JP3616909B2 - Method for producing monodispersed solid fine particles - Google Patents

Method for producing monodispersed solid fine particles Download PDF

Info

Publication number
JP3616909B2
JP3616909B2 JP36925699A JP36925699A JP3616909B2 JP 3616909 B2 JP3616909 B2 JP 3616909B2 JP 36925699 A JP36925699 A JP 36925699A JP 36925699 A JP36925699 A JP 36925699A JP 3616909 B2 JP3616909 B2 JP 3616909B2
Authority
JP
Japan
Prior art keywords
fine particles
solid fine
emulsion
composition
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36925699A
Other languages
Japanese (ja)
Other versions
JP2001181309A (en
Inventor
光敏 中嶋
浩志 鍋谷
央乙 伊藤
克典 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP36925699A priority Critical patent/JP3616909B2/en
Publication of JP2001181309A publication Critical patent/JP2001181309A/en
Application granted granted Critical
Publication of JP3616909B2 publication Critical patent/JP3616909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医薬、化粧品、液晶表示装置用スペーサ、標準粒子、分析用充填材、診断薬の担体、各種標識材等に用いられる単分散固体微粒子の製造方法に関する。
【0002】
【従来の技術】
固体微粒子の製造方法としては従来から懸濁重合法や乳化重合法が知られている。懸濁重合法は、エマルションの分散相を重合させて固体微粒子を合成する方法であり、乳化重合法は、界面活性剤ミセル中で重合反応を行うことにより固体微粒子を合成する方法である。
【0003】
このような懸濁重合法では、作製される固体微粒子の粒径分布は重合前のエマルションの粒径分布に依存するため、単分散固体微粒子を作製することが困難である。また、乳化重合法で通常合成できる固体微粒子の粒径は0.1μm程度であり、数μm以上の固体微粒子の合成は困難である。
【0004】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、粒径が数μm以上の単分散固体微粒子の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、反応性モノマーを重合させてなる単分散固体微粒子を製造する方法であって、(1)反応性モノマーを含む分散相用組成物を加圧し、上記分散相用組成物をマイクロチャネルを介して連続相中に分散せしめてエマルションを生成する工程、(2)上記エマルションを重合させることにより固体微粒子のサスペンジョンを作製する工程、及び、(3)上記サスペンジョンから連続相を除去することにより固体微粒子を回収する工程からなる単分散固体微粒子の製造方法である。
以下に本発明を詳述する。
【0006】
本発明の単分散固体微粒子の製造方法は、反応性モノマーを重合させてなる。
上記反応性モノマーとしては、エマルションを生成して重合によって固体微粒子を作製することができるものであれば特に限定されず、例えば、炭素−炭素二重結合を有する重合性モノマー等が挙げられ、固体微粒子の用途に応じて適宜選定すればよい。
【0007】
本発明の単分散固体微粒子の製造方法は、(1)、(2)及び(3)の工程からなる。
上記(1)の工程は、反応性モノマーを含む分散相用組成物を加圧し、上記分散相用組成物をマイクロチャネルを介して連続相中に分散せしめてエマルションを生成する工程である。
上記反応性モノマーを含む分散相用組成物は、反応性モノマー以外の成分を含んでいてもよい。
【0008】
上記(1)の工程において、固体微粒子の単分散性を良好とするため、界面活性剤を連続相若しくは分散相用組成物のいずれか又は両方に添加することが好ましい。
上記界面活性剤としては特に限定されず、例えば、反応性モノマーの種類、連続相の種類、固体微粒子の用途等に応じて適宜選定すればよい。
上記反応性モノマーを含む分散相用組成物を加圧する圧力としては特に限定されず、例えば、分散相に要求される大きさ;製造効率等に応じて適宜設定すればよい。
【0009】
上記マイクロチャネルとは、分散相用組成物を連続相中に分散せしめて分散相を形成させることができる一定の形状からなる間隙を意味する。
上記マイクロチャネルは、製造効率が向上することから、多数の一定の形状からなる間隙により形成されていることが好ましい。
上記分散相用組成物をマイクロチャネルを介して連続相中に分散せしめることにより、分散相用組成物を連続相中で均一な大きさの微粒子(マイクロスフィア)からなる分散相とすることができる。
上記(1)の工程において、エマルションを生成する装置としては特に限定されず、例えば、本出願人が特願平11−78862号で提案した装置等を使用することができる。
【0010】
上記(2)の工程は、上記エマルションを重合させることにより固体微粒子のサスペンジョンを作製する工程である。
上記(2)の工程において、エマルションを重合させることにより分散相を形成する微粒子を固化して固体微粒子のサスペンジョンを作製することができる。
上記エマルションの重合方法としては特に限定されず、例えば、エマルションに重合開始剤を添加してから温度を上昇させる方法;あらかじめ重合開始剤を分散相用組成物に溶解させておいて(1)の工程でエマルションを作製した後、温度を上昇させる方法;光重合開始剤を用いて特定波長の光を照射する方法等が挙げられ、反応性モノマーの種類、反応性、用途等により適宜選定すればよい。
【0011】
上記重合においては、重合時に粒子同士の合着を防止するため、エマルションに分散剤を添加してから重合することが好ましい。また、(1)の工程におけるエマルション生成時に、分散相用組成物若しくは連続相のいずれか又は両方に分散剤を添加することもできる。
【0012】
上記(3)の工程は、上記サスペンジョンから連続相を除去することにより固体微粒子を回収する工程である。
上記(3)の工程において、サスペンジョンから連続相を除去し、固体微粒子を回収する方法としては特に限定されず、例えば、真空乾燥法、噴霧乾燥法等の乾燥方法を用いることができる。また、固体微粒子の用途によって、未反応モノマー、界面活性剤、分散剤等が残存すると問題がある場合は、連続相を除去する前に、抽出操作等により固体微粒子を洗浄することが好ましい。
【0013】
本発明の単分散固体微粒子の製造方法は、数μm以上の単分散固体微粒子を製造することができる。
上記単分散固体微粒子は、医薬、化粧品、液晶表示装置用スペーサ、標準粒子、分析用充填剤、診断薬の担体、各種標識材等に用いることができるものである。
【0014】
本発明2は、反応性モノマーを重合させてなる液晶表示装置用スペーサを製造する方法であって、(1)反応性モノマーを含む分散相用組成物を加圧し、上記分散相用組成物をマイクロチャネルを介して連続相中に分散せしめてエマルションを生成する工程、(2)上記エマルションを重合させることにより固体微粒子のサスペンジョンを作製する工程、及び、(3)上記サスペンジョンから連続相を除去することにより液晶表示装置用スペーサを固体微粒子として回収する工程からなる液晶表示装置用スペーサの製造方法である。
