JP3534862B2 - Method for producing highly monodispersed fine particles - Google Patents

Method for producing highly monodispersed fine particles

Info

Publication number
JP3534862B2
JP3534862B2 JP31885294A JP31885294A JP3534862B2 JP 3534862 B2 JP3534862 B2 JP 3534862B2 JP 31885294 A JP31885294 A JP 31885294A JP 31885294 A JP31885294 A JP 31885294A JP 3534862 B2 JP3534862 B2 JP 3534862B2
Authority
JP
Japan
Prior art keywords
weight
fine particles
particles
seed particles
ethylenically unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31885294A
Other languages
Japanese (ja)
Other versions
JPH08176214A (en
Inventor
初 松扉
康彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP31885294A priority Critical patent/JP3534862B2/en
Publication of JPH08176214A publication Critical patent/JPH08176214A/en
Application granted granted Critical
Publication of JP3534862B2 publication Critical patent/JP3534862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、シード重合法によって
均一な粒径を有する高単分散微粒子を製造する方法に関
する。 【0002】 【従来の技術】液晶パネル用スペーサー、クロマトグラ
フィ用充填剤、診断試薬等に用いられる高分子微粒子に
は、その粒径が均一であることが要求されている。従
来、このような粒径が均一な微粒子を得る方法として
は、主に懸濁重合で得られた微粒子を乾式又は湿式の分
級装置を用いて分級する方法が挙げられる。しかし、こ
のような方法では、収率が著しく低くなり、粒径の均一
性も十分とはいえなかった。 【0003】さらに、乳化重合では、ミクロンオーダー
の微粒子の合成は困難であり、分散重合ではミクロンオ
ーダーの単分散微粒子は得られるが、架橋微粒子を得る
ことは困難であった。 【0004】ミクロンオーダーの単分散架橋微粒子を製
造する方法としては、例えば、特公昭57−24369
号公報には二段階膨潤シード重合法が開示され、特公平
5−64964号公報には非イオン性化合物を用いた改
良膨潤シード重合法が開示されている。しかしながら、
これらの方法は、いずれも単量体の移動を促進するよう
な助剤を用いて単量体をシード粒子に拡散させた後、重
合させることにより未架橋又は架橋微粒子を製造してい
るが、特に架橋性微粒子を製造する際に、重合中に助剤
がブリードアウトして、多孔性の微粒子が生成するとい
う問題点があった。 【0005】また、例えば、特公昭63−32500号
公報や特公平4−71921号公報には、低分子量の種
ラテックスに対して20〜500倍の体積の単量体や有
機化合物を吸収させ重合する方法が開示されている。し
かし、得られる微粒子は粒径精度が悪く、種ラテックス
と吸収される物質の分子構造が異なる場合は、互いに相
分離を起こし、重合が進むにつれて内部にボイドや亀裂
が発生して、生成した微粒子の力学的強度が著しく低下
するという問題点があった。 【0006】 【発明が解決しようとする課題】本発明は、上記問題点
に鑑み、その目的は、簡単な重合反応により均一な粒径
を有し、力学的強度が優れる高単分散微粒子の製造方法
を提供することにある。 【0007】 【課題を解決するための手段】本発明の高単分散微粒子
の製造方法は、水性分散媒に分散させたシード粒子に、
エチレン性不飽和単量体を吸着させ、油溶性重合開始剤
の存在下で重合させる際に、該エチレン性不飽和単量体
として、分子中にエチレン性不飽和基を2つ以上有する
単量体を15重量%以上含有するエチレン性不飽和単量
体を油溶性重合開始剤と共に水中で微分散させた後、シ
ード粒子に吸収させ重合することを特徴とする。 【0008】上記シード粒子としては、スチレン及びそ
の誘導体を50重量%以上含有する重合体が用いられ
る。このシード粒子において、スチレン及びその誘導体
の割合は、少なくなると後で添加される分子中にエチレ
ン性不飽和基を2つ以上有する単量体と相分離を起こ
し、生成する架橋微粒子の力学的強度が著しく低下す
る。 【0009】上記スチレン誘導体としては、p−メチル
スチレン、p−クロロスチレン、p−クロロメチルスチ
レン、p−メトキシスチレン等が挙げられ、これらは単
独で用いられても二種以上が併用されてもよい。上記ス
チレン及びその誘導体以外の成分としては、(メタ)ア
クリル酸、(メタ)アクリル酸エステル、ブタジエン等
が用いられる。 【0010】上記シード粒子の重量平均分子量は、小さ
くなると単分散真球微粒子が形成されず、大きくなると
後で添加される分子中にエチレン性不飽和基を2つ以上
有する単量体と相分離を起こし、生成する架橋微粒子の
力学的強度が著しく低下するので、1,000〜20,
000に限定される。 【0011】上記シード粒子としては、平均粒径0.1
〜10μmで、且つCv値〔(粒径標準偏差/平均粒
径)×100で表される〕が10以下の非架橋型の粒子
が好ましい。これらのシード粒子は、例えば、ソープフ
リー重合又は分散重合を用いて製造されるが、これらの
方法に限定されず公知の技術が適用可能である。 【0012】上記エチレン性不飽和単量体としては、ス
チレン、α−メチルスチレン、p−メチルスチレン、p
−クロロスチレン、クロロメチルスチレン等のスチレン
誘導体;塩化ビニル;酢酸ビニル、プロピオン酸ビニル
等のビニルエステル類;アクリロニトリル等の不飽和ニ
トリル類;(メタ)アクリル酸メチル、(メタ)アクリ
ル酸エチル、(メタ)アクリル酸ブチル、(メタ)アク
リル酸2−エチルヘキシル、(メタ)アクリル酸ステア
リル等の(メタ)アクリル酸エステル誘導体;ブタジエ
ン、イソプレン等の共役ジエン類等の単官能性単量体が
挙げられ、これらは単独で用いられてもよく、二種以上
が併用されてもよい。 【0013】また、上記分子中にエチレン性不飽和基を
2つ以上有するエチレン性不飽和単量体としては、ジビ
ニルベンゼン、エチレンオキシドジ(メタ)アクリレー
ト、テトラエチレンオキシドジ(メタ)アクリレート、
1,6−ヘキサンジオールジアクリレート、ネオペンチ
ルグリコールジアクリレート、トリメチロールプロパン
トリ(メタ)アクリレート、テトラメチロールメタント
リアクリレート、テトラメチロールプロパンテトラ(メ
タ)アクリレート等の多官能性単量体が挙げられ、これ
らは単独で用いられてもよく、二種以上が併用されても
よい。 【0014】上記エチレン性不飽和性単量体のうち、上
記分子中にエチレン性不飽和基を2つ以上有するエチレ
ン性不飽和性単量体の割合は、少なくなると微粒子の力
学的強度が低下するので、15重量%以上が好ましく、
より好ましくは30重量%以上である。 【0015】上記エチレン性不飽和単量体の添加量は、
少なくなる架橋成分が不足し生成する微粒子の力学的強
度が不十分となり、多くなくなると生成する微粒子の粒
径精度が悪くなるので、シード粒子1重量部に対して1
〜20重量部である。 【0016】上記油溶性重合開始剤としては、例えば、
過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過
酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、
3,5,5−トリメチルヘキサノイルパーオキサイド、
t−ブチルパーオキシ−2−エチルヘキサノエート、ジ
−t−ブチルパーオキサイド等の有機過酸化物;アゾビ
スイソブチロニトリル、アゾビスシクロヘキサカルボニ
トリル、2、2'-アゾビス(2,4−ジメチルバレロニ
トリル)等のアゾ系化合物などが挙げられる。 【0017】本発明の製造方法では、上記エチレン性不
飽和単量体を油溶性重合開始剤と共に水中で微分散させ
て微分散エマルジョンとした後、該微分散エマルジョン
と水分散媒に分散させたシード粒子(シード粒子分散
液)とを混合し、該シード粒子にエチレン性不飽和単量
体と油溶性重合開始剤とを吸着させ重合を行う。 【0018】上記重合工程では、上記エチレン性不飽和
単量体を油溶性重合開始剤と共に水中で微分散させた
後、シード粒子に吸着させる方法が好ましい。エチレン
性不飽和単量体と油溶性重合開始剤を微分散させるに
は、ホモジナイザー等により微分散してもよく、超音波
処理、ナノマイザーやマウントガウリン型の微細乳化機
により微分散してもよい。また、上記両成分の微分散エ
マルジョンを得るためには、予め両成分を混合して微分
散してもよく、各成分を別々に微分散した後両成分を混
合してもよい。 【0019】上記微分散エマルジョンの粒径は、上記シ
ード粒子の粒径より小さい方が好ましい。このような粒
径を選択することにより、上記エチレン性不飽和単量体
と油溶性重合開始剤とが水中に溶解し、シード粒子に拡
散する速度を速めることができる。この拡散速度が遅く
なると、生成する微粒子の粒径分布精度が悪くなる。 【0020】上記シード粒子に上記微分散エマルジョン
を吸着させるには、シード粒子分散液と微分散エマルジ
ョンを混合し、室温で1〜12時間攪拌することにより
行われるが、30〜50℃に加温することにより吸着を
促進することができる。 【0021】上記微分散エマルジョンの吸着による上記
シード粒子は膨潤度は、上記シード粒子分散液と上記微
分散エマルジョンとの混合割合を調節することにより任
意に選択することができるが、本発明では、2〜15倍
の膨潤度が好ましい。ここでいう膨潤度とは、膨潤前の
シード粒子に対する膨潤後の微粒子の体積比で定義され
る。吸着の終了は、光学顕微鏡での観察により粒径の拡
大を確認することにより判定する。 【0022】上記重合工程において、上記シード粒子
と、該シード粒子に吸着された微分散エマルジョンとを
重合する。重合温度は、使用するエチレン性不飽和単量
体や油溶性重合開始剤の種類によって、適宜選択するこ
とができるが、通常は、25〜100℃が好ましく、よ
り好ましくは50〜90℃である。また、上記シード粒
子に、上記エチレン性不飽和単量体と油溶性重合開始剤
とが完全に吸着された後で重合を開始するのが好まし
い。 【0023】上記重合工程において、重合体微粒子の分
散安定性を向上させるために、界面活性剤や高分子分散
安定剤を添加してもよい。このような界面活性剤として
は、ラウリル硫酸ナトリウム、ラウリルベンゼンスルホ
ン酸ナトリウム等のアニオン系界面活性剤;ポリビニル
ピロリドン、ゼラチン、デンプン、ヒドロキシエチルセ
ルロース、ポリビニルエーテル、ポリビニルアルコール
等の高分子分散安定剤が挙げられ、これらは単独で用い
られてもよく、二種以上が併用されてもよい。 【0024】上記界面活性剤や高分子分散安定剤は、シ
ード粒子にエチレン性不飽和単量体及び重合開始剤を吸
収させた後で添加してもよいし、上記エチレン性不飽和
単量体及び重合開始剤を微分散させる時に添加してもよ
い。微分散時の添加によって、微分散時の安定化と重合
時の分散安定化との両方を得ることができる。 【0025】上記重合方法により得られる高単分散微粒
子の粒径は、用いられるシード粒子の粒径、上記エチレ
ン性不飽和単量体とシード粒子の混合割合によって自由
に設計可能であるが、特に、上記重合方法は粒径1〜1
0μm、Cv値5以下の高単分散架橋微粒子の製造に好
適である。 【0026】重合後の微粒子は、遠心分離して水相を除
去し、水及び溶剤で洗浄した後、乾燥単離することがで
きる。 【0027】 【実施例】次に、本発明の実施例を説明する。シード粒子の製造 (1)シード粒子(A) ポリビニルピロリドン(重量平均分子量3万)1.2重
量部、アニオン界面活性剤(和光純薬工業社製「エアゾ
ールOT」)0.57重量部及びアゾビスイソブチロニ
トリル1.43重量部をエタノール83.8重量部に溶
解させた溶液を、攪拌しながら窒素気流下でスチレン1
4重量部を投入し、70℃に昇温させ24時間重合反応
を行い、シード粒子(A)分散液を得た。得られたシー
ド粒子(A)は、平均粒径1.63μm、Cv値2.
2、重量平均分子量(Mw)=5,000、数平均分子量
(Mn)2,400であった。 【0028】(2)シード粒子(B) シード粒子(A)の合成において、アゾイソブチロニト
リルの使用量を0.45重量部に変えたこと以外は、シ
ード粒子(A)と同様にして重合しシード粒子(B)を
得た。得られた、シード粒子(B)は平均粒径1.6μ
m、Cv値2.31、Mw =18,000、Mn =7,
500であった。 【0029】(3)シード粒子(C) シード粒子(A)の合成において、アゾイソブチロニト
リルの使用量を2.9重量部に変えたこと以外は、シー
ド粒子(A)と同様にして重合しシード粒子(C)を得
た。得られたシード粒子(C)は平均粒径1.88μ
m、Cv値2.4、Mw =2,100、Mn =800で
あった。 【0030】(4)シード粒子(D) シード粒子(A)の合成において、スチレンに代えて、
スチレン7重量部、p−メチルスチレン6重量部及びア
クリル酸1重量部を使用したこと以外は、シード粒子
(A)と同様にして重合しシード粒子(D)を得た。得
られたシード粒子(D)は平均粒径1.65μm、Cv
値2.4、Mw =5,200、Mn =2,100であっ
た。 【0031】(5)シード粒子(E) シード粒子(A)の合成において、アゾイソブチロニト
リルの使用量を0.28重量部に変えたこと以外は、シ
ード粒子(A)と同様にして重合しシード粒子(E)を
得た。得られたシード粒子(E)は平均粒径1.61μ
m、Cv値2.28、Mw =28,000、Mn =1
3,500であった。 【0032】(6)シード粒子(F) シード粒子(A)の合成において、アゾイソブチロニト
リルの使用量を11.2重量部に変えたこと以外は、シ
ード粒子(A)と同様にして重合しシード粒子(F)を
得た。得られたシード粒子(F)は、粒子が偏平で平均
粒径の測定が不可能であり、Cv値が多分散、Mw =8
00、Mn =350であった。 【0033】(7)シード粒子(G) シード粒子(A)の合成において、スチレンに代えてメ
タクリル酸メチルを使用したこと以外は、シード粒子
(A)と同様にして重合しシード粒子(G)を得た。得
られたシード粒子(G)は、平均粒径1.66μm、C
v値2.25、Mw =5,200、Mn =2,100で
あった。 【0034】(実施例1)上記シード粒子(A)5重量
部に、イオン交換水200重量部とラウリル硫酸ナトリ
ウム0.13重量部を加え均一に分散させ、シード粒子
分散液を得た。別途、スチレン50重量%とジビニルベ
ンゼン50重量%からなるエチレン性不飽和単量体混合
物40重量部に、過酸化ベンゾイル0.6重量部を加え
てホモジナイザーで粗分散した後、超音波処理により平
均粒径0.2μmに微分散乳化した。得られた乳化液
を、前記シード粒子分散液に加え、25℃、200rp
mで3時間攪拌すると完全に単量体混合物はシード粒子
に吸収された。次いで、この分散液にポリビニルアルコ
ール(日本合成化学社製「GH−17」、ケン化度88
モル%)の3重量%水溶液100重量部を加えた後、2
00rpmで攪拌しながら窒素下、70℃で12時間重
合を行い、ポリマー微粒子の分散液を得た。得られた分
散液を遠心分離によりポリマー微粒子をを取り出し、イ
オン交換水及びエタノールで3回洗浄して後乾燥を行
い、高単分散架橋微粒子(収率98%、平均粒径3.1
9μm、Cv値2.14)を得た。この高単分散架橋微
粒子を光学顕微鏡(オリンパス光学社製「BX−4
0」)で×1,000倍で観察したところ、均一な構造
であった。 【0035】(実施例2)シード粒子(A)に代えて、
シード粒子(B)を使用したこと以外は、実施例1と同
様にして、高単分架橋散微粒子(収率98%、平均粒径
3.16μm、Cv値2.25)を得た。この高単分散
架橋微粒子を光学顕微鏡で観察したところ、均一な構造
であった。 【0036】(実施例3)シード粒子(A)に代えて、
シード粒子(C)を使用したこと以外は、実施例1と同
様にして、高単分散架橋微粒子(収率98%、平均粒径
3.3μm、Cv値2.32)を得た。この高単分散架
橋微粒子を光学顕微鏡で観察したところ、均一な構造で
あった。 【0037】(実施例4)シード粒子(A)に代えて、
シード粒子(D)を使用したこと以外は、実施例1と同
様にして、高単分散架橋微粒子(収率98%、平均粒径
3.28μm、Cv値2.3)を得た。この高単分散架
橋微粒子を光学顕微鏡で観察したところ、均一な構造で
あった。 【0038】(実施例5)スチレン50重量%とジビニ
ルベンゼン50重量%からなるエチレン性不飽和単量体
混合物の使用量を10重量部としたこと以外は、実施例
1と同様にして、高単分架橋散微粒子(収率99%、平
均粒径2.33μm、Cv値2.2)を得た。この高単
分散架橋微粒子を光学顕微鏡で観察したところ、均一な
構造であった。 【0039】(実施例6)スチレン50重量%とジビニ
ルベンゼン50重量%からなるエチレン性不飽和単量体
混合物の使用量を80重量部としたこと以外は、実施例
1と同様にして、高単分散架橋微粒子(収率97%、平
均粒径4.1μm、Cv値2.09)を得た。この高単
分散架橋微粒子を光学顕微鏡で観察したところ、均一な
構造であった。 【0040】(比較例1)シード粒子(A)に代えて、
シード粒子(E)を使用したこと以外は、実施例1と同
様にして、高単分散架橋微粒子(収率98%、平均粒径
3.22μm、Cv値2.31)を得た。この高単分散
架橋微粒子を光学顕微鏡で観察したところ、多数のボイ
ドが認められた。 【0041】(比較例2)シード粒子(A)に代えて、
シード粒子(F)を使用したこと以外は、実施例1と同
様にして、高単分散架橋微粒子を得ようとしたが、ゲル
化を起こし高単分散架橋微粒子は得られなかった。 【0042】(比較例3)シード粒子(A)に代えて、
シード粒子(G)を使用したこと以外は、実施例1と同
様にして、高単分散架橋微粒子(収率98%、平均粒径
3.23μm、Cv値2.45)を得た。この高単分散
架橋微粒子を光学顕微鏡で観察したところ、多数のボイ
ドが認められた。 【0043】(比較例4)スチレン50重量%とジビニ
ルベンゼン50重量%からなるエチレン性不飽和単量体
混合物の使用量を4重量部としたこと以外は、実施例1
と同様にして、高単分散架橋微粒子(収率99%、平均
粒径1.98μm、Cv値2.2)を得た。この高単分
散架橋微粒子を光学顕微鏡で観察したところ、多数のボ
イドが認められた。 【0044】(比較例5)スチレン50重量%とジビニ
ルベンゼン50重量%からなるエチレン性不飽和単量体
混合物の使用量を200重量部としたこと以外は、実施
例1と同様にして、高単分散架橋微粒子(収率97%、
平均粒径5.21μm、Cv値多分散であった)を得
た。 【0045】 【発明の効果】本発明の高単分散架橋微粒子の製造方法
の構成は、上述の通りであり、簡単な重合反応によって
均一な粒径を有し、力学的な強度の高い高単分散微粒子
を高収率で得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing highly monodispersed fine particles having a uniform particle size by a seed polymerization method. [0002] Polymer fine particles used for spacers for liquid crystal panels, packing materials for chromatography, diagnostic reagents and the like are required to have a uniform particle size. Conventionally, as a method of obtaining such fine particles having a uniform particle size, there is a method of classifying fine particles obtained by suspension polymerization mainly using a dry or wet classifier. However, in such a method, the yield was remarkably low, and the uniformity of the particle size was not sufficient. Further, in emulsion polymerization, it is difficult to synthesize micron-order fine particles, and in dispersion polymerization, micron-order monodisperse fine particles can be obtained, but it is difficult to obtain crosslinked fine particles. As a method for producing monodisperse crosslinked fine particles on the order of microns, for example, Japanese Patent Publication No. 57-24369
Japanese Patent Application Laid-Open No. 5-64964 discloses an improved swelling seed polymerization method using a nonionic compound. However,
All of these methods produce uncrosslinked or crosslinked fine particles by diffusing the monomer into the seed particles using an auxiliary that promotes the transfer of the monomer, and then polymerizing the monomer. In particular, when producing crosslinkable fine particles, there is a problem that the auxiliary agent