due to the difference in the coefficient of thermal expansion of the battery components, stress may be generated and deformation may occur.
However, in the temperature range where sulfur as the anode active material does not solidify, such stress does not occur. Therefore, a period during which the sodium-sulfur battery module is not operated such as a holiday such as Saturday and Sunday or a long vacation is continuously performed. If the time is longer than 24 hours, the set temperature of the heater during that period can be lowered in a temperature range where the anode active material does not solidify, as compared with during a normal operation period.
By changing the heater set temperature during the period when the sodium-sulfur battery module is not operated, the power consumption of the heater during the period is reduced as compared with the conventional method in which the heater set temperature is always kept constant. In addition, it is possible to improve the annual battery efficiency.
The range in which the set temperature of the heater is lowered is a temperature range in which sulfur as the anode active material does not solidify as described above, and can be returned to a temperature at which discharge can be immediately performed by the next operation start. It is important to set the temperature range. As a specific heater set temperature, for example, when the operation is stopped for 2 days such as Saturday and Sunday, the operation is stopped up to about 250 ° C. for 4 days or more. Can be lowered to about 150 ° C.
[0024]
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0025]
(Example 1)
In the sodium-sulfur battery module having the structure as shown in FIG. 1 (320 cells, PCS = 95%, 360 kWh discharge), the set temperatures of the side heater 7 and the bottom heater 9 are discharged from the start of the discharge. Until the end, (2) from the end of the discharge to the end of the charge, (3) from the end of the charge to the start of the discharge, the heater is operated while controlling as shown in Table 1 in each period. The power consumption, charge / discharge efficiency, maximum temperature and discharge output were measured. Table 2 shows the results.
[0026]
(Comparative Example 1)
In the same sodium-sulfur battery module as in Example 1, the operation was performed with the set temperatures of the side heater and the bottom heater fixed at 305 ° C., and the power consumption of the heater per cycle, charge / discharge efficiency, maximum temperature and discharge. The output was measured. Table 2 shows the results.
[0027]
[Table 1]
Figure 2004111123
[0028]
[Table 2]
Figure 2004111123
As shown in Table 2, the set temperature of the heater from the end of charge to the start of discharge was lowered from the set temperature of the heater from the end of discharge to the end of charge of the sodium-sulfur battery module, and the start of discharge was performed. Example 1 in which the set temperature of the heater from the time to the end of the discharge was further reduced, compared with Comparative Example 1 in which the set temperature of the heater was constant without changing over the entire charge / discharge cycle, compared with Comparative Example 1. The amount of power has been halved, and the charging and discharging efficiency has improved. Also, regarding the discharge output, since the heater power during discharge was 0, the output was improved from the conventional output of 44 kW (= battery output of 50 kW-heater power of 6 kW) to 50 kW in the present invention.
[0030]
(Example 2)
In the same sodium-sulfur battery module as in Example 1, the operation was suspended for two days on Saturday and Sunday, and the set temperatures of the side heater and the bottom heater during this period were set to 265 higher than the freezing point of the anode active material. ° C, and the temperature adjustment programming is performed so that the set temperature of the side heater returns to the set temperature at the time of normal operation such that the set temperature of the side heater is 295 ° C and the set temperature of the bottom heater is 305 ° C between 0 and 7 o'clock on the following Monday. The power consumption of the heater for the two days was measured. Table 3 shows the results.
[0031]
(Comparative Example 2)
In the same sodium-sulfur battery module as in Example 1, the operation was suspended for two days on Saturday and Sunday, and the side heaters were changed without changing the heater set temperature during this period from the normal operation set temperature. With the set temperature set to 295 ° C. and the set temperature of the bottom heater set to 305 ° C., the power consumption of the heater for the two days was measured. Table 3 shows the results.
[0032]
[Table 3]
Figure 2004111123
As shown in Table 3, in the second embodiment in which the set temperature of the heater during the suspension period of the sodium-sulfur battery module is set lower than the set temperature of the heater during the suspension period, the operation of the sodium-sulfur battery module during the suspension period is also reduced. Heater power consumption can be reduced by about 15 kWh in two days on Saturday and Sunday compared to Comparative Example 2 in which the same heater set temperature was maintained during the operation period, and the overall efficiency related to battery operation was reduced to about 0. .5%.
[0034]
(Example 3)
In the same sodium-sulfur battery module as in the first embodiment, Saturday and Sunday, and a long vacation period of 4 days or more (December 30 to January 6, April 27 to May 5, and August 12) The operation was suspended on August 16), and the set temperatures of the side and bottom heaters during this period were lowered to 250 ° C for Saturday and Sunday, and to 150 ° C for a long vacation period of 4 days or more. The temperature adjustment programming is performed so that the temperature returns to 300 ° C., which is the set temperature of the normal operation, between 0 and 7 o'clock on the next operation resumption day, and the heat release during the suspension period is measured, and the heater control is performed in this manner. Then, the annual efficiency of the sodium-sulfur battery module was calculated. Table 4 shows the results.
[0035]
(Comparative Example 3)
In the same sodium-sulfur battery module as in the first embodiment, Saturday and Sunday, and a long vacation period of 4 days or more (December 30 to January 6, April 27 to May 5, and August 12) -August 16), the operation was suspended, and the set temperature of the side heater and the bottom heater during this period was kept unchanged from the set temperature of 300 ° C. which is the normal operation temperature, and the heat release amount during the stop period Was measured, and the annual efficiency of the sodium-sulfur battery module when the heater was controlled in this manner was determined. Table 4 shows the results.
[0036]
[Table 4]
Figure 2004111123
As shown in Table 4, in Example 3 in which the set temperature of the heater during the suspension period of the sodium-sulfur battery module was set lower than the set temperature of the heater during the suspension period, the embodiment 3 was also used during the suspension period. Compared to Comparative Example 3 in which the same heater set temperature was maintained during the operation period, the amount of heat radiation during the suspension period was significantly reduced, and the annual efficiency was improved.
[0038]
As described above, according to the present invention, the power consumption of the heater used to maintain the sodium-sulfur battery module in a predetermined temperature range is reduced, thereby reducing the battery operation. Overall efficiency can be improved. In addition, by shifting the power consumption period of the heater, which conventionally extends to the daytime period, to nighttime, it becomes possible to increase the dischargeable power of the battery in the daytime.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of the structure of a sodium-sulfur battery module.
FIG. 2 is a schematic diagram comparing a power consumption period of a heater and a dischargeable output of a battery in the prior art and the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sodium-sulfur battery module, 3 ... Sodium-sulfur cell, 5 ... Insulated container, 7 ... Side heater, 9 ... Bottom heater, 10 ... Granular fireproof material, 11 ... Corner.

Claims (5)

複数のナトリウム−硫黄単電池を接続して断熱容器に収容してなるナトリウム−硫黄電池モジュールを所定の温度範囲に維持するために用いられるヒーターの制御方法であって、
前記ヒーターの少なくとも一部について、前記ナトリウム−硫黄電池モジュールの放電終了時から充電終了時までの前記ヒーターの設定温度に対して、充電終了時から放電開始時までの前記ヒーターの設定温度を下げることを特徴とするナトリウム−硫黄電池モジュール用ヒーターの制御方法。
A method for controlling a heater used to maintain a sodium-sulfur battery module connected to a plurality of sodium-sulfur single cells and housed in an insulated container in a predetermined temperature range,
For at least a part of the heater, lowering the set temperature of the heater from the end of charge to the start of discharge with respect to the set temperature of the heater from the end of discharge to the end of charge of the sodium-sulfur battery module. A method for controlling a heater for a sodium-sulfur battery module, comprising:
前記ナトリウム−硫黄電池モジュールの放電終了時から充電終了時までの前記ヒーターの設定温度に対して、充電終了時から放電開始時までの前記ヒーターの設定温度を下げ、放電開始時から放電終了時までの前記ヒーターの設定温度を更に下げるようにした請求項1記載のナトリウム−硫黄電池モジュール用ヒーターの制御方法。For the set temperature of the heater from the end of discharge to the end of charge of the sodium-sulfur battery module, lower the set temperature of the heater from the end of charge to the start of discharge, from the start of discharge to the end of discharge. The method for controlling a heater for a sodium-sulfur battery module according to claim 1, wherein the set temperature of the heater is further lowered. 前記ナトリウム−硫黄電池モジュールの放電開始時、放電終了時及び充電終了時を検知し、それら検知した時点で前記ヒーターの設定温度を変更する請求項1又は2に記載のナトリウム−硫黄電池モジュール用ヒーターの制御方法。The heater for a sodium-sulfur battery module according to claim 1, wherein the start of discharge, the end of discharge, and the end of charge of the sodium-sulfur battery module are detected, and the set temperature of the heater is changed at the time of the detection. Control method. 前記ナトリウム−硫黄電池モジュールを一定のスケジュールで運転し、当該スケジュールにおいて予め決められた前記ナトリウム−硫黄電池モジュールの放電開始時、放電終了時及び充電終了時のそれぞれの時間に合わせて前記ヒーターの設定温度を変更する請求項1又は2に記載のナトリウム−硫黄電池モジュール用ヒーターの制御方法。The sodium-sulfur battery module is operated according to a fixed schedule, and the heater is set in accordance with a predetermined time of the sodium-sulfur battery module at the start of discharge, the end of discharge, and the end of charge of the schedule. The method for controlling a heater for a sodium-sulfur battery module according to claim 1 or 2, wherein the temperature is changed. 複数のナトリウム−硫黄単電池を接続して断熱容器に収容してなるナトリウム−硫黄電池モジュールを所定の温度範囲に維持するために用いられるヒーターの制御方法であって、
前記ナトリウム−硫黄電池モジュールを運転しない期間が連続して24時間以上有る場合に、当該期間中の前記ヒーターの設定温度を、前記ナトリウム−硫黄電池モジュールの運転期間中の前記ヒーターの設定温度よりも下げるようにしたことを特徴とするナトリウム−硫黄電池モジュール用ヒーターの制御方法。
A method for controlling a heater used to maintain a sodium-sulfur battery module connected to a plurality of sodium-sulfur single cells and housed in an insulated container in a predetermined temperature range,
When the period during which the sodium-sulfur battery module is not operated is continuously 24 hours or more, the set temperature of the heater during the period is set to be lower than the set temperature of the heater during the operation period of the sodium-sulfur battery module. A method for controlling a heater for a sodium-sulfur battery module, wherein the heater is lowered.
JP2002269614A 2002-09-17 2002-09-17 Control method of heater for sodium-sulfur battery module Expired - Fee Related JP4313011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269614A JP4313011B2 (en) 2002-09-17 2002-09-17 Control method of heater for sodium-sulfur battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269614A JP4313011B2 (en) 2002-09-17 2002-09-17 Control method of heater for sodium-sulfur battery module

Publications (2)

Publication Number Publication Date
JP2004111123A true JP2004111123A (en) 2004-04-08
JP4313011B2 JP4313011B2 (en) 2009-08-12

Family

ID=32267501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269614A Expired - Fee Related JP4313011B2 (en) 2002-09-17 2002-09-17 Control method of heater for sodium-sulfur battery module

Country Status (1)

Country Link
JP (1) JP4313011B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082528A1 (en) 2009-01-13 2010-07-22 日本碍子株式会社 Temperature increasing method for sodium-sulfur battery
WO2011074330A1 (en) * 2009-12-15 2011-06-23 日本碍子株式会社 Control device for secondary battery, and control method for secondary battery
WO2015000683A1 (en) * 2013-07-03 2015-01-08 Robert Bosch Gmbh Control device and method for operating a high-temperature battery
JPWO2013141090A1 (en) * 2012-03-19 2015-08-03 日産自動車株式会社 Battery temperature control device
US9660305B2 (en) 2011-08-19 2017-05-23 Ngk Insulators, Ltd. Method of controlling storage battery, apparatus for controlling storage battery, and electric power control system
US10333184B2 (en) 2015-09-09 2019-06-25 General Electric Company Heat flux assembly for an energy storage device
CN112977172A (en) * 2021-04-30 2021-06-18 重庆长安新能源汽车科技有限公司 Electric automobile and power battery pulse heating control system and control method thereof
JPWO2021187125A1 (en) * 2020-03-18 2021-09-23
JP7129017B1 (en) 2021-12-27 2022-09-01 株式会社Gsユアサ BATTERY BOX, DC POWER SUPPLY DEVICE, AND METHOD FOR MANUFACTURING BATTERY BOX
WO2022255099A1 (en) * 2021-05-31 2022-12-08 日本碍子株式会社 Unit battery and module battery for high-temperature-operation secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988705B (en) * 2019-11-29 2020-10-13 清华大学 Method for testing reliability of thermal insulation material of battery module and verification method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282719A (en) * 2009-01-13 2011-12-14 日本碍子株式会社 Temperature increasing method for sodium-sulfur battery
US8257846B2 (en) 2009-01-13 2012-09-04 Ngk Insulators, Ltd. Temperature increasing method for sodium-sulfur battery
WO2010082528A1 (en) 2009-01-13 2010-07-22 日本碍子株式会社 Temperature increasing method for sodium-sulfur battery
EP2515408A4 (en) * 2009-12-15 2015-11-11 Ngk Insulators Ltd Control device for secondary battery, and control method for secondary battery
WO2011074330A1 (en) * 2009-12-15 2011-06-23 日本碍子株式会社 Control device for secondary battery, and control method for secondary battery
CN102612792A (en) * 2009-12-15 2012-07-25 日本碍子株式会社 Control device for secondary battery, and control method for secondary battery
US8796994B2 (en) 2009-12-15 2014-08-05 Ngk Insulators, Ltd. Control apparatus for secondary battery and control method for secondary battery
JP5597208B2 (en) * 2009-12-15 2014-10-01 日本碍子株式会社 Secondary battery control device and secondary battery control method
US9660305B2 (en) 2011-08-19 2017-05-23 Ngk Insulators, Ltd. Method of controlling storage battery, apparatus for controlling storage battery, and electric power control system
JPWO2013141090A1 (en) * 2012-03-19 2015-08-03 日産自動車株式会社 Battery temperature control device
US9991568B2 (en) 2012-03-19 2018-06-05 Nissan Motor Co., Ltd. Battery-temperature adjustment apparatus
WO2015000683A1 (en) * 2013-07-03 2015-01-08 Robert Bosch Gmbh Control device and method for operating a high-temperature battery
US10333184B2 (en) 2015-09-09 2019-06-25 General Electric Company Heat flux assembly for an energy storage device
JPWO2021187125A1 (en) * 2020-03-18 2021-09-23
WO2021187125A1 (en) * 2020-03-18 2021-09-23 日本碍子株式会社 Sodium–sulfur battery control device and sodium–sulfur battery control method
JP7316445B2 (en) 2020-03-18 2023-07-27 日本碍子株式会社 SODIUM-SULFUR BATTERY CONTROL DEVICE AND SODIUM-SULFUR BATTERY CONTROL METHOD
CN112977172A (en) * 2021-04-30 2021-06-18 重庆长安新能源汽车科技有限公司 Electric automobile and power battery pulse heating control system and control method thereof
CN112977172B (en) * 2021-04-30 2022-05-03 重庆长安新能源汽车科技有限公司 Electric automobile and power battery pulse heating control system and control method thereof
WO2022255099A1 (en) * 2021-05-31 2022-12-08 日本碍子株式会社 Unit battery and module battery for high-temperature-operation secondary battery
JP7129017B1 (en) 2021-12-27 2022-09-01 株式会社Gsユアサ BATTERY BOX, DC POWER SUPPLY DEVICE, AND METHOD FOR MANUFACTURING BATTERY BOX
JP2023096411A (en) * 2021-12-27 2023-07-07 株式会社Gsユアサ Storage battery box, dc power supply device, and method for manufacturing storage battery box

Also Published As

Publication number Publication date
JP4313011B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP2004111123A (en) Method for controlling heater for sodium-sulfur battery module
CN1213498C (en) Thermal Battery with improved performance
Dustmann Advances in ZEBRA batteries
RU2561724C2 (en) Power source for street lighting based on solar panels
EP3264517B1 (en) Storage battery control device
JP2008283854A (en) Method for charging storage element of autonomous system
US3506492A (en) Solid electrolyte battery having lithium or lithium alloy anode
Parthasarathy et al. High temperature sodium-zinc chloride batteries with sodium beta-alumina solid electrolyte
RU2031491C1 (en) Method of thermal control over high-temperature storage battery
WO2009035778A1 (en) High temperature fuel cell system with an electrical heater
Landgrebe et al. Battery storage in residential applications of energy from photovoltaic sources
Lodhi et al. Time-dependent BASE performance and power degradation in AMTEC
US4156057A (en) Secondary heat system for thermal batteries
JP3617084B2 (en) Floating charging method for sealed lead-acid batteries
CN108493522A (en) A kind of temperature adjusting method of liquid metal cell in stored energy application
KR101075145B1 (en) NaS battery module
JP2000251931A (en) High temperature sodium secondary battery system and its operating method
JP2931581B1 (en) Temperature control system for sodium-sulfur battery
JP3218177B2 (en) Operating method of battery system using sodium-sulfur battery
JP2968659B2 (en) Insulation structure of assembled battery
JP2003017135A (en) Midnight power shifting device
JP2001085074A (en) Sodium-sulfur battery module
JP2005149775A (en) Sodium secondary battery module
JPH09233705A (en) Decentralized power generation system
JPH09251866A (en) Method for operating battery system using sodium-sulfur battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4313011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees