JPS61215603A - Production of polymer particle - Google Patents

Production of polymer particle

Info

Publication number
JPS61215603A
JPS61215603A JP5613585A JP5613585A JPS61215603A JP S61215603 A JPS61215603 A JP S61215603A JP 5613585 A JP5613585 A JP 5613585A JP 5613585 A JP5613585 A JP 5613585A JP S61215603 A JPS61215603 A JP S61215603A
Authority
JP
Japan
Prior art keywords
particles
monomer
aqueous dispersion
water
polymer particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5613585A
Other languages
Japanese (ja)
Inventor
Masayuki Hattori
雅幸 服部
Hiromi Takeuchi
博美 竹内
Kiyoshi Kasai
澄 笠井
Nobuo Sakurai
桜井 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP5613585A priority Critical patent/JPS61215603A/en
Publication of JPS61215603A publication Critical patent/JPS61215603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To facilitate the formation of monodisperse polymer particles of a relatively large particle diameter, by consecutively mixing an aqueous dispersion of seed particles with two polymerizable monomers of different water solubilities and polymerizing these monomers in the resulting mixture. CONSTITUTION:An aqueous dispersion of seed particles comprising polystyrene, polyvinyl acetate or the like is mixed with an aqueous dispersion of a first monomer having a water solubility of 0.001-0.1wt% (e.g., styrene) in a state of particles having a particle diameter smaller than that of the seed particles to allow the seed particles to adsorb the monomer. the obtained dispersion is further mixed with a second polymerizable monomer having a water solubility >=0.1wt% (e.g., vinyl acetate) and polymerized in the presence of a suspension stabilizer (e.g., polyvinyl alcohol) comprising a suspension protecting agent and/or a surfactant at a concentration not exceeding critical micelle concentration to obtain monodisperse polymer particles of a relatively large particle diameter in the range of about 1-100mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粒径が1〜100μm程度の範囲にある、比
較的大径の単分散重合体粒子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing relatively large monodisperse polymer particles having a particle size in the range of about 1 to 100 μm.

〔従来の技術〕[Conventional technology]

粒径が1〜10011m程度の範囲にある単分散の重合
体粒子は、多(の分野において需要があるにもかかわら
ず、これを製造することは一般に極めて困難である。乳
化重合による重合体粒子の製造においては、単分散の重
合体粒子を比較的容易に得ることができるが、通常1μ
m以下の小粒径のものしか得られず、特殊な条件下にお
いても3μ園が限界といわれている。一方懸濁重合によ
る重合体粒子の製造においては、粒径が1〜100μm
の比較的大径の重合体粒子を得ることはできるが、粒径
分布が広く、単分散の重合体粒子を製造することは極め
て困難である。したがって、単分散の重合体粒子を得よ
うとする場合には、懸濁重合によって得られた粒子を分
級する必要があり、そのため工程数が多くなって製造が
容易でなく、また収率が低いという問題点を有する。
Although monodisperse polymer particles with a particle size in the range of about 1 to 10011 m are in demand in the field of polymerization, it is generally extremely difficult to produce them.Polymer particles by emulsion polymerization Monodisperse polymer particles can be obtained relatively easily in the production of
Only particles with a small particle size of less than 1.0 m can be obtained, and even under special conditions, 3 μm is said to be the limit. On the other hand, in the production of polymer particles by suspension polymerization, the particle size is 1 to 100 μm.
However, it is extremely difficult to produce monodisperse polymer particles with a wide particle size distribution. Therefore, when trying to obtain monodisperse polymer particles, it is necessary to classify the particles obtained by suspension polymerization, which increases the number of steps, making production difficult and resulting in low yields. There is a problem.

比較的大径で単分散な重合体粒子を製造する方法として
は、特開昭54−97582号公報あるいは特開昭54
−126288号公報において開示された技術が知られ
ている。
As a method for producing monodisperse polymer particles with a relatively large diameter, Japanese Patent Application Laid-Open No. 54-97582 or Japanese Patent Application Laid-open No. 54
A technique disclosed in Japanese Patent No.-126288 is known.

特開昭54−97582号公報においては、乳化重合中
に連鎖移動剤を添加することにより通常の重合体ラテッ
クスよりはるかに低い分子量の重合体を合成してこれを
シート粒子とし、このシート粒子に水に幾分可溶な不飽
和単量体を吸収させて重合する方法が開示されている。
In JP-A No. 54-97582, a polymer having a molecular weight much lower than that of ordinary polymer latex is synthesized by adding a chain transfer agent during emulsion polymerization, and this is made into sheet particles. A process is disclosed for absorbing and polymerizing unsaturated monomers that are somewhat soluble in water.

しかしながらこの方法においては、通常用いられる油溶
性開始剤あるいは水溶性開始剤を用いると凝固物の発生
あるいは新粒子の発生等の問題を生じ、大粒径で単分散
の重合体粒子を確実に収率よく得ることは難しい。
However, in this method, the use of commonly used oil-soluble initiators or water-soluble initiators causes problems such as the generation of coagulum or new particles, and it is difficult to reliably collect monodisperse polymer particles with large diameters. It is difficult to obtain a good rate.

また、特開昭54−126288号公報においては、第
1段階において、膨潤助剤として機能する水に対する溶
解度が10−”g/ l H*Oより小さい有機化合物
をシート粒子に吸収させ、その後第2段階に水に幾分可
溶な単量体を吸収させて単量体の膨潤粒子を形成した後
、重合開始剤として過硫酸カリウムのような水溶性重合
開始剤またはアゾイソブチロニトリル(AIBN)のよ
うな油溶性重合開始剤を用い、粒子形状を保持したまま
重合する方法が開示されている。しかしながらこの方法
においては、重合開始剤として油溶性重合開始剤を用い
たときには、シート粒子に吸収されない単量体の分散粒
子までもがそのまま重合されてしまい、そのため凝固物
が多量に生成して収率が低い欠点がある。また重合開始
剤として過硫酸塩のような水溶性重合開始剤を用いたと
きには、乳化剤濃度が臨界ミセル濃度以下であっても、
水相中の生長ラジカルが乳化剤の働きをし、いわゆるソ
ープフリー乳化重合が一部または全体において進行し、
膨潤した粒子の形態が維持されない欠点がある。
Furthermore, in JP-A-54-126288, in the first step, an organic compound having a solubility in water smaller than 10-''g/l H*O, which functions as a swelling aid, is absorbed into sheet particles, and then in the second step, an organic compound is absorbed into sheet particles. After absorbing the somewhat water-soluble monomer in the second step to form swollen particles of the monomer, a water-soluble polymerization initiator such as potassium persulfate or azoisobutyronitrile ( A method of polymerizing while maintaining the particle shape using an oil-soluble polymerization initiator such as AIBN) has been disclosed. However, in this method, when an oil-soluble polymerization initiator is used as the polymerization initiator, sheet particles Even dispersed particles of monomers that are not absorbed by the polymer are polymerized as they are, resulting in the formation of a large amount of coagulum and a low yield.Additionally, water-soluble polymerization initiators such as persulfates are used as polymerization initiators. When using an emulsifier, even if the emulsifier concentration is below the critical micelle concentration,
The propagating radicals in the aqueous phase act as emulsifiers, and so-called soap-free emulsion polymerization proceeds in part or in whole.
There is a drawback that the swollen particle morphology is not maintained.

さらにこの方法においては、工程の第1段階においてシ
ート粒子に吸収させる膨潤助剤としての低水溶性有機化
合物の作用によって、得られる重合体粒子が真球になら
ずいびつになるといった問題点もある。
Furthermore, this method has the problem that the resulting polymer particles are not perfectly spherical but distorted due to the action of the low water-soluble organic compound as a swelling aid that is absorbed into the sheet particles in the first step of the process. .

これらの問題点を解決する方法として、膨潤助剤を使用
しないでシート粒子を肥大化させる方法が、文献J、P
olym、Sci。、Polym。
As a method to solve these problems, a method of enlarging the sheet particles without using a swelling aid has been proposed in References J and P.
olym, Sci. , Polym.

L e t t、 Ed、 、 21.937−943
  (1983)  (J。
L ett, Ed, 21.937-943
(1983) (J.

H,Jans s on、M、C,We 11 ons
H, Jans son, M, C, We 11 ons
.

G、W、Poehlein著)において提案されてい°
る。この方法によれば、単量体と油溶性重合開始剤とを
混合しておき、この混合物を微分散して単量体エマルジ
ョンを作り、これをシート粒子の分散体(ラテックス)
に添加することよって14=1という高い膨潤比でシー
ト粒子の肥大化を達成することが可能である。
Proposed in G., W. Poehlein)
Ru. According to this method, a monomer and an oil-soluble polymerization initiator are mixed, this mixture is finely dispersed to create a monomer emulsion, and this is made into a dispersion (latex) of sheet particles.
It is possible to achieve enlargement of sheet particles with a high swelling ratio of 14=1.

しかし、この方法においては、用いる単量体が水溶性の
高いものである場合には、かかる単量体のエマルジツン
とシート粒子の分散体とを混合しても、単量体のシート
粒子に対する吸収率がきわめて低く、そしてシート粒子
とは無関係に新たな巨大粒子が生成され、均一な粒径の
重合体粒子を得ることができない問題点のあることが明
らかとなった。
However, in this method, if the monomer used is highly water-soluble, even if the emulsion of the monomer and the dispersion of sheet particles are mixed, the absorption of the monomer to the sheet particles is insufficient. It has become clear that there is a problem in that the ratio is extremely low, and new giant particles are generated regardless of the sheet particles, making it impossible to obtain polymer particles of uniform particle size.

このような現象が生ずるのは、以下の理由によるものと
考えられる。メチルメタクリレート、アクリロニトリル
などの比較的水溶性の高い単量体は、水に対する拡散速
度が大きいことから、水分散媒において微粒子状に分散
させたとしても、拡散によって徐々に肥大化してしまい
、微粒子の状態を維持することができない。そして、シ
ート粒子より大きくなった単量体の分散粒子は、シート
粒子にほとんど吸収されずに分散媒中に残存し、重合に
よって新たな巨大重合粒子となる。
The reason why such a phenomenon occurs is considered to be due to the following reasons. Monomers with relatively high water solubility, such as methyl methacrylate and acrylonitrile, have a high diffusion rate in water, so even if they are dispersed in the form of fine particles in an aqueous dispersion medium, they will gradually enlarge due to diffusion, resulting in the formation of fine particles. Unable to maintain status. The monomer dispersed particles, which are larger than the sheet particles, remain in the dispersion medium without being absorbed by the sheet particles, and become new giant polymerized particles through polymerization.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来技術の有する以下の問題点、(イ)粒径
分布が広く均一な粒径の重合体粒子を得ることができな
いこと、 (ロ)真球の重合体粒子を得ることが困難であること、 等を解決し、単分散性の高い真球杖重合体粒子を簡易な
プロセスによって確実に製造することのできる重合体粒
子の製造方法を提供することを目的とする。
The present invention solves the following problems of the prior art: (a) inability to obtain polymer particles with a wide and uniform particle size distribution; and (b) difficulty in obtaining truly spherical polymer particles. It is an object of the present invention to provide a method for producing polymer particles that can reliably produce true spherical cane polymer particles with high monodispersity through a simple process.

〔問題点を解決するための手段〕[Means for solving problems]

以上の問題点は、シート粒子の水性分散体に、第1の重
合性単量体の水性分散体を混合して前記シート粒子に第
1の重合性単量体を吸収もしくは吸着させ、その後第2
の重合性単量体を混合して重合を行う工程を含み、 第1の重合性単量体は、水に対する溶解度が0゜001
〜0.1重量%であり、かつ水性分散体においてその粒
径がシート粒子より小さい状態で分散されており、 第2の重合性単量体は、水に対する溶解度が001重量
%以上である、 ことを特徴とする重合体粒子の製造方法によって解決さ
れる。
The above problem can be solved by mixing an aqueous dispersion of a first polymerizable monomer with an aqueous dispersion of sheet particles, causing the sheet particles to absorb or adsorb the first polymerizable monomer, and then 2
The first polymerizable monomer has a solubility in water of 0°001.
~0.1% by weight, and is dispersed in an aqueous dispersion with a particle size smaller than that of the sheet particles, and the second polymerizable monomer has a solubility in water of 0.01% by weight or more. The problem is solved by a method for producing polymer particles characterized by the following.

すなわち、本発明においては、あらかじめ、水溶性の低
い第1の重合性単量体を、分散粒子の粒径がシート粒子
の粒径より小さくなる状態で水中に分散させて水性分散
体を調製し、この水性分散この混合系に水溶性の高い第
2の重合性単量体を加え、その後重合を行う点に特色を
有する。
That is, in the present invention, an aqueous dispersion is prepared by first dispersing the first polymerizable monomer with low water solubility in water in such a state that the particle size of the dispersed particles is smaller than the particle size of the sheet particles. This aqueous dispersion is characterized in that a highly water-soluble second polymerizable monomer is added to the mixed system, and then polymerization is carried out.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において用いることのできる第1の重合性単量体
は、水に対する溶解度が0.001〜0.1重量%、好
ましくは0.002〜0.1重量%である。単量体の水
に対する溶解度が過小であると、微分散化された重合性
単量体の安定性が良いため、この単量体がシート粒子中
へ吸収されるのに著しく時間がかかり好ましくない、一
方、単量体の水に対する溶解度が過大であると、微分散
した単量体の油滴が不安定であるためその寿命が著しく
短くなり、単量体をシート粒子よりも小さく分散した状
態の水性分散体の調製が困難となる。
The first polymerizable monomer that can be used in the present invention has a solubility in water of 0.001 to 0.1% by weight, preferably 0.002 to 0.1% by weight. If the solubility of the monomer in water is too low, it will take a significant amount of time for the monomer to be absorbed into the sheet particles, which is undesirable because the finely dispersed polymerizable monomer has good stability. On the other hand, if the solubility of the monomer in water is excessive, the oil droplets of the finely dispersed monomer will be unstable and their lifetime will be significantly shortened, resulting in a state in which the monomer is dispersed smaller than the sheet particles. It becomes difficult to prepare an aqueous dispersion of

水に対する溶解度が0.001〜0.1重量%の範囲に
あり、本発明において好適に用いることのできる第1の
重合性単量体としては、スチレン、α−メチルスチレン
、p−メチルスチレン、ジビニルベンゼン等の芳香族ビ
ニル単量体、ブチルアクリレート、ブチルメタクリレー
ト、2−エチルへキシルアクリレート、2−エチルへキ
シルメタクリレート、ラウリルアクリレート、ラウリル
メタクリレート、トリメチロールプロパントリメタクリ
レート等のエチレン性不飽和カルボン酸アルキルエステ
ル、ブタジェン、イソプレンなどの共役ジオレフィンな
どを例示することができる。これらの単量体はそれらの
1種または2種以上を使用することができる。
Examples of the first polymerizable monomer having a solubility in water in the range of 0.001 to 0.1% by weight and which can be suitably used in the present invention include styrene, α-methylstyrene, p-methylstyrene, Aromatic vinyl monomers such as divinylbenzene, ethylenically unsaturated carboxylic acids such as butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, lauryl acrylate, lauryl methacrylate, trimethylolpropane trimethacrylate, etc. Examples include conjugated diolefins such as alkyl esters, butadiene, and isoprene. These monomers can be used alone or in combination of two or more.

本発明において用いることのできる第2の重合性単量体
は、水に対する溶解度が0.1重量%以上であり、かか
る単量体としてはビニルピリジン、塩化ビニリデン、酢
酸ビニル、アクリロニトリル、メチルアクリレート、メ
チルメタクリレート、エチルアクリレート、エチルメタ
リレート、エチレングリコールジアクリレート、エチレ
ングリコールジメタクリレート、アクリルアミド、メタ
クリルアミド、グリシジルアクリレート、グリシジルメ
タクリレート、N−メチロールアクリルアミド、N−メ
チロールメタクリルアミド、2−ヒドロキシエチルアク
リレート、2−ヒドロキシエチルメタクリレート、ジア
リルフタレート、アリルアクリレート、アリルメタクリ
レート、アクリル酸、メタクリル酸、イタコン酸、フマ
ル酸などを例示することができる。
The second polymerizable monomer that can be used in the present invention has a solubility in water of 0.1% by weight or more, and examples of such monomers include vinylpyridine, vinylidene chloride, vinyl acetate, acrylonitrile, methyl acrylate, Methyl methacrylate, ethyl acrylate, ethyl methacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, acrylamide, methacrylamide, glycidyl acrylate, glycidyl methacrylate, N-methylol acrylamide, N-methylol methacrylamide, 2-hydroxyethyl acrylate, 2- Examples include hydroxyethyl methacrylate, diallyl phthalate, allyl acrylate, allyl methacrylate, acrylic acid, methacrylic acid, itaconic acid, and fumaric acid.

本発明においては、重合中におけろ水相での新粒子の発
生を防ぐという点より、重合性単量体の少なくとも一部
に、重合転化速度の大きい単量体、たとえばジビニルベ
ンゼン、アクリロニトリルまたは塩化ビニルなどを用い
ることが好ましい。
In the present invention, from the viewpoint of preventing the generation of new particles in the aqueous phase during polymerization, at least a part of the polymerizable monomers is a monomer with a high polymerization conversion rate, such as divinylbenzene, acrylonitrile, or It is preferable to use vinyl chloride or the like.

また、第1の重合性単量体が複数種の場合には、複数の
単量体を混合してからこれを微分散して水性分散体を調
製してもよく、またそれぞれの単量体を単独で微分散し
て水性分散体を調製してもよい、それぞれの単量体を単
独で微分散した水性分散体を用いる場合には、単量体の
水に対する溶解度の小さい順に単量体の水性分散体とシ
ート粒子の水性分散体とを混合し、該単量体をシート粒
子に吸収または吸着させることが好ましい。
In addition, when there are multiple types of first polymerizable monomers, an aqueous dispersion may be prepared by mixing the multiple monomers and then finely dispersing the same. An aqueous dispersion may be prepared by finely dispersing each monomer individually. When using an aqueous dispersion in which each monomer is finely dispersed individually, the monomers are added in order of decreasing solubility in water. It is preferable to mix the aqueous dispersion of the monomer with the aqueous dispersion of the sheet particles and allow the monomer to be absorbed or adsorbed onto the sheet particles.

本発明において用いることのできるシート粒子としでは
、重合性単量体を吸収して膨潤するものが好ましく、ス
チレン重合体、スチレン−ブタジェン共重合体等のスチ
レン共重合体、アクリルエステル系重合体、酢酸ビニル
重合体などの重合体を例示することができる。これらの
シート粒子は水系のラテックス、エマルジョン、サスペ
ンシヨンなどの分散体の状態で使用される。また膨潤性
のない組成の重合体、高架橋性重合体さらには表面が親
油化処理された無機物の水性分散体も使用することがで
きる。
The sheet particles that can be used in the present invention are preferably those that absorb polymerizable monomers and swell, such as styrene polymers, styrene copolymers such as styrene-butadiene copolymers, acrylic ester polymers, Examples include polymers such as vinyl acetate polymers. These sheet particles are used in the form of a dispersion such as an aqueous latex, emulsion, or suspension. Also usable are polymers with non-swellable compositions, highly crosslinked polymers, and even aqueous dispersions of inorganic substances whose surfaces have been treated to make them lipophilic.

シート粒子の粒径は、最終的に得られる重合体粒子の粒
径を均一なものとするために均一であることが好ましい
、またシート粒子の粒径は、得られる重合体粒子の用途
等によって適宜選択される。
The particle size of the sheet particles is preferably uniform in order to make the particle size of the polymer particles finally obtained uniform, and the particle size of the sheet particles may vary depending on the use of the obtained polymer particles, etc. Selected appropriately.

ソープフリー重合などによって得られる粒径のそろった
重合体粒子の粒径範囲は、通常0゜1〜0.9μmであ
り、これらのものを好適に使用することができる。また
、本発明によって得られる重合体粒子をシート粒子とし
てさらに粒径の大きい重合体粒子を製造することもでき
る。
The particle size range of polymer particles of uniform particle size obtained by soap-free polymerization or the like is usually 0.1 to 0.9 μm, and these particles can be preferably used. Furthermore, polymer particles having a larger particle size can also be produced by using the polymer particles obtained by the present invention as sheet particles.

は、水に対する溶解度が0.001〜0.1重量%の範
囲にある油溶性のものが好ましい。重合開始剤の水に対
する溶解度が過小であると、微分散化された重合開始剤
の安定性が良いためこの重合開始剤がシート粒子中へ吸
収されるのに著しく時間がかかり好ましくない、一方、
重合開始剤の水に対する溶解度が過大であると、微分散
した重合開始剤の油滴が不安定であるためその寿命が著
しく短くなり、重合開始剤をシート粒子よりも小さく微
分散した状態の水性分散体の調製が困難となる。
is preferably oil-soluble and has a water solubility in the range of 0.001 to 0.1% by weight. If the solubility of the polymerization initiator in water is too low, it will take a significant amount of time for the polymerization initiator to be absorbed into the sheet particles due to the good stability of the finely dispersed polymerization initiator, which is undesirable.
If the solubility of the polymerization initiator in water is excessive, the oil droplets of the finely dispersed polymerization initiator will be unstable and their life will be significantly shortened. Preparation of dispersion becomes difficult.

水に対する溶解度が0.01〜0.1重量%の範囲にあ
り、本発明において好適に用いることのできる油溶性重
合開始剤としては、3,5.5−)リメチルへキサイノ
イルパーオキサイド、t−ブチルパーオキシ2−エチル
ヘキサノエート、ジ−t−ブチルパーオキサイドなど有
機過酸化物、アゾビスイソブチロニトリル、アゾビスシ
クロヘキサンカルボニトリルなどのアゾ化合物を例示す
ることができる。
The oil-soluble polymerization initiator, which has a solubility in water in the range of 0.01 to 0.1% by weight and can be suitably used in the present invention, includes 3,5.5-)limethylhexinoyl peroxide, t Examples include organic peroxides such as -butyl peroxy 2-ethylhexanoate and di-t-butyl peroxide, and azo compounds such as azobisisobutyronitrile and azobiscyclohexanecarbonitrile.

油溶性重合開始剤の状態が粉末等の固体状である場合に
は、これをトルエンやシクロヘキサンのような不活性有
機溶媒に溶解した後に使用することが好ましい。
When the oil-soluble polymerization initiator is in a solid state such as a powder, it is preferably used after dissolving it in an inert organic solvent such as toluene or cyclohexane.

また、油溶性重合開始剤を反応系に加える方法としては
、該重合開始剤をあらかじめ第1の重合性単量体に溶解
させておく方法、あるいは該重合開始剤を第1の重合性
単量体とは別に水中に微分散させて水性分散体を調製し
、この分散体とシート粒子の水性分散体とを混合し、重
合開始剤をシート粒子に吸収あるいは吸着させる方法な
どを用いることができる。ただし、前者の方法において
は、分散体の調製時において、分散に要するせん新作用
によって生ずる熱によって単量体が重合する危険性があ
り、この場合には後者の方法を用いる。
In addition, as a method for adding an oil-soluble polymerization initiator to the reaction system, there is a method in which the polymerization initiator is dissolved in advance in the first polymerizable monomer, or a method in which the oil-soluble polymerization initiator is added to the first polymerizable monomer. It is possible to use a method such as preparing an aqueous dispersion by finely dispersing it in water separately from the polymerization initiator, mixing this dispersion with an aqueous dispersion of sheet particles, and absorbing or adsorbing the polymerization initiator into the sheet particles. . However, in the former method, there is a risk that the monomers will polymerize due to the heat generated by the stimulant action required for dispersion during the preparation of the dispersion, and in this case, the latter method is used.

次に本発明の製造方法の好ましいプロセスについて具体
的に説明する。
Next, a preferred process of the manufacturing method of the present invention will be specifically explained.

本発明においては、第1の重合性単量体を効率的かつ確
実にシート粒子に吸収あるいは吸着させ、不要な新粒子
の生成を抑制して単分散性を高めるために、第1の重合
性単量体を反応系に添加する前にあらかじめ水性分散体
とし、しかもその分散油滴の粒径をシート粒子の粒径よ
り小さくすることが重要である。
In the present invention, in order to efficiently and reliably absorb or adsorb the first polymerizable monomer onto the sheet particles, suppress the generation of unnecessary new particles, and increase monodispersity, the first polymerizable monomer is It is important to form the monomer into an aqueous dispersion before adding it to the reaction system, and to make the dispersed oil droplets smaller in diameter than the sheet particles.

このように重合性単量体の油滴を微分散するためには、
分散体に高せん断力を作用させることが必要であり、そ
のためには例えば高圧下においでせん断を行なうマント
ンガラリンホモジナイザーを用いる手段あるいは超音波
ホモジナイザーを用いる手段などを採用することができ
る。これらの手段においてはせん断による発熱を避ける
ために冷却操作を行なうことが必要である。
In order to finely disperse the oil droplets of the polymerizable monomer in this way,
It is necessary to apply a high shearing force to the dispersion, and for this purpose, for example, a method using a Manton Galarin homogenizer that performs shearing under high pressure or a method using an ultrasonic homogenizer can be employed. In these methods, it is necessary to perform a cooling operation to avoid heat generation due to shearing.

また、分散体の調製においては分散性を高めるために分
散安定剤を用いる。このような分散安定剤としては通常
のものを用いることができ、ドデシルベンゼンスルホン
酸ナトリウム、ラウリル硫酸ナトリウム、ジアルキルス
ルホコハク酸ナトリウム、ナフタレンスルホン酸のホル
マリ゛ン縮合物などのアニオン系乳化剤を例示すること
ができ、更にポリオキシエチレンノニルフェノールエー
テル、ポリエチレングリコールモノステアレート、ソル
ビタンモノステアレートなどの非イオン系界面活性剤を
併用することも可能である。
Further, in preparing a dispersion, a dispersion stabilizer is used to improve dispersibility. Common dispersion stabilizers can be used, and examples include anionic emulsifiers such as sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium dialkylsulfosuccinate, and formalin condensate of naphthalenesulfonic acid. It is also possible to use a nonionic surfactant such as polyoxyethylene nonylphenol ether, polyethylene glycol monostearate, or sorbitan monostearate.

このようにして得られた第1の重合性単量体の水性分散
体はシート粒子の水性分散体に添加・混合され、この単
量体の油滴がシート粒子中に完全に吸収されるまで通常
1時間以上にわたってゆっくり攪拌される。また、重合
開始剤は既述の方法によって第1の重合性単量体ととも
にシート粒子に吸収される。なお、第1の重合性単量体
の水性分散体の添加方法は特に制限されず、−活力式、
分割方式あるいは連続方式のいずれであってもよい。
The aqueous dispersion of the first polymerizable monomer thus obtained is added and mixed with the aqueous dispersion of the sheet particles until the oil droplets of this monomer are completely absorbed into the sheet particles. The mixture is stirred slowly for usually one hour or more. Further, the polymerization initiator is absorbed into the sheet particles together with the first polymerizable monomer by the method described above. Note that the method of adding the aqueous dispersion of the first polymerizable monomer is not particularly limited;
Either a divided method or a continuous method may be used.

以上のプロセスによって、第1の重合性単量体ならびに
油溶性重合開始剤が吸収もしくは吸着されて肥大化した
シート粒子の水性分散体が調製される。
Through the above process, an aqueous dispersion of enlarged sheet particles is prepared by absorbing or adsorbing the first polymerizable monomer and the oil-soluble polymerization initiator.

ついで、この水性分散体に第2の重合性単量体を添加し
、該第2の重合性単量体を肥大化したシート粒子に接触
・吸収させる。
Next, a second polymerizable monomer is added to this aqueous dispersion, and the second polymerizable monomer is brought into contact with and absorbed by the enlarged sheet particles.

以上の吸収操作が終了した後、系の温度を上昇させて重
合を行なう。重合温度は、重合開始剤によって異なるが
、通常40〜90℃、好ましくは50〜80℃である。
After the above absorption operation is completed, the temperature of the system is raised to carry out polymerization. The polymerization temperature varies depending on the polymerization initiator, but is usually 40 to 90°C, preferably 50 to 80°C.

重合の際、分散粒子の安定性を増すために分散安定剤を
用いることが必要である。このような分散安定剤として
は、通常用いられるものでよく、アニオン系、ノニオン
系の界面活性剤あるいは有機系または無機系の懸濁保護
剤が用いられる。ただし、界面活性剤を用いるときは、
その濃度を臨界ミセル濃度以下とする必要がある。好ま
しい分散安定剤としては、ケン化度75〜95%、重合
度500〜3.000のポリビニルアルコールを用いる
ことができる。
During polymerization, it is necessary to use a dispersion stabilizer to increase the stability of the dispersed particles. Such dispersion stabilizers may be those commonly used, such as anionic or nonionic surfactants or organic or inorganic suspension protectants. However, when using a surfactant,
It is necessary to keep the concentration below the critical micelle concentration. As a preferable dispersion stabilizer, polyvinyl alcohol having a degree of saponification of 75 to 95% and a degree of polymerization of 500 to 3.000 can be used.

なお、重合の際、モノマー組成によっては水相において
シート粒子とは無関係に粒子が発生、成長する場合があ
り、これを抑制するために塩化第二鉄、亜硝酸ナトリウ
ム、ハイドロキノンなどの水溶性の重合禁止剤を添加す
ることもできる。
During polymerization, depending on the monomer composition, particles may be generated and grow in the aqueous phase independently of the sheet particles. To suppress this, water-soluble substances such as ferric chloride, sodium nitrite, and hydroquinone are Polymerization inhibitors can also be added.

〔実 施 例〕〔Example〕

以下、本発明の実施例について述べるが、本発明はこれ
らに限定されるものではない、以下の記載において「部
」および「%」はおのおの重量部および重量%を表わす
Examples of the present invention will be described below, but the present invention is not limited thereto. In the following description, "parts" and "%" represent parts by weight and % by weight, respectively.

実施例1 t−ブチルパーオキシ2−エチルヘキサノエート(30
℃における水に対する溶解度0.15重量%)「パーブ
チルOJ  (日本油脂社製)2部、ラウリル硫酸ナト
リウム0.15部、水20部を超音波により乳化し、パ
ーブチル0を0.5μm以下の粒径となるよう微分散し
た。これに粒径0.80μmの単分散ポリスチレンラテ
ックス(固形分濃度2%)を50部添加し、30℃で8
時間にわたりゆっくり攪拌し、シート粒子中にバーチプ
ルOを吸収させた。
Example 1 t-Butylperoxy 2-ethylhexanoate (30
(Solubility in water at °C: 0.15% by weight) 2 parts of Perbutyl OJ (manufactured by NOF Corporation), 0.15 parts of sodium lauryl sulfate, and 20 parts of water were emulsified by ultrasonication, and Perbutyl 0 was made into particles of 0.5 μm or less. 50 parts of monodispersed polystyrene latex (solid content concentration 2%) with a particle size of 0.80 μm was added to this, and
Slow stirring was performed for a period of time to absorb the Vertiple O into the sheet particles.

次にスチレン50部とラウリル硫酸ナトリウム0.3部
、水100部を超音波によって乳化し、スそして30℃
で12時間にわたりゆっくり攪拌し、シート粒子中にス
チレンを吸収させた。
Next, 50 parts of styrene, 0.3 parts of sodium lauryl sulfate, and 100 parts of water were emulsified using ultrasonic waves, and then heated to 30°C.
The mixture was stirred slowly for 12 hours to absorb the styrene into the sheet particles.

次にアクリロニトリル50部を微分散しないで添加し、
さらに1時間攪拌した。その後、ポリビニルアルコール
「ゴーセノールG H20J  (8本合成化学■製」
の5%水溶液を200部添加し、温度を80℃に昇温し
で重合を開始した0重合は6時間でほぼ完結した。そし
て凝固物の発生はほとんどなく、水相における新粒子の
発生は全くなかった。
Next, 50 parts of acrylonitrile was added without finely dispersing it,
The mixture was further stirred for 1 hour. After that, polyvinyl alcohol “GOHSENOL G H20J (manufactured by 8 bottles of synthetic chemicals)”
200 parts of a 5% aqueous solution of was added and the temperature was raised to 80°C to initiate polymerization, which was almost completed in 6 hours. There was almost no generation of coagulum, and no new particles were generated in the aqueous phase.

得られた重合体粒子を走査型電子1gi微鏡で観察した
ところ、粒子はほぼ真球であり、平均粒径3.5μm、
粒径の標準偏差値4%のきわめて均一な粒径を有するも
のであることがva認された。
When the obtained polymer particles were observed with a scanning electron 1gi microscope, the particles were almost perfectly spherical, with an average particle size of 3.5 μm,
It was confirmed that the particles had extremely uniform particle sizes with a standard deviation value of 4%.

比較例1 パーブチル02部、スチレン50部、アクリロニトリル
50部、ラウリル硫酸ナトリウム0.65部、水120
部を超音波により乳化したが長時間乳化操作を行なって
も1〜20μmの粒径の液滴になるだけで、0.5μm
以下の粒径に微分散することはできなかった。これに粒
径0.80μmの単分散ポリスチレンラテックス(固形
分濃度2%)を50部添加し、30℃で24時間にわた
りゆっくり攪拌し、充分な吸収操作を行った後、ポリビ
ニルアルコール「ゴーセノールGH20Jの5z水溶液
を200部添加し、温度を80℃に昇温しで重合した。
Comparative Example 1 Perbutyl 02 parts, styrene 50 parts, acrylonitrile 50 parts, sodium lauryl sulfate 0.65 parts, water 120 parts
was emulsified by ultrasonic waves, but even if the emulsification operation was performed for a long time, droplets with a particle size of 1 to 20 μm were formed, and droplets with a particle size of 0.5 μm were obtained.
It was not possible to finely disperse the particles to the following particle sizes. 50 parts of monodispersed polystyrene latex (solid content concentration 2%) with a particle size of 0.80 μm was added to this, and after stirring slowly at 30°C for 24 hours to perform a sufficient absorption operation, 200 parts of 5z aqueous solution was added, and the temperature was raised to 80°C for polymerization.

得られた重合体粒子を走査型電子顕微鏡で観察したとこ
ろ、この粒子は、約1゜4μmの均一な粒径を有する粒
子と1〜20μmの不均一な粒径を有する粒子の重合体
であった。
When the obtained polymer particles were observed with a scanning electron microscope, they were found to be a polymer of particles having a uniform particle size of approximately 1.4 μm and particles having a nonuniform particle size of 1 to 20 μm. Ta.

実施例2.3 実施例1におけるポリビニルアルコールのかわりにラウ
リル硫酸ナトリウムを、実施例2においては0.1部、
実施例3においては0.2部用いたほかは、実施例1と
同様にしてそれぞれ重合体粒子を製造した。なお、この
場合には重合時における分散安定性が良好でないので、
重合中は系をゆっ(りと間欠的に攪拌する必要がある。
Example 2.3 Sodium lauryl sulfate was used instead of polyvinyl alcohol in Example 1, and 0.1 part in Example 2.
In Example 3, polymer particles were produced in the same manner as in Example 1, except that 0.2 parts were used. In this case, the dispersion stability during polymerization is not good, so
The system must be stirred slowly and intermittently during polymerization.

実施例2においては、平均粒径3.2μm、粒径の標準
偏差値10%の均一な粒径の重合体粒子を得た。また、
重合の結果発生した凝固物は4.5重量%であった。
In Example 2, polymer particles having a uniform particle size with an average particle size of 3.2 μm and a standard deviation value of particle size of 10% were obtained. Also,
The amount of coagulum produced as a result of polymerization was 4.5% by weight.

実施例3においては、平均粒径3.1μm、粒径の標準
偏差値8%の均一な粒径の重合体粒子を得た。また重合
の結果発生した凝固物は2.8%であった。
In Example 3, polymer particles having a uniform particle size with an average particle size of 3.1 μm and a standard deviation value of particle size of 8% were obtained. Further, the amount of coagulated material generated as a result of polymerization was 2.8%.

実施例4〜11 実施例1におけるポリビニルアルコール(PVA)のか
わりに第1表に示す特性を有する9種のポリビニルアル
コールを用いたほかは、実施例1と同様にして重合体粒
子を得た。各実施例におけろ重合体粒子の平均粒径およ
びその標準偏差値、ならびに重合によって発生した凝固
物の量を同じく第1表に示す、なお、第1表には実施例
1のデータを併記する。
Examples 4 to 11 Polymer particles were obtained in the same manner as in Example 1, except that nine types of polyvinyl alcohol having the characteristics shown in Table 1 were used instead of polyvinyl alcohol (PVA) in Example 1. The average particle size and standard deviation of the polymer particles in each example, as well as the amount of coagulated material generated by polymerization, are also shown in Table 1. The data of Example 1 are also shown in Table 1. do.

第1表 実施例12 アゾビスイソブチロニトリル2部、スチレン90部、ジ
ビニルベンゼン10部、ラウリル硫酸ナトリウム1.5
部、水200部をマントンガラリンホモジナイザ−(モ
デル15M)によって単量体の滴液を粒径が0.4μm
以下となるよう微分散した。このとき、系の温度が25
℃以上に上昇しないよう冷却りながら操作を行った。
Table 1 Example 12 2 parts of azobisisobutyronitrile, 90 parts of styrene, 10 parts of divinylbenzene, 1.5 parts of sodium lauryl sulfate
and 200 parts of water were mixed into monomer droplets with a particle size of 0.4 μm using a Manton Galarin homogenizer (model 15M).
Finely dispersed as follows. At this time, the temperature of the system is 25
The operation was performed while cooling to prevent the temperature from rising above ℃.

この分散体を粒径0,7μmの単分散ポリスチレンラテ
ックス(固形分濃度2%)50部中に添加し、25℃で
48時間にわたってゆっくり攪拌し、単量体をポリスチ
レン粒子中に吸収させた。
This dispersion was added to 50 parts of monodispersed polystyrene latex (solid content concentration 2%) with a particle size of 0.7 μm and slowly stirred at 25° C. for 48 hours to absorb the monomer into the polystyrene particles.

これに4−ビニルピリジンを20部加え、さらにポリビ
ニルアルコール「ゴーセノールGH20Jの10%水溶
液を100部添加し、70℃に温度を上昇して重合を開
始させた0重合は5時間でほぼ終了した。得られた重合
体粒子を光学顕微鏡で観察したところ、この重合体は平
均粒径866μm、粒径の標準偏差5%のほぼ真球状粒
子であることが確認された。
To this, 20 parts of 4-vinylpyridine was added, and 100 parts of a 10% aqueous solution of polyvinyl alcohol Gohsenol GH20J was added, and the temperature was raised to 70°C to start polymerization. The polymerization was almost completed in 5 hours. When the obtained polymer particles were observed with an optical microscope, it was confirmed that the polymer particles were almost perfectly spherical particles with an average particle size of 866 μm and a standard deviation of particle size of 5%.

また、得られた重合体粒子は粒子表面が親木性であり、
水に対する分散性が良好であった。
In addition, the obtained polymer particles have a wood-philic particle surface,
The dispersibility in water was good.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、まず水溶性の低い第1の重合性単量体
を微分散してこれをシート粒子に吸収させた後、水溶性
の高い第2の重合性単量体を微分散せずに添加して重合
を行うことにより、これらの重合性単量体の両者を容易
かつ確実にシート粒子に吸収あるいは吸着させることが
可能となり、したがって不要な新粉子の生成が防止され
、単分散性の良好な重合体粒子を容易かつ確実に製造す
ることができる。
According to the present invention, first, a first polymerizable monomer with low water solubility is finely dispersed and absorbed into sheet particles, and then a second polymerizable monomer with high water solubility is finely dispersed. By adding these polymerizable monomers to the sheet particles and performing polymerization, it becomes possible to easily and reliably absorb or adsorb both of these polymerizable monomers into the sheet particles, thereby preventing the generation of unnecessary new particles and reducing the amount of monomers. Polymer particles with good dispersibility can be easily and reliably produced.

またシート粒子として親油化処理された無機物を用いる
ことにより、シート粒子の表面を重合体によって均一に
被覆してなる複合粒子を得ることができる。
In addition, by using an inorganic substance that has been subjected to a lipophilic treatment as the sheet particles, it is possible to obtain composite particles in which the surfaces of the sheet particles are uniformly coated with a polymer.

このようにして製造された重合体粒子は、巨大粒子なら
びに微小粒子がなく単分散性に優れ、また製造において
膨潤助剤を使用していないので重合体粒子がいびつにな
ることがなく真球状であるという特徴を有する。
The polymer particles produced in this way have excellent monodispersity, with no giant particles or microparticles, and since no swelling aid is used during production, the polymer particles do not become distorted and have a true spherical shape. It has the characteristic of being.

本発明の製造方法によって得られる重合体粒子の用途と
しては、顕微鏡検査用の標準試料9分離。
The polymer particles obtained by the production method of the present invention can be used as standard samples for microscopic examination.

流体流、遠心分離、拡散率測定およびダスト研究等のモ
デル系用材料、生体医学診断薬用担体、固定化酵素担体
、粉末インク、静電現像用トナー、塗料、粉末潤滑剤、
マイクロカプセル、感圧複写紙のマイクロカプセル保護
用スペーサー材料、液晶セル用スペーサー、塗工紙用プ
ラスチッグピグメント、粘着剤用プラスチックピグメン
ト、セラミックス用バインダー、耐衝撃樹脂用ベースポ
リマー粒子、化粧品用プラスチックピグメント、イオン
クロマトグラフィ用カラム充填剤などを挙げることがで
き、多種の分野においてきわめて有用である。
Materials for model systems such as fluid flow, centrifugation, diffusivity measurement and dust studies, carriers for biomedical diagnostics, immobilized enzyme carriers, powder inks, toners for electrostatic development, paints, powder lubricants,
Microcapsules, spacer materials for protecting microcapsules in pressure-sensitive copying paper, spacers for liquid crystal cells, plastic pigments for coated paper, plastic pigments for adhesives, binders for ceramics, base polymer particles for impact-resistant resins, plastic pigments for cosmetics. , column packing materials for ion chromatography, etc., and are extremely useful in a variety of fields.

Claims (1)

【特許請求の範囲】 1)シート粒子の水性分散体に、第1の重合性単量体の
水性分散体を混合して前記シート粒子に第1の重合性単
量体を吸収もしくは吸着させ、その後第2の重合性単量
体を混合して重合を行う工程を含み、 第1の重合性単量体は、水に対する溶解度 が0.001〜0.1重量%であり、かつ水性分散体に
おいてその粒径がシート粒子より小さい状態で分散され
ており、 第2の重合性単量体は、水に対する溶解度 が0.1重量%以上である、 ことを特徴とする重合体粒子の製造方法。 2)懸濁保護剤および/または臨界ミセル濃度以下の界
面活性剤よりなる分散安定剤の存在下において重合を行
う特許請求の範囲第1項記載の重合体粒子の製造方法。
[Scope of Claims] 1) Mixing an aqueous dispersion of a first polymerizable monomer with an aqueous dispersion of sheet particles to cause the sheet particles to absorb or adsorb the first polymerizable monomer; The first polymerizable monomer has a solubility in water of 0.001 to 0.1% by weight, and the first polymerizable monomer is an aqueous dispersion. A method for producing polymer particles, characterized in that the second polymerizable monomer has a solubility in water of 0.1% by weight or more. . 2) The method for producing polymer particles according to claim 1, wherein the polymerization is carried out in the presence of a dispersion stabilizer consisting of a suspension protectant and/or a surfactant having a concentration below the critical micelle concentration.
JP5613585A 1985-03-22 1985-03-22 Production of polymer particle Pending JPS61215603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5613585A JPS61215603A (en) 1985-03-22 1985-03-22 Production of polymer particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5613585A JPS61215603A (en) 1985-03-22 1985-03-22 Production of polymer particle

Publications (1)

Publication Number Publication Date
JPS61215603A true JPS61215603A (en) 1986-09-25

Family

ID=13018629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5613585A Pending JPS61215603A (en) 1985-03-22 1985-03-22 Production of polymer particle

Country Status (1)

Country Link
JP (1) JPS61215603A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395880A (en) * 1991-10-29 1995-03-07 Nippon Paint Co., Ltd. Manufacturing method of resin granules
US5709986A (en) * 1996-01-30 1998-01-20 Eastman Kodak Company Photographic elements employing polymeric particles
US6787233B1 (en) 1998-10-19 2004-09-07 Dynal Biotech Asa Particles
EP1564227A1 (en) * 1999-04-09 2005-08-17 Dynal Biotech ASA Process for the preparation of monodisperse polymer particles
EP1736137A1 (en) * 2005-06-22 2006-12-27 L'Oréal Optically colored body and optical structure
JP2009280751A (en) * 2008-05-26 2009-12-03 Nitto Denko Corp Production method of porous polymer particle
US7718164B2 (en) 2005-06-22 2010-05-18 L'oreal S.A. Optically colored body and optical structure
US7732051B2 (en) 2006-07-26 2010-06-08 Jsr Corporation Polymer-coated magnetic particles comprising a 2,3-hydroxypropyl group, and probe-bonded particles
US7981512B2 (en) 2006-09-28 2011-07-19 Jsr Corporation Organic polymer-magnetic particles and process for producing same
US8703289B2 (en) 2005-11-01 2014-04-22 Jsr Corporation Organic polymer particles and process for producing the same, magnetic particles for diagnostics, carboxyl group-containing particles and process for producing the same, and probe-bound particles and process for producing the same
WO2015119288A1 (en) 2014-02-10 2015-08-13 Jsr株式会社 Method for capturing target substance, solid-phase carrier for capturing target substance, and method for producing solid-phase carrier
US9447232B2 (en) 2005-05-20 2016-09-20 Jsr Corporation Carrier polymer particle, process for producing the same, magnetic particle for specific trapping, and process for producing the same
WO2018124185A1 (en) 2016-12-28 2018-07-05 Jsr株式会社 Magnetic particle dispersion
EP3382394A1 (en) 2017-03-31 2018-10-03 JSR Corporation Method of producing probe-bound carrier, probe-bound carrier and method of detecting or separating target substance

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395880A (en) * 1991-10-29 1995-03-07 Nippon Paint Co., Ltd. Manufacturing method of resin granules
US5709986A (en) * 1996-01-30 1998-01-20 Eastman Kodak Company Photographic elements employing polymeric particles
US6787233B1 (en) 1998-10-19 2004-09-07 Dynal Biotech Asa Particles
EP1564227A1 (en) * 1999-04-09 2005-08-17 Dynal Biotech ASA Process for the preparation of monodisperse polymer particles
US9447232B2 (en) 2005-05-20 2016-09-20 Jsr Corporation Carrier polymer particle, process for producing the same, magnetic particle for specific trapping, and process for producing the same
EP1736137A1 (en) * 2005-06-22 2006-12-27 L'Oréal Optically colored body and optical structure
US7718164B2 (en) 2005-06-22 2010-05-18 L'oreal S.A. Optically colored body and optical structure
US8703289B2 (en) 2005-11-01 2014-04-22 Jsr Corporation Organic polymer particles and process for producing the same, magnetic particles for diagnostics, carboxyl group-containing particles and process for producing the same, and probe-bound particles and process for producing the same
US7732051B2 (en) 2006-07-26 2010-06-08 Jsr Corporation Polymer-coated magnetic particles comprising a 2,3-hydroxypropyl group, and probe-bonded particles
US7981512B2 (en) 2006-09-28 2011-07-19 Jsr Corporation Organic polymer-magnetic particles and process for producing same
JP2009280751A (en) * 2008-05-26 2009-12-03 Nitto Denko Corp Production method of porous polymer particle
WO2015119288A1 (en) 2014-02-10 2015-08-13 Jsr株式会社 Method for capturing target substance, solid-phase carrier for capturing target substance, and method for producing solid-phase carrier
WO2018124185A1 (en) 2016-12-28 2018-07-05 Jsr株式会社 Magnetic particle dispersion
US11320430B2 (en) 2016-12-28 2022-05-03 Jsr Corporation Magnetic particle dispersion
EP3382394A1 (en) 2017-03-31 2018-10-03 JSR Corporation Method of producing probe-bound carrier, probe-bound carrier and method of detecting or separating target substance
US11366108B2 (en) 2017-03-31 2022-06-21 Jsr Corporation Method of producing probe-bound carrier, probe-bound carrier and method of detecting or separating target substance

Similar Documents

Publication Publication Date Title
US4694035A (en) Process for preparing large-sized polymer particles
JPH05178912A (en) Production of cross-linked polymer particle
JPS61215603A (en) Production of polymer particle
JPS61215602A (en) Production of polymer particle
JPS61215604A (en) Production of polymer particle
JPH06256438A (en) Production of polymer particle
JPS62121701A (en) Production of polymer particle
JP3339091B2 (en) Method for producing polymer particles
EP0308864B1 (en) Process for preparing uniformly sized, fine particles of polymer
JPS61190504A (en) Production of polymer particles
JPH08134115A (en) Production of highly monodisperse fine particle
JPH05139711A (en) Uniform particle diameter fired particulate and production therefor
JPS61215605A (en) Production of polymer particle
JP3130437B2 (en) Method for producing polymer particles of uniform size
JP3165472B2 (en) Method for producing polymer particles containing inner pores
JPH0689082B2 (en) Method for producing monodisperse polymer
JPS61225254A (en) Fine particle having uniform particle size and production thereof
JP3534862B2 (en) Method for producing highly monodispersed fine particles
JPH01314962A (en) Packing material for liquid chromatography
JPH08100006A (en) Production of monodisperse polymer particle
JPH0834804A (en) Production of fine polymer particle
JPS61283602A (en) Production of aqueous dispersion of fine polymer particle
JP3165469B2 (en) Method for producing polymer particles having inner pores
JPS6263856A (en) Production of packing material for chromatography
JPH011702A (en) Method for producing polymer particles