【0015】
本発明2の液晶表示装置用スペーサの製造方法は、本発明1の単分散固体微粒子の製造方法と同様にして行うことができる。
本発明2の液晶表示装置用スペーサの製造方法により得られた液晶表示装置用スペーサは、粒径が数μm以上で単分散性にも優れるものである。
上記液晶表示装置用スペーサにより、液晶層の厚み(セルギャップ)が均一で表示ムラ等の欠陥の少ない液晶表示装置を得ることができる。
【0016】
【発明の実施の形態】
以下に本発明の一実施形態を図1〜5に基づいて説明する。
図1は本発明の単分散固体微粒子の製造方法の概略を工程順に示したブロック図である。
上記ブロック図によれば、先ず、反応性モノマーを含む分散相用組成物を用意する。次いで、(1)工程として、この分散相用組成物を加圧し、上記分散相用組成物をマイクロチャネルを介して水等の連続相中に分散せしめてマイクロチャネル乳化を行って、単分散エマルションを生成する。次いで、(2)工程として、単分散エマルションを加熱等により重合させて単分散サスペンジョンとする。この後、(3)工程として、単分散サスペンジョンから連続相を乾燥除去して単分散固体微粒子を回収する。
【0017】
以下に単分散エマルションを生成する装置の一例を図2〜5に基づいて説明する。ここで、図2は、エマルション生成装置の全体断面図、図3は、同じエマルション生成装置の要部の拡大模式図であり、図4(a)は、エマルション生成装置における基板の平面図、(b)は、エマルション生成装置における基板の裏面図であり、図5は、マイクロチャネルの部分の拡大斜視図である。
【0018】
図2〜5において、エマルション生成装置は本体1を恒温槽2につなげて本体1の温度を所定の温度に制御可能としている。そして、本体1の一方の開口にガラス板等から構成されるプレート3を嵌め込み、他方の開口に蓋体4を嵌め込み、蓋体4の中央に分散相用組成物(O)の供給口5を形成し、蓋体4の中央から外れた箇所(図では上方)に連続相(W)の供給口6を形成し、更に蓋体4の中央から外れた箇所(図では下方)にエマルション(E)の取出口7を形成している。
【0019】
そして、分散相用組成物(O)の供給口5には配管を介して分散相用組成物リザーバ8を接続し、配管の周囲にはヒータ9を設け、また、連続相(W)の供給口6には配管を介して連続相リザーバ10を接続し、更にエマルション(E)の取出口7には回収用配管11を接続している。ここで、分散相用組成物リザーバ8及び連続相リザーバ10は上下位置の調整が可能であり、水位差による加圧が行えるよう分散相用組成物(O)に作用する圧力及び連続相(W)に作用する圧力がそれぞれ調整できる構成になっている。
【0020】
また、プレート3と蓋体4との間の空間には基板12が配置されている。基板12の中央には開口13が形成され、基板12のプレート3に対向する正面側には開口13を矩形状に囲むように突条14が形成され、この突条14の上面を平坦なテラス15にし、このテラス15上に突部16を一定間隔で多数形成し、これら突部16、16間をマイクロチャネル17としている。
マイクロチャネル17の寸法としては、例えば幅16μm、高さ2μm、テラス長さ30μmとする。また、マイクロチャネル17を含む突条14の形成方法としては、ウェットエッチング又はドライエッチングが適当である。
【0021】
更に、基板12と蓋体4の間にはOリング等の隔壁部材18を介在させ、この隔壁部材18の弾発力(弾性力)で上記突部16をプレート3内側に当接している。そして、隔壁部材18にて囲まれる内側領域には上記分散相用組成物(O)の供給口5が開口し、外側領域には連続相(W)の供給口6及びエマルション(E)の取出口7が開口している。尚、プレート3の外側には、ビデオシステムに繋がるカメラ19が配置されている。
【0022】
単分散エマルションを生成する装置としては、上記の構成に限定されるものではない。例えば、図1〜5の例にあっては、プレート3、蓋体4及び基板12を縦方向に配置したが、これらを水平方向に配置してもよい。また、他の装置としては、ケース内に基板を配置し、この基板とプレートとの間に連続相の流路を形成し、この流路に対し交差する方向に開口するマイクロチャネルを上記基板に形成し、流動状態にある連続相に対して交差する方向から分散相用組成物を供給するクロスフロータイプとしてもよい。
【0023】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0024】
分散相用組成物として、ラジカル重合開始剤である過酸化ベンゾイルの25%含水物を2%の濃度で溶解したジビニルベンゼンを用い、連続相に0.3%ドデシルベンゼンスルホン酸ナトリウム水溶液を用いて常温でマイクロチャネル乳化を行った。分散相用組成物の供給圧力は4.9〜6.9kPa(0.05〜0.07kg/cm )の範囲とした。生成したエマルション100部を2%ポリビニルアルコール溶液100部と攪拌混合した後、90℃で反応を行った。この後、このサスペンジョンを乾燥して白色の固体微粒子を得た。得られた微粒子は平均粒径が16.4μmで、標準偏差が1.18μmであった。
【0025】
【発明の効果】
本発明の固体微粒子の製造方法は、上述の構成からなるので、液晶表示装置用スペーサ等に用いることができる粒径が数μm以上の単分散固体微粒子を製造することができる。
【図面の簡単な説明】
【図1】本発明の概略を工程順に示したブロック図である。
【図2】本発明の一実施形態として用いるエマルション生成装置の全体図である。
【図3】図2のエマルション生成装置における要部の拡大模式図である。
【図4】(a)は、図2のエマルション生成装置における基板の平面図である。
(b)は、図2のエマルション生成装置における基板の裏面図である。
【図5】図2のエマルション生成装置におけるマイクロチャネルの部分の拡大斜視図である。
【符号の説明】
1 エマルション生成装置本体
2 恒温槽
3 プレート
4 蓋体
5 分散相用組成物(O)の供給口
6 連続相(W)の供給口
7 エマルション(E)の取出口
8 分散相用組成物リザーバ
9 ヒータ
10 連続相リザーバ
11 回収用配管
12 基板
13 開口
14 突条
15 テラス
16 突部
17 マイクロチャネル
18 隔壁部材
19 ビデオカメラ
20 分散相用組成物(O)
21 連続相(W)
22 マイクロスフィア
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing monodispersed solid fine particles used for pharmaceuticals, cosmetics, spacers for liquid crystal display devices, standard particles, analytical fillers, carriers for diagnostic agents, various labeling materials and the like.
[0002]
[Prior art]
Conventionally known methods for producing solid fine particles include suspension polymerization and emulsion polymerization. The suspension polymerization method is a method of synthesizing solid fine particles by polymerizing the dispersed phase of the emulsion, and the emulsion polymerization method is a method of synthesizing solid fine particles by performing a polymerization reaction in a surfactant micelle.
[0003]
In such a suspension polymerization method, it is difficult to produce monodispersed solid fine particles because the particle size distribution of the produced solid fine particles depends on the particle size distribution of the emulsion before polymerization. The particle size of solid fine particles that can be usually synthesized by emulsion polymerization is about 0.1 μm, and it is difficult to synthesize solid fine particles of several μm or more.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing monodispersed solid fine particles having a particle size of several μm or more in view of the above-described present situation.
[0005]
[Means for Solving the Problems]
The present invention relates to a method for producing monodispersed solid fine particles obtained by polymerizing a reactive monomer, and (1) pressurizing the composition for a dispersed phase containing the reactive monomer, (2) a step of producing a suspension of solid fine particles by polymerizing the emulsion, and (3) removing the continuous phase from the suspension. A method for producing monodispersed solid fine particles comprising a step of collecting solid fine particles.
The present invention is described in detail below.
[0006]
The method for producing monodispersed solid fine particles of the present invention is obtained by polymerizing a reactive monomer.
The reactive monomer is not particularly limited as long as it can produce an emulsion and produce solid fine particles by polymerization, and examples thereof include a polymerizable monomer having a carbon-carbon double bond, and a solid What is necessary is just to select suitably according to the use of microparticles | fine-particles.
[0007]
The method for producing monodispersed solid fine particles of the present invention comprises the steps (1), (2) and (3).
The step (1) is a step of generating an emulsion by pressurizing the composition for the dispersed phase containing the reactive monomer and dispersing the composition for the dispersed phase in the continuous phase through the microchannel.
The composition for dispersed phase containing the reactive monomer may contain components other than the reactive monomer.
[0008]
In the step (1), in order to improve the monodispersity of the solid fine particles, it is preferable to add a surfactant to either or both of the continuous phase and the composition for the dispersed phase.
It does not specifically limit as said surfactant, For example, what is necessary is just to select suitably according to the kind of reactive monomer, the kind of continuous phase, the use of a solid fine particle, etc.
The pressure for pressurizing the composition for a dispersed phase containing the reactive monomer is not particularly limited, and may be appropriately set depending on, for example, the size required for the dispersed phase;
[0009]
The microchannel means a gap having a certain shape in which a dispersed phase composition can be dispersed in a continuous phase to form a dispersed phase.
The microchannel is preferably formed by a large number of gaps having a certain shape because the manufacturing efficiency is improved.
By dispersing the composition for a dispersed phase in a continuous phase through a microchannel, the composition for a dispersed phase can be made into a dispersed phase composed of fine particles (microspheres) having a uniform size in the continuous phase. .
In the step (1), the apparatus for producing the emulsion is not particularly limited, and for example, the apparatus proposed by the present applicant in Japanese Patent Application No. 11-78862 can be used.
[0010]
The step (2) is a step of producing a suspension of solid fine particles by polymerizing the emulsion.
In the step (2), the fine particles forming the dispersed phase can be solidified by polymerizing the emulsion to produce a suspension of solid fine particles.
The method for polymerizing the emulsion is not particularly limited. For example, a method of increasing the temperature after adding a polymerization initiator to the emulsion; the polymerization initiator is dissolved in the composition for dispersed phase in advance (1) A method of increasing the temperature after preparing an emulsion in the process; a method of irradiating light of a specific wavelength using a photopolymerization initiator, and the like can be mentioned. Good.
[0011]
In the above polymerization, it is preferable to perform polymerization after adding a dispersant to the emulsion in order to prevent coalescence of particles during polymerization. Moreover, a dispersing agent can also be added to either or both of the composition for dispersed phase and the continuous phase at the time of emulsion formation in the step (1).
[0012]
The step (3) is a step of recovering solid fine particles by removing the continuous phase from the suspension.
In the step (3), the method for removing the continuous phase from the suspension and collecting the solid fine particles is not particularly limited. For example, a drying method such as a vacuum drying method or a spray drying method can be used. Further, when there is a problem that unreacted monomer, surfactant, dispersant, etc. remain depending on the use of the solid fine particles, it is preferable to wash the solid fine particles by an extraction operation or the like before removing the continuous phase.
[0013]
The method for producing monodispersed solid fine particles of the present invention can produce monodispersed solid fine particles of several μm or more.
The monodispersed solid fine particles can be used for pharmaceuticals, cosmetics, liquid crystal display spacers, standard particles, analytical fillers, diagnostic carrier, various labeling materials, and the like.
[0014]
The present invention 2 is a method for producing a spacer for a liquid crystal display device by polymerizing a reactive monomer, and (1) pressurizing the composition for a dispersed phase containing the reactive monomer, A step of producing an emulsion by dispersing in a continuous phase via a microchannel, (2) a step of producing a suspension of solid fine particles by polymerizing the emulsion, and (3) removing the continuous phase from the suspension. This is a method for producing a spacer for a liquid crystal display device comprising a step of recovering the spacer for a liquid crystal display device as solid fine particles.
[0015]
The method for producing a spacer for a liquid crystal display device of the present invention 2 can be carried out in the same manner as the method for producing monodispersed solid fine particles of the present invention 1.
The spacer for a liquid crystal display device obtained by the method for producing a spacer for a liquid crystal display device of the present invention 2 has a particle size of several μm or more and excellent monodispersibility.
With the liquid crystal display device spacer, a liquid crystal display device having a uniform liquid crystal layer thickness (cell gap) and few defects such as display unevenness can be obtained.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a block diagram showing an outline of the method for producing monodispersed solid fine particles of the present invention in the order of steps.
According to the block diagram, first, a composition for a dispersed phase containing a reactive monomer is prepared. Next, as the step (1), this dispersed phase composition is pressurized, and the above dispersed phase composition is dispersed in a continuous phase such as water via a microchannel, and microchannel emulsification is performed to obtain a monodispersed emulsion. Is generated. Next, as step (2), the monodispersed emulsion is polymerized by heating or the like to form a monodispersed suspension. Thereafter, as step (3), the continuous phase is removed by drying from the monodispersed suspension to recover monodispersed solid fine particles.
[0017]
Below, an example of the apparatus which produces | generates a monodispersed emulsion is demonstrated based on FIGS. Here, FIG. 2 is an overall cross-sectional view of the emulsion generating apparatus, FIG. 3 is an enlarged schematic view of the main part of the same emulsion generating apparatus, and FIG. 4A is a plan view of a substrate in the emulsion generating apparatus. b) is a back view of the substrate in the emulsion generating apparatus, and FIG. 5 is an enlarged perspective view of a microchannel portion.
[0018]
2-5, the emulsion production | generation apparatus connects the main body 1 to the thermostat 2, and can control the temperature of the main body 1 to predetermined | prescribed temperature. And the plate 3 comprised from a glass plate etc. is inserted in one opening of the main body 1, the cover body 4 is inserted in the other opening, and the supply port 5 of the composition (O) for dispersed phases is formed in the center of the cover body 4. The supply port 6 of the continuous phase (W) is formed at a position (upward in the drawing) formed from the center of the lid body 4, and the emulsion (E) is further removed from the center (downward in the figure) of the lid body 4. ) Is formed.
[0019]
A dispersion phase composition reservoir 8 is connected to the supply port 5 of the dispersion phase composition (O) via a pipe, a heater 9 is provided around the pipe, and a continuous phase (W) is supplied. A continuous phase reservoir 10 is connected to the port 6 via a pipe, and a recovery pipe 11 is connected to the outlet 7 for the emulsion (E). Here, the dispersed phase composition reservoir 8 and the continuous phase reservoir 10 can be adjusted in the vertical position, and the pressure acting on the dispersed phase composition (O) and the continuous phase (W ) Can be adjusted respectively.
[0020]
A substrate 12 is disposed in the space between the plate 3 and the lid 4. An opening 13 is formed in the center of the substrate 12, and a protrusion 14 is formed on the front side of the substrate 12 opposite to the plate 3 so as to surround the opening 13 in a rectangular shape. 15, a large number of protrusions 16 are formed on the terrace 15 at regular intervals, and a microchannel 17 is formed between the protrusions 16 and 16.
The dimensions of the microchannel 17 are, for example, a width of 16 μm, a height of 2 μm, and a terrace length of 30 μm. Also, wet etching or dry etching is appropriate as a method for forming the protrusion 14 including the microchannel 17.
[0021]
Further, a partition member 18 such as an O-ring is interposed between the substrate 12 and the lid body 4, and the protrusion 16 is brought into contact with the inside of the plate 3 by the elastic force (elastic force) of the partition member 18. The supply port 5 for the dispersed phase composition (O) is opened in the inner region surrounded by the partition wall member 18, and the continuous phase (W) supply port 6 and the emulsion (E) are removed in the outer region. The outlet 7 is open. A camera 19 connected to the video system is arranged outside the plate 3.
[0022]
The apparatus for producing a monodispersed emulsion is not limited to the above configuration. For example, in the example of FIGS. 1-5, although the plate 3, the cover body 4, and the board | substrate 12 were arrange | positioned in the vertical direction, you may arrange | position these in a horizontal direction. As another device, a substrate is placed in a case, a continuous phase flow path is formed between the substrate and the plate, and a microchannel that opens in a direction intersecting the flow path is formed in the substrate. It is good also as a cross flow type which supplies the composition for dispersed phases from the direction which forms and cross | intersects with respect to the continuous phase which is in a fluid state.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0024]
As the composition for the dispersed phase, divinylbenzene in which 25% hydrate of benzoyl peroxide as a radical polymerization initiator was dissolved at a concentration of 2% was used, and 0.3% sodium dodecylbenzenesulfonate aqueous solution was used for the continuous phase. Microchannel emulsification was performed at room temperature. The supply pressure of the composition for a dispersed phase was set to a range of 4.9 to 6.9 kPa (0.05 to 0.07 kg / cm 2 ). After 100 parts of the produced emulsion was stirred and mixed with 100 parts of a 2% polyvinyl alcohol solution, the reaction was performed at 90 ° C. Thereafter, the suspension was dried to obtain white solid fine particles. The obtained fine particles had an average particle diameter of 16.4 μm and a standard deviation of 1.18 μm.
[0025]
【The invention's effect】
Since the method for producing solid fine particles of the present invention has the above-described configuration, it is possible to produce monodispersed solid fine particles having a particle size of several μm or more that can be used for spacers for liquid crystal display devices.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an outline of the present invention in the order of steps.
FIG. 2 is an overall view of an emulsion production apparatus used as an embodiment of the present invention.
FIG. 3 is an enlarged schematic view of the main part of the emulsion production apparatus of FIG.
4 (a) is a plan view of a substrate in the emulsion generating apparatus of FIG. 2. FIG.
(B) is the back view of the board | substrate in the emulsion production | generation apparatus of FIG.
FIG. 5 is an enlarged perspective view of a microchannel portion in the emulsion generating apparatus of FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Emulsion main body 2 Constant temperature bath 3 Plate 4 Lid 5 Dispersion phase composition (O) supply port 6 Continuous phase (W) supply port 7 Emulsion (E) outlet 8 Dispersion phase composition reservoir 9 Heater 10 Continuous phase reservoir 11 Recovery pipe 12 Substrate 13 Opening 14 Projection 15 Terrace 16 Projection 17 Microchannel 18 Partition member 19 Video camera 20 Composition for dispersed phase (O)
21 Continuous phase (W)
22 Microsphere

Claims (4)

反応性モノマーを重合させてなる単分散固体微粒子を製造する方法であって、
(1)反応性モノマーを含む分散相用組成物を加圧し、前記分散相用組成物をマイクロチャネルを介して、 界面活性剤を添加した連続相中に分散せしめてエマルションを生成する工程、
(2)前記エマルションをポリビニルアルコール溶液と撹拌混合した後重合させることにより固体微粒子のサスペンジョンを作製する工程、及び、
(3)前記サスペンジョンから連続相を除去することにより固体微粒子を回収する工程からなる
ことを特徴とする単分散固体微粒子の製造方法。
A method for producing monodispersed solid fine particles obtained by polymerizing reactive monomers,
(1) Pressurizing a composition for a dispersed phase containing a reactive monomer, and dispersing the composition for a dispersed phase through a microchannel in a continuous phase to which a surfactant has been added to form an emulsion;
(2) A step of preparing a suspension of solid fine particles by polymerizing after stirring and mixing the emulsion with a polyvinyl alcohol solution, and
(3) A method for producing monodispersed solid fine particles, comprising a step of recovering solid fine particles by removing a continuous phase from the suspension.
界面活性剤は、ドデシルベンゼンスルホン酸ナトリウムであることを特徴とする請求項1記載の単分散固体微粒子の製造方法。The method for producing monodispersed solid fine particles according to claim 1, wherein the surfactant is sodium dodecylbenzenesulfonate. 本体に本体温度を所定の温度に制御可能な恒温槽が設けられ、且つ、反応性モノマーを含む分散相用組成物を本体に供給する配管の周囲にはヒータが設けられているエマルション生成装置を用いる
ことを特徴とする請求項1又は2記載の単分散固体微粒子の製造方法。
An emulsion generating apparatus in which a constant temperature bath capable of controlling the main body temperature to a predetermined temperature is provided in the main body, and a heater is provided around a pipe for supplying the dispersed phase composition containing the reactive monomer to the main body. The method for producing monodispersed solid fine particles according to claim 1 or 2, which is used.
請求項1〜3のいずれか1項に記載の単分散固体微粒子の製造方法を用いてなる液晶表示素子用スペーサ。The spacer for liquid crystal display elements which uses the manufacturing method of the monodispersed solid particulates of any one of Claims 1-3.
JP36925699A 1999-12-27 1999-12-27 Method for producing monodispersed solid fine particles Expired - Fee Related JP3616909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36925699A JP3616909B2 (en) 1999-12-27 1999-12-27 Method for producing monodispersed solid fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36925699A JP3616909B2 (en) 1999-12-27 1999-12-27 Method for producing monodispersed solid fine particles

Publications (2)

Publication Number Publication Date
JP2001181309A JP2001181309A (en) 2001-07-03
JP3616909B2 true JP3616909B2 (en) 2005-02-02

Family

ID=18493970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36925699A Expired - Fee Related JP3616909B2 (en) 1999-12-27 1999-12-27 Method for producing monodispersed solid fine particles

Country Status (1)

Country Link
JP (1) JP3616909B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9969678B2 (en) 2014-12-03 2018-05-15 Dexerials Corporation Method of producing optically active β-aminocarbonyl compound

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367931B2 (en) * 2001-09-11 2013-12-11 株式会社日本触媒 Vinyl-based crosslinked resin particles, production method thereof and use thereof
JP2004059802A (en) * 2002-07-30 2004-02-26 Japan Science & Technology Corp Preparation method of solid fine particulate and its apparatus
JP3635575B2 (en) * 2002-08-09 2005-04-06 俊郎 樋口 Monodisperse resin particle production method and production apparatus
JP4527384B2 (en) * 2002-12-06 2010-08-18 綜研化学株式会社 Manufacturing method of colored spherical particles using microchannel, and microchannel manufacturing apparatus used in the manufacturing method
JP3977272B2 (en) * 2003-03-25 2007-09-19 積水化成品工業株式会社 Method for producing resin particles
JP4352890B2 (en) * 2003-12-24 2009-10-28 東ソー株式会社 Fine particle production apparatus and fine particle production method using the same
JP2005194425A (en) * 2004-01-08 2005-07-21 Sekisui Chem Co Ltd Method for producing fine particle and fine particle
JP4494998B2 (en) * 2004-02-10 2010-06-30 綜研化学株式会社 A method for producing a non-spherical polymer shaped particle and a non-spherical polymer shaped particle.
JP2007056177A (en) * 2005-08-26 2007-03-08 Sanyo Chem Ind Ltd Method for producing resin particles
JP5116334B2 (en) * 2006-06-29 2013-01-09 三洋化成工業株式会社 Method for producing highly monodisperse fine particles
JP5377862B2 (en) * 2007-01-26 2013-12-25 三洋化成工業株式会社 Production method of monodisperse fine particles
JP2008239935A (en) * 2007-03-29 2008-10-09 Sanyo Chem Ind Ltd Method for producing monodisperse minute particles
JP5020001B2 (en) * 2007-08-31 2012-09-05 積水化成品工業株式会社 Method for producing styrene resin particles
EP2266691A4 (en) 2008-03-25 2014-04-16 Univ Okayama Nat Univ Corp Micro-droplet dispensing device
JP2009166039A (en) * 2009-03-11 2009-07-30 Tosoh Corp Fine particle manufacturing apparatus
JP6862679B2 (en) * 2016-05-13 2021-04-21 昭和電工マテリアルズ株式会社 Method for producing porous polymer particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9969678B2 (en) 2014-12-03 2018-05-15 Dexerials Corporation Method of producing optically active β-aminocarbonyl compound

Also Published As

Publication number Publication date
JP2001181309A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP3616909B2 (en) Method for producing monodispersed solid fine particles
CA1166413A (en) Process and apparatus for preparing uniform size polymer beads
JP3030364B1 (en) Method for producing monodisperse solid lipid microspheres
EP2661456B1 (en) Method of producing polymer beads
Barton Free-radical polymerization in inverse microemulsions
KR101658375B1 (en) Method and apparatus for preparing polymer beads of uniform particle size by suspension polymerization
JP2002544309A (en) Method for producing bead polymer
JPH0129483B2 (en)
JPS61215602A (en) Production of polymer particle
CN107720760B (en) The method for preparing various sizes of nano SiO 2 particle is realized by regulation ammonium hydroxide and esters of silicon acis additive amount
EP2814609A1 (en) Product and method for making uniform, spherical, acrylic polymeric beads
JP2000191818A (en) Preparation of porous particulate
JPH07103206B2 (en) Method for producing crosslinked polymer particles
TW577907B (en) Process for preparing vinyl chloride paste resin
JPS61190504A (en) Production of polymer particles
JP2000128903A (en) Production of monodispersed spherical polymer particle
JP2882669B2 (en) Method and apparatus for producing polymer fine particles having uniform particle size
JPS61252202A (en) Production of uniform spherical polymer
JPH04150934A (en) Preparation of emulsion resin
JP2002128805A (en) Method of preparing dispersion and method of manufacturing polyvinyl chloride paste resin
JP2001162147A (en) Device for forming uniform liquid droplet
JPH03234734A (en) Tabular polymer particle and its production
JP4113290B2 (en) Liquid crystal display element spacer and liquid crystal display element
JP3334434B2 (en) Method for producing inorganic-containing polymer particles
JPH08169907A (en) Production of polymer particle uniform in size

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041026

R150 Certificate of patent or registration of utility model

Ref document number: 3616909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees