JP3334434B2 - Method for producing inorganic-containing polymer particles - Google Patents
Method for producing inorganic-containing polymer particlesInfo
- Publication number
- JP3334434B2 JP3334434B2 JP15523595A JP15523595A JP3334434B2 JP 3334434 B2 JP3334434 B2 JP 3334434B2 JP 15523595 A JP15523595 A JP 15523595A JP 15523595 A JP15523595 A JP 15523595A JP 3334434 B2 JP3334434 B2 JP 3334434B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- monomer
- inorganic
- polymer particles
- inorganic particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymerisation Methods In General (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は無機物粒子を含有したポ
リマー粒子に関する。とりわけ従来の技術では製造が困
難であったラジカル重合により、無機物粒子を含有する
粒子径0.1〜10μmで粒子径分布が比較的狭いポリ
マー粒子の製造法に関する。The present invention relates to polymer particles containing inorganic particles. In particular, the present invention relates to a method for producing polymer particles containing inorganic particles and having a particle diameter of 0.1 to 10 μm and having a relatively narrow particle diameter distribution by radical polymerization, which was difficult to produce by the conventional technique.
【0002】[0002]
【従来の技術】ラジカル重合でのポリマー粒子の製造法
には大きく分けて、懸濁重合と乳化重合がある。懸濁重
合はあらかじめ油溶性の開始剤を溶かした油性のモノマ
ーを懸濁保護剤あるいは乳化剤を含む水に分散して重合
する重合法である。得られるポリマー粒子の粒子径は通
常数μm〜数百μmの大粒径で幅広い粒径分布を持つ。
また、重合反応に影響を与えないものであれば無機物粒
子をモノマーに混入しておけば無機物含有ポリマー粒子
が比較的容易に製造できる。つまり、懸濁重合では無機
物含有ポリマー粒子の製造は容易であるが、粒子径が数
μm以上で粒子径分布の幅広い粒子となる。特開昭56
−164503では無機物粒子を混入したモノマーの一
部または全部を高い剪断力で水中に機械分散して懸濁重
合することで粒子径が1μm以下に小さくすることが開
示されているが、粒子径分布は幅広いものであった。ま
た、特公表昭59−500691では、懸濁重合で粒子
径分布の狭い無機物含有ポリマー粒子を製造するために
シードへのモノマー膨潤重合と得られた粒子への無機物
粒子の析出手法の試みがなされているが、これでも1μ
m以下の無機物含有ポリマー粒子の製造は困難であっ
た。一方、乳化重合は油性のモノマーを乳化剤で水中に
乳化し、水溶性の開始剤で重合する重合法である。重合
の初期には水中の乳化剤ミセル中あるいは水に微量に溶
解しているモノマーが水溶性の開始剤からの水中のラジ
カルによって重合する。この初期重合成分は水中に溶け
ておられずに析出し、系内に無数の微小粒子が形成され
膨大な界面面積となるためコロイド的に不安定となり、
その系で安定に存在できる界面面積になるまで互いに凝
集する。この段階は通常、重合転化率で数%以内の極く
初期に完結する。以後はここで残った粒子の数は変わら
ずに、この粒子に対し、水を経由してモノマー分子とラ
ジカルが分子拡散で粒子に侵入して重合を継続する。こ
こでは系内のモノマー液滴からモノマーが徐々に水に溶
出し、重合中の粒子が徐々に太り、重合の完結まですす
む。この乳化重合では粒子径は通常0.05〜0.5μ
m程度であり、粒子径分布は比較的狭い。しかしなが
ら、重合の大部分の段階がモノマーが水を拡散して粒子
に移るとの機構のため、乳化重合のポリマー粒子に無機
物粒子を含有させることは困難であった。たとえモノマ
ーに無機物粒子を混ぜて乳化重合しても、モノマーのみ
が粒子に移って重合し、無機物粒子は水中に取り残され
た。特開昭57−125203では、水に分散した無機
物粒子を共存させて乳化重合を行なわせることで、初期
の核形成の段階に無機物粒子を抱き込んで無機物含有ポ
リマー粒子を乳化重合で製造することが開示されてい
る。しかし、この方法では含有できる無機物粒子の量が
少ないこと、無機物粒子は水によく分散するものである
などの制約があった。このほかに、特開昭59−111
929、特開昭63−65085では、あらかじめ合成
した1μm以下のポリマー粒子の表面に後から無機物粒
子を付着あるいは結合させることが試みられている。し
かし、これらでは粒子表面に無機物粒子が存在し、無機
物による粒子性能の低下が問題なった。また、さらにこ
の粒子にポリマー被覆を行なうことも考えられるが、技
術的にはかなり困難であった。この様に、従来の技術で
は10μm以下で比較的粒子径分布の狭く、かつ無機物
粒子を内部に含有するポリマー粒子を製造することは技
術上困難であった。2. Description of the Related Art Methods for producing polymer particles by radical polymerization are roughly classified into suspension polymerization and emulsion polymerization. Suspension polymerization is a polymerization method in which an oil-based monomer in which an oil-soluble initiator has been dissolved in advance is dispersed in water containing a suspension protective agent or an emulsifier and polymerized. The obtained polymer particles generally have a large particle size of several μm to several hundred μm and have a wide particle size distribution.
In addition, as long as it does not affect the polymerization reaction, if inorganic particles are mixed with the monomer, inorganic-containing polymer particles can be produced relatively easily. That is, in the suspension polymerization, the production of the inorganic-containing polymer particles is easy, but the particles have a particle diameter of several μm or more and have a wide particle diameter distribution. JP 56
164,503 discloses that a part or all of the monomer mixed with inorganic particles is mechanically dispersed in water with high shearing force and subjected to suspension polymerization to reduce the particle diameter to 1 μm or less. Was broad. In Japanese Patent Publication No. 59-500691, an attempt was made to prepare a monomer swelling polymerization on seeds and to deposit inorganic particles on the obtained particles in order to produce inorganic-containing polymer particles having a narrow particle size distribution by suspension polymerization. But this is still 1μ
m or less, it was difficult to produce inorganic-containing polymer particles. On the other hand, emulsion polymerization is a polymerization method in which an oily monomer is emulsified in water with an emulsifier and polymerized with a water-soluble initiator. At the beginning of the polymerization, the monomer dissolved in the emulsifier micelle in water or in a trace amount in water is polymerized by radicals in water from a water-soluble initiator. This initial polymerization component precipitates without being dissolved in water, and becomes innumerably small particles formed in the system and has a huge interface area, so that it becomes colloidally unstable,
Aggregate with each other until the interfacial area can be stably present in the system. This stage is usually completed very early, within a few percent in polymerization conversion. Thereafter, the number of the remaining particles does not change, and the monomer molecules and radicals enter the particles by molecular diffusion via water, and the polymerization is continued. Here, the monomer gradually elutes from the monomer droplets in the system into water, the particles being polymerized gradually become thicker, and the polymerization is completed. In this emulsion polymerization, the particle diameter is usually 0.05 to 0.5 μm.
m, and the particle size distribution is relatively narrow. However, it was difficult to make the polymer particles of the emulsion polymerization contain inorganic particles due to the mechanism in which the monomer diffuses water and transfers to the particles in most stages of the polymerization. Even when the emulsion polymerization was carried out by mixing the inorganic particles with the monomer, only the monomer was transferred to the particles and polymerized, and the inorganic particles were left in the water. Japanese Patent Application Laid-Open No. 57-125203 discloses that emulsion polymerization is carried out in the presence of inorganic particles dispersed in water, whereby inorganic particles are embraced at the initial nucleation stage to produce inorganic-containing polymer particles by emulsion polymerization. Is disclosed. However, this method has limitations such as that the amount of inorganic particles that can be contained is small and that the inorganic particles are well dispersed in water. In addition, JP-A-59-111
929 and JP-A-63-65085 attempt to attach or bond inorganic particles to the surface of previously synthesized polymer particles of 1 μm or less in size. However, in these, inorganic particles exist on the particle surface, and there is a problem that the particle performance is deteriorated due to the inorganic material. Further, it is conceivable to further coat the particles with a polymer, but it has been technically quite difficult. As described above, it is technically difficult to produce polymer particles having a particle size distribution of 10 μm or less and having a relatively narrow particle size and containing inorganic particles in the conventional technology.
【0003】[0003]
【発明が解決しようとする課題】上記の状況をもとに、
本発明では10μm以下で比較的粒子径分布が狭く、無
機物粒子が内部に存在する無機物含有ポリマー粒子の製
造法を提供する。SUMMARY OF THE INVENTION Based on the above situation,
The present invention provides a method for producing inorganic-containing polymer particles in which the particle size distribution is relatively narrow at 10 μm or less and inorganic particles are present inside.
【0004】[0004]
【課題を解決するための手段】本発明者らは、各種の重
合法を鋭意検討し、特定の多孔膜を用いて特定の条件で
無機物粒子が存在するモノマー相を乳化して重合するこ
とで粒子径分布の狭い無機物含有ポリマー粒子の合成が
可能になることを見い出し、本発明に到達した。すなわ
ち本発明は、粒子径0.1μm以下の無機物粒子を疎水
性ビニルモノマーに分散したモノマーを親水化された多
孔質膜を通して水中に吐出し、無機物粒子が分散したモ
ノマー液滴の水分散体とした後、重合することを特徴と
する無機物含有ポリマー粒子の製造方法を提供するもの
である。本発明において疎水性ビニルモノマーの具体例
を挙げると、スチレン、ビニルトルエン、α−メチルス
チレン、ジビニルベンゼンなどの芳香族ビニル化合物、
(メタ)アクリル酸メチル、(メタ)アクリル酸2−ヒ
ドロキシエチル、(メタ)アクリル酸t−ブチル、(メ
タ)アクリル酸n−ヘキシル、(メタ)アクリル酸イソ
ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)
アクリル酸2−エチルヘキシル、(メタ)アクリル酸ラ
ウリル、(メタ)アクリル酸ステアリル、(メタ)アク
リル酸ベンジル、(ポリ)エチレングリコールのモノあ
るいはジ(メタ)アクリレート、(ポリ)プロピレング
リコールのモノあるいはジ(メタ)アクリレート、1,
4−ブタンジオールのモノ−あるいはジ−(メタ)アク
リレート、トリメチロールプロパンのモノー、ジ−ある
いはトリ−(メタ)アクリレートなどの不飽和カルボン
酸エステル類、ジアリルフタレート、ジアリルアクリル
アミド、トリアリル(イソ)シアヌレート、トリアリル
トリメリテートなどのアリル化合物;(ポリ)エチレン
グリコールジ(メタ)アクリレート、(ポリ)プロピレ
ングリコールジ(メタ)アクリレートなどの(ポリ)オ
キシアルキレングリコールジ(メタ)アクリレートなど
が挙げられる。また、ブタジエン、イソプレン、クロロ
プレンなどの共役ジエン化合物。さらに、アクリル酸、
メタクリル酸、イタコン酸、フマル酸、グリシジルメタ
クリレート、ビニルピリジン、ジエチルアミノエチルア
クリレート、N−メチルメタクリルアミド、アクリロニ
トリルなどの官能基含有モノマーが挙げられる。これら
のなかでアクリル酸、メタクリル酸、イタコン酸など水
溶性の高いモノマーはモノマー全体としての水溶解度が
高くなって水中油滴型モノマーエマルジョンができなく
なることのない範囲で使用できる。具体的には水溶性モ
ノマーの量は全モノマーの10重量%以下である。Means for Solving the Problems The present inventors diligently study various polymerization methods and emulsify and polymerize a monomer phase in which inorganic particles are present under specific conditions using a specific porous membrane. The inventors have found that it is possible to synthesize inorganic-containing polymer particles having a narrow particle size distribution, and have reached the present invention. That is, the present invention relates to an aqueous dispersion of monomer droplets in which inorganic particles are dispersed through a porous membrane that has been obtained by dispersing inorganic particles having a particle diameter of 0.1 μm or less in a hydrophobic vinyl monomer into a hydrophilic membrane. And then polymerizing the inorganic-containing polymer particles. Specific examples of the hydrophobic vinyl monomer in the present invention, styrene, vinyl toluene, α-methylstyrene, aromatic vinyl compounds such as divinylbenzene,
Methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, isobutyl (meth) acrylate, cyclohexyl (meth) acrylate, ( Meta)
2-ethylhexyl acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, benzyl (meth) acrylate, mono or di (meth) acrylate of (poly) ethylene glycol, mono or di of (poly) propylene glycol (Meth) acrylate, 1,
Unsaturated carboxylic esters such as mono- or di- (meth) acrylate of 4-butanediol, mono-, di- or tri- (meth) acrylate of trimethylolpropane, diallyl phthalate, diallyl acrylamide, triallyl (iso) cyanurate And allyl compounds such as triallyl trimellitate; and (poly) oxyalkylene glycol di (meth) acrylates such as (poly) ethylene glycol di (meth) acrylate and (poly) propylene glycol di (meth) acrylate. Also, conjugated diene compounds such as butadiene, isoprene, and chloroprene. In addition, acrylic acid,
Functional group-containing monomers such as methacrylic acid, itaconic acid, fumaric acid, glycidyl methacrylate, vinyl pyridine, diethylaminoethyl acrylate, N-methyl methacrylamide, and acrylonitrile are exemplified. Among these, monomers having high water solubility such as acrylic acid, methacrylic acid, and itaconic acid can be used within a range where the water solubility of the monomer as a whole becomes high and an oil-in-water type monomer emulsion cannot be formed. Specifically, the amount of the water-soluble monomer is 10% by weight or less of all the monomers.
【0005】本発明で使用する無機物粒子は疎水性ビニ
ルモノマーに不溶であり、ラジカル重合に致命的な影響
を与えないものである必要がある。多くの無機物粒子は
若干の程度ラジカル重合に対する阻害あるいは促進効果
を有するが、重合開始剤の量を調整することで対応でき
るものは本発明の無機物粒子として使用できる。本発明
で使用できる無機物粒子の具体例を示すと、銅粒子、金
粒子、真鍮粒子などの金属粒子、あるいは酸化鉄、フェ
ライト、酸化亜鉛、酸化チタン、酸化マグネシウム、フ
ライアッシュなどの金属酸化物粒子、あるいは炭酸カル
シュウム、炭酸マグネシウムなどの炭酸塩類、リン酸カ
ルシウム、リン酸鉛などのリン酸塩類、シリカ、及びシ
リケートなどの粘土とガラス類、塩化銀などの金属塩、
水酸化アルミニュウムなどのアルミニュウム水和物など
である。このうちとくに、磁性体であるフェライトを含
めた金属酸化物の微粒子が好ましい。また、特に磁性流
体はモノマーに超常磁性の微粒子でかつモノマーに分散
しやすい磁性粒子の分散体として好ましい。[0005] The inorganic particles used in the present invention must be insoluble in the hydrophobic vinyl monomer and have no fatal effect on radical polymerization. Many inorganic particles have some degree of inhibitory or accelerating effect on radical polymerization, but those which can be dealt with by adjusting the amount of the polymerization initiator can be used as the inorganic particles of the present invention. Specific examples of the inorganic particles that can be used in the present invention include metal particles such as copper particles, gold particles, and brass particles, or metal oxide particles such as iron oxide, ferrite, zinc oxide, titanium oxide, magnesium oxide, and fly ash. Or calcium carbonate, carbonates such as magnesium carbonate, calcium phosphates, phosphates such as lead phosphate, silica, and clays and glasses such as silicates, metal salts such as silver chloride,
Aluminum hydrates such as aluminum hydroxide. Of these, metal oxide fine particles including ferrite, which is a magnetic substance, are particularly preferable. Particularly, the magnetic fluid is preferable as a dispersion of magnetic particles which are superparamagnetic fine particles in the monomer and are easily dispersed in the monomer.
【0006】本発明の無機物粒子は粒子径が小さいこと
と、親油性でモノマーによく分散することが必要であ
る。無機物粒子の粒子径は0.1μm以下、好ましくは
0.05μm以下、さらに好ましくは0.03μm以下
であることが必要である。このため、使用する無機物粒
子は小粒径に調整したものを使用することと、無機物粒
子がモノマーとなじみが悪いときは無機物表面を表面処
理することが必要である。無機物粒子の表面処理には顔
料分散剤を無機物表面に吸着させる分散剤処理、シラン
カップリング剤、チタネートカップリング剤等によるカ
ップリング剤処理あるいはカプセル重合等によるポリマ
ーコート処理など既知の方法を適用することができる。
なお、あらかじめ油中に磁性体を分散した磁性流体ある
いは色材顔料が分散されている油性ペイント及びその半
製品は本発明の無機物粒子として好適である。本発明で
無機物粒子を疎水性ビニルモノマーに分散するには通常
の攪拌機でもよいが、無機物粒子の分散性が悪いとき、
あるいは得られる無機物含有ポリマー粒子内での粒子間
の無機物含有量を均一にすることが必要な場合は、ホモ
ミキサー、ホモジナイザー、ペイントミル、ビーズミル
などの高剪断力の分散機を使用するとよい。It is necessary that the inorganic particles of the present invention have a small particle size, are lipophilic and are well dispersed in a monomer. The particle diameter of the inorganic particles must be 0.1 μm or less, preferably 0.05 μm or less, and more preferably 0.03 μm or less. For this reason, it is necessary to use the inorganic particles adjusted to a small particle size, and to treat the surface of the inorganic material when the inorganic particles are poorly compatible with the monomer. For the surface treatment of the inorganic particles, a known method such as a dispersant treatment for adsorbing a pigment dispersant on the inorganic material surface, a coupling agent treatment with a silane coupling agent, a titanate coupling agent, or a polymer coating treatment by capsule polymerization or the like is applied. be able to.
In addition, an oil paint and a semi-finished product thereof in which a magnetic fluid or a coloring material pigment in which a magnetic substance is dispersed in oil in advance are suitable as the inorganic particles of the present invention. To disperse the inorganic particles in the hydrophobic vinyl monomer in the present invention may be a normal stirrer, but when the dispersibility of the inorganic particles is poor,
Alternatively, when it is necessary to make the inorganic content between particles in the obtained inorganic-containing polymer particles uniform, a high-shearing disperser such as a homomixer, a homogenizer, a paint mill, or a bead mill may be used.
【0007】本発明では無機物粒子を分散した疎水性ビ
ニルモノマーを水中に乳化するために、親水化された多
孔質膜を通して水中に吐出する。本発明での多孔質細孔
は平均細孔径0.01〜5μmでかつ均一な孔径であ
り、さらに膜の表裏を貫通するものである必要がある。
膜の材質としてはガラスが好ましく、具体例としては火
山灰シラスを主原料として焼成した SiO2−Al2O3
−B2O3−CaO系のガラスを熱処理でミクロ相分離さ
せ、ホウ酸に富む相を酸で溶解除去して得る多孔質ガラ
ス(SPGと称される)が好ましい。なお、通常のセラ
ミック多孔質膜は同一孔径であってもガラス多孔膜より
も孔径分布が格段に大きいためにモノマー中の無機物粒
子が細孔に詰まり実用に供し得ない。本発明で使用する
多孔質膜は表面が親水化性である必要がある。表面が親
油性あるいは油性物質の付着があれば膜を通して押し出
されるモノマー液滴が出口側の膜表面に付着して広が
り、粗大で粒径分布が非常に広いモノマー液滴となり本
発明の目的である粒子径の狭い無機物含有ポリマー粒子
ができない。多孔質膜の表面を親水性とすることによ
り、細孔を通して疎水性ビニルモノマーを吐出する際に
出口側の膜表面に付着せずに表面張力と細孔径から定ま
る一定の大きさの液滴になって規則的に外れることにな
る。これにより、無機物粒子が入った均一径のモノマー
液滴が得られる。多孔質ガラスの表面を親水性にするに
は硫酸あるいは塩酸などの酸に浸して処理することで達
成できる。In the present invention, in order to emulsify a hydrophobic vinyl monomer in which inorganic particles are dispersed in water, the hydrophobic vinyl monomer is discharged into water through a hydrophilic porous membrane. The porous pores in the present invention need to have an average pore diameter of 0.01 to 5 μm, have a uniform pore diameter, and penetrate both sides of the membrane.
Glass is preferable as the material of the film, and a specific example is SiO 2 —Al 2 O 3 fired using volcanic ash shirasu as a main raw material.
Porous glass (referred to as SPG) obtained by subjecting —B 2 O 3 —CaO-based glass to microphase separation by heat treatment and dissolving and removing a boric acid-rich phase with an acid is preferred. In addition, even if the ordinary ceramic porous membrane has the same pore diameter, the pore diameter distribution is much larger than that of the glass porous membrane, so that the inorganic particles in the monomer are clogged in the pores and cannot be put to practical use. The surface of the porous membrane used in the present invention needs to be hydrophilic. If the surface has lipophilic or oily substance adhered, monomer droplets extruded through the membrane adhere to the membrane surface on the outlet side and spread, resulting in a coarse monomer droplet having a very wide particle size distribution. Inorganic-containing polymer particles with a small particle size cannot be formed. By making the surface of the porous membrane hydrophilic, when the hydrophobic vinyl monomer is ejected through the pores, it does not adhere to the membrane surface on the exit side, but is formed into droplets of a certain size determined by the surface tension and pore diameter. It will come off regularly. As a result, monomer droplets having a uniform diameter and containing inorganic particles are obtained. The surface of the porous glass can be made hydrophilic by immersing it in an acid such as sulfuric acid or hydrochloric acid.
【0008】本発明で多孔質膜を通して無機物粒子を含
有する疎水性ビニルモノマーを押し出す水相には、モノ
マー液滴の安定剤として界面活性剤あるいは水溶性高分
子を存在させる必要がある。安定化剤がないと膜を通し
て吐出したモノマー液滴は互いに融合して幅広い粒径分
布となる。好ましい安定化剤としては、モノマー液滴が
1μm程度以上の場合はポリビニルアルコール、ヒドロ
キシプロピルセルロース、ポリビニルピロリドンなどの
水溶性高分子系の安定化剤がよく、これに少量のアニオ
ン系界面活性剤あるいは非イオン系乳化剤を添加するこ
とも好ましい。モノマー液滴が1μm程度未満ではアニ
オン系界面活性剤およびアニオン系界面活性剤と非イオ
ン系界面活性剤の組み合わせが好ましい。特に小粒径の
モノマー液滴の安定性の上で好ましい安定化剤は炭素数
10〜18の長鎖脂肪族硫酸塩を乳化剤とし、炭素数1
2〜18の脂肪族高級アルコールを共乳化剤とする組み
合わせである。具体的にはラウリル硫酸ナトリウムを乳
化剤、1−ヘキサデカノールを共乳化剤とする組み合わ
せは液滴表面に強く吸着し安定化効果が大きく、本発明
での安定化剤として特に好ましい。In the present invention, a surfactant or a water-soluble polymer must be present as a stabilizer for monomer droplets in the aqueous phase in which a hydrophobic vinyl monomer containing inorganic particles is extruded through a porous membrane. Without the stabilizer, the monomer droplets ejected through the membrane fuse with each other to form a broad particle size distribution. As a preferable stabilizer, when the monomer droplet is about 1 μm or more, a water-soluble polymer-based stabilizer such as polyvinyl alcohol, hydroxypropylcellulose, and polyvinylpyrrolidone is preferable, and a small amount of an anionic surfactant or It is also preferable to add a nonionic emulsifier. When the monomer droplet size is less than about 1 μm, an anionic surfactant and a combination of an anionic surfactant and a nonionic surfactant are preferred. In particular, a preferable stabilizer in terms of the stability of monomer droplets having a small particle diameter is a long-chain aliphatic sulfate having 10 to 18 carbon atoms as an emulsifier,
It is a combination using 2 to 18 aliphatic higher alcohols as a coemulsifier. Specifically, a combination of sodium lauryl sulfate as an emulsifier and 1-hexadecanol as a co-emulsifier is strongly adsorbed on the surface of a droplet and has a large stabilizing effect, and is particularly preferable as a stabilizer in the present invention.
【0009】本発明で乳化された無機物粒子を含むモノ
マー液滴の水分散体を重合するには、主に油溶性ラジカ
ル開始剤を使用する。油溶性ラジカル開始剤として使用
できる開始剤を例示すると、アゾビスイソブチロニトリ
ルなどのアゾ系開始剤、ベンゾイルペルオキシド、2、
4−ジクロルベンゾイルペルオキシドなどの芳香物過酸
化物、イソブチルペルオキシド、ジイソプロピルペルオ
キシジカーボネート、ジ(2−エチルヘキシルペルオキ
シ)ジカーボネートなどの脂肪族系過酸化物が挙げられ
る。これらは乳化の前にあらかじめモノマー相に溶解し
て使用することができる。なお、液滴の粒子径が0.7
μm程度以下では過硫酸カリウム、過酸化水素などの水
溶性開始剤でも重合が可能である。本発明の重合におい
てモノマー液滴以外での重合を禁止するために、ハイド
ロキノン、塩化鉄などの水溶性ラジカル重合禁止剤を添
加することができる。これにより、水相で新たな新粒子
が発生して粒子径分布が広くなることが押さえられる。
本発明の方法により得られる無機物含有ポリマー粒子の
粒子径は、体積平均粒子径(D)で0.2〜10μmで
ある。また、その粒子径分布は0.6D〜1.4Dの範
囲にある粒子の全粒子に対する体積分率で表し、その値
は70%以上である。この粒子径の測定は電子顕微鏡写
真で粒子200個以上を計測し、計算することで求めら
れる。以下に実施例で本発明をさらに詳細に説明する。In the present invention, an oil-soluble radical initiator is mainly used to polymerize an aqueous dispersion of monomer droplets containing inorganic particles emulsified. Examples of the initiator that can be used as the oil-soluble radical initiator include azo initiators such as azobisisobutyronitrile, benzoyl peroxide, 2,
Examples include aromatic peroxides such as 4-dichlorobenzoyl peroxide, and aliphatic peroxides such as isobutyl peroxide, diisopropylperoxydicarbonate, and di (2-ethylhexylperoxy) dicarbonate. These can be used by dissolving them in the monomer phase before emulsification. In addition, the particle diameter of the droplet is 0.7
If it is less than about μm, polymerization can be performed with a water-soluble initiator such as potassium persulfate or hydrogen peroxide. In order to inhibit polymerization other than monomer droplets in the polymerization of the present invention, a water-soluble radical polymerization inhibitor such as hydroquinone and iron chloride can be added. This suppresses the generation of new particles in the aqueous phase and broadening the particle size distribution.
The particle diameter of the inorganic-containing polymer particles obtained by the method of the present invention is 0.2 to 10 μm in volume average particle diameter (D). The particle size distribution is expressed as a volume fraction of all particles in the range of 0.6D to 1.4D, and the value is 70% or more. The measurement of the particle diameter can be obtained by measuring and calculating 200 or more particles with an electron microscope photograph. Hereinafter, the present invention will be described in more detail with reference to Examples.
【0010】[0010]
実施例1 フェライト磁性体の油性分散体(タイホー工業(株)製
フェリコロイド、粒径0.02μm)40g、スチレン
94g、ジビニルベンゼン1g、グリシジルメタクリレ
ート5gおよびアゾビスイソブチロニトリル3gを混合
し、冷却しながらペイントミルで10分間よく混合分散
し、無機物粒子を分散した疎水性ビニルモノマーを得
た。多孔質膜として、SiO2−Al2O3−B2O3−C
aO系ガラスを熱処理でミクロ相分離させ、ホウ酸に富
む相を酸で溶解除去して多孔化した管(伊勢化学(株)
製SPG、細孔径0.3μm)を2規定硫酸に70℃で
2時間浸漬し、水で充分洗浄して親水化処理した。続い
て、ラウリル硫酸ナトリウム10gと1−ヘキサデカノ
ール25.3gに水2リットルを添加した溶液に超音波
照射を10分行なってゲル構造を破壊した水溶液に浸
し、超音波を照射しながら減圧脱気を行い多孔質ガラス
内部の気泡を除いた。次ぎにこの多孔質ガラス管の内側
に上記水溶液を200ml/分の流速で流し、外側に
1.3Kg/cm2の圧力で無機物粒子を分散した疎水
性ビニルモノマーを流した。多孔質ガラスの内側から流
出する水相には疎水性ビニルモノマー相が乳化された微
小液滴が存在し白濁した。この水相は循環使用し、疎水
性ビニルモノマー相がなくなるまで水相の循環送液と疎
水性ビニルモノマー相の加圧を行なった。作業の途中疎
水性ビニルモノマー相が多孔質ガラスに詰まることはな
かった。得られた無機物粒子を分散した疎水性ビニルモ
ノマー液滴の水分散体のうち1リットルを窒素置換し7
0℃で8時間ゆっくり攪拌して重合反応を行ったとこ
ろ、重合収率96%で磁性体含有ポリマー粒子を得た。
磁性体含有ポリマー粒子は磁石により吸引沈降すること
ができた。この磁性体含有ポリマー粒子を電子顕微鏡写
真に撮ったところ、全ての粒子で磁性体が粒子内部に存
在し、磁性体のない粒子あるいは磁性体のみの粒子は見
あたらなかった。写真上でランダムに磁性体含有ポリマ
ー粒子200個の粒子径を計測したところ、体積平均粒
子径(D)は1.12μm、0.6D〜1.4Dである
0.67〜1.57μmの範囲に入る粒子の体積分率は
91%であった。この粒子を乾燥し、熱天秤測定したと
ころ、無機物含量13.3重量%であった。Example 1 40 g of an oil-based dispersion of a ferrite magnetic substance (ferricolloid manufactured by Taiho Kogyo KK, particle size 0.02 μm), 94 g of styrene, 1 g of divinylbenzene, 5 g of glycidyl methacrylate and 3 g of azobisisobutyronitrile were mixed, While cooling, the mixture was thoroughly mixed and dispersed in a paint mill for 10 minutes to obtain a hydrophobic vinyl monomer in which inorganic particles were dispersed. As a porous film, SiO 2 —Al 2 O 3 —B 2 O 3 —C
AO-based glass is microphase-separated by heat treatment, and a boric acid-rich phase is dissolved and removed with an acid to form a porous tube (Ise Chemical Co., Ltd.)
(SPG, pore size: 0.3 μm) was immersed in 2N sulfuric acid at 70 ° C. for 2 hours, washed sufficiently with water, and subjected to a hydrophilization treatment. Subsequently, a solution obtained by adding 2 liters of water to 10 g of sodium lauryl sulfate and 25.3 g of 1-hexadecanol was subjected to ultrasonic irradiation for 10 minutes, immersed in an aqueous solution in which the gel structure was destroyed, and decompressed while applying ultrasonic waves. Air was removed to remove air bubbles inside the porous glass. Next, the above aqueous solution was flowed at a flow rate of 200 ml / min inside the porous glass tube, and a hydrophobic vinyl monomer in which inorganic particles were dispersed was flown outside at a pressure of 1.3 kg / cm 2 . The aqueous phase flowing out from the inside of the porous glass contained microdroplets in which the hydrophobic vinyl monomer phase was emulsified, and became cloudy. The aqueous phase was circulated, and the aqueous phase was circulated and the hydrophobic vinyl monomer phase was pressurized until the hydrophobic vinyl monomer phase disappeared. During the operation, the porous glass was not clogged with the hydrophobic vinyl monomer phase. One liter of the aqueous dispersion of the hydrophobic vinyl monomer droplets in which the obtained inorganic particles were dispersed was replaced with nitrogen to obtain 7
When the polymerization reaction was carried out by slowly stirring at 0 ° C. for 8 hours, magnetic material-containing polymer particles were obtained with a polymerization yield of 96%.
The magnetic material-containing polymer particles were able to be settled by suction with a magnet. When the magnetic material-containing polymer particles were taken with an electron microscope photograph, the magnetic material was present inside the particles in all the particles, and particles having no magnetic material or particles containing only the magnetic material were not found. When the particle diameter of 200 magnetic substance-containing polymer particles was randomly measured on the photograph, the volume average particle diameter (D) was 1.12 μm, which was 0.6D to 1.4D, and was in the range of 0.67 to 1.57 μm. The volume fraction of particles entering was 91%. The particles were dried and measured by thermogravimetry to find that the inorganic content was 13.3% by weight.
【0011】実施例2および比較例1 無機物粒子として0.05μm(実施例2)と0.15
μm(比較例1)のマグネタイト粒子各15gをシラン
カップリング剤処理したものを使用し、疎水性ビニルモ
ノマーとしてはスチレンを40g、さらにポリエステル
系顔料分散剤(ビックケミー(株)製BYK−161)
を用い分散したものを無機物粒子を分散した疎水性ビニ
ルモノマーとして使用する他は、実施例1と同様ににし
てモノマー液滴の分散体を製造した。実施例2では特に
問題なく乳化の操作ができ、さらに乳化物を重合するこ
とで磁性ポリマー粒子を得た。実施例2の粒子は体積平
均粒子径(D)0.95μm、0.6D〜1.4Dの範
囲の粒子は体積分率で82%であった。一方、比較例1
では膜乳化の際、操作開始直後に若干のモノマー相が膜
を通過して乳化されたが、すぐに膜が詰まり操作できな
くなった。なお、ここで細孔径1μmの大きな細孔の多
孔質ガラスに交換したが、詰まりは解消できなかった。 比較例2 多孔質膜としてセラミックの多孔質パイプ(日本ガイシ
(株)、細孔径0.3μm、親水化処理なし)を用いた
以外は実施例1と同様の操作を行った。無機物粒子が多
孔質パイプに詰まりモノマー相の圧力を5Kg/cm2
まで上げても全くモノマー相が通過できなかった。Example 2 and Comparative Example 1 0.05 μm (Example 2) and 0.15 μm as inorganic particles
μm (Comparative Example 1) each of 15 g of magnetite particles treated with a silane coupling agent was used, 40 g of styrene was used as a hydrophobic vinyl monomer, and a polyester pigment dispersant (BYK-161 manufactured by BYK-Chemie KK)
A dispersion of monomer droplets was produced in the same manner as in Example 1, except that a dispersion obtained by using the above was used as a hydrophobic vinyl monomer in which inorganic particles were dispersed. In Example 2, the emulsification operation could be performed without any particular problem, and magnetic polymer particles were obtained by polymerizing the emulsion. The particles of Example 2 had a volume average particle diameter (D) of 0.95 μm, and the particles in the range of 0.6D to 1.4D had a volume fraction of 82%. On the other hand, Comparative Example 1
In the case of membrane emulsification, some monomer phase passed through the membrane immediately after the start of the operation and was emulsified, but the membrane was clogged immediately and the operation could not be performed. Here, the glass was replaced with porous glass having a large pore diameter of 1 μm, but clogging could not be eliminated. Comparative Example 2 The same operation as in Example 1 was performed except that a ceramic porous pipe (NGK INSULATORS, pore diameter 0.3 μm, no hydrophilic treatment) was used as the porous membrane. The inorganic particles are clogged in the porous pipe and the pressure of the monomer phase is increased to 5 kg / cm 2.
No monomer phase was able to pass at all.
【0012】[0012]
【発明の効果】本発明の製造法によって従来合成が困難
であった0.1〜10μmで比較的粒子径分布の狭い無
機物含有ポリマー粒子が容易に再現性よく製造できる。
本発明により製造される無機物含有ポリマー粒子は、各
種機能性バインダー粒子、特殊塗料用ポリマー粒子、湿
式現像用ポリマー粒子、免疫診断用担体粒子、細胞分離
用担体粒子、医療用薬剤担持担体粒子、遺伝子工学用あ
るいは医療診断用核酸結合ポリマー粒子、情報記録用ポ
リマー粒子、情報表示用ポリマー粒子、徐放性ポリマー
粒子、触媒担体粒子などに適用の可能性が拓け、実用上
有用である。According to the production method of the present invention, inorganic-containing polymer particles having a relatively narrow particle size distribution of 0.1 to 10 μm, which were conventionally difficult to synthesize, can be easily produced with good reproducibility.
The inorganic-containing polymer particles produced by the present invention include various functional binder particles, polymer particles for special coatings, polymer particles for wet development, carrier particles for immunodiagnosis, carrier particles for cell separation, carrier particles for medical drugs, and genes. It can be applied to nucleic acid-binding polymer particles for engineering or medical diagnosis, polymer particles for information recording, polymer particles for information display, sustained-release polymer particles, catalyst carrier particles, etc., and is practically useful.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−166707(JP,A) 特開 平6−49104(JP,A) 特開 平6−192305(JP,A) 特開 平6−1854(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08F 2/00 - 2/60 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-166707 (JP, A) JP-A-6-49104 (JP, A) JP-A-6-192305 (JP, A) JP-A-6-192305 1854 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C08F 2/00-2/60
Claims (1)
水性ビニルモノマーに分散したモノマーを親水化された
多孔質膜を通して水中に吐出し、無機物粒子が分散した
モノマー液滴の水分散体とした後、重合することを特徴
とする無機物含有ポリマー粒子の製造方法。1. An aqueous dispersion of monomer droplets in which inorganic particles are dispersed by discharging a monomer in which inorganic particles having a particle diameter of 0.1 μm or less are dispersed in a hydrophobic vinyl monomer into water through a hydrophilic membrane. And then polymerizing the mixture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15523595A JP3334434B2 (en) | 1995-05-30 | 1995-05-30 | Method for producing inorganic-containing polymer particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15523595A JP3334434B2 (en) | 1995-05-30 | 1995-05-30 | Method for producing inorganic-containing polymer particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08325314A JPH08325314A (en) | 1996-12-10 |
JP3334434B2 true JP3334434B2 (en) | 2002-10-15 |
Family
ID=15601496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15523595A Expired - Lifetime JP3334434B2 (en) | 1995-05-30 | 1995-05-30 | Method for producing inorganic-containing polymer particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3334434B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005000918A1 (en) * | 2005-01-06 | 2006-07-20 | Basf Ag | Process for the preparation of aqueous composite-particle dispersions |
-
1995
- 1995-05-30 JP JP15523595A patent/JP3334434B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08325314A (en) | 1996-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0190886A2 (en) | Process for preparing large-sized polymer particles | |
JP5517419B2 (en) | Composite particle and method for producing the same | |
JPS61215602A (en) | Production of polymer particle | |
JPS61215603A (en) | Production of polymer particle | |
JP3334434B2 (en) | Method for producing inorganic-containing polymer particles | |
JPH1087711A (en) | Production of magnetic polymer particle | |
US5284881A (en) | Composite hollow particles | |
JPH0853666A (en) | Production of phosphor particle coated with polymer | |
JPH05139711A (en) | Uniform particle diameter fired particulate and production therefor | |
CN112724336B (en) | Preparation method of core-shell type polymer microsphere encapsulated with functional core material | |
JP3339091B2 (en) | Method for producing polymer particles | |
JPH0674285B2 (en) | Method for producing polymer particles | |
JP3380131B2 (en) | Method for producing polymer particles | |
JP3130437B2 (en) | Method for producing polymer particles of uniform size | |
JP3784336B2 (en) | Method for producing polymer particles | |
JPH07292003A (en) | Production of fine polymer particle uniform in size | |
JP3225105B2 (en) | Method for producing core-shell type emulsion | |
JPH08259607A (en) | Production of inorganic substance-containing polymer particle | |
JPH05155907A (en) | Production of methacrylic resin particle | |
JP3508304B2 (en) | Glycol dispersion of crosslinked polymer particles and method for producing the same | |
JPH0649104A (en) | Production of aqueous copolymer resin dispersion | |
JP4528178B2 (en) | Method for producing surface-coated crosslinked polymer particles | |
JPH09302006A (en) | Production of polymer latex | |
JPH08259608A (en) | Production of crosslinkable polymer particle | |
JP3090582B2 (en) | Method for producing fine polymer particles of uniform size |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080802 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090802 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090802 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090802 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100802 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100802 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110802 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110802 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120802 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120802 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130802 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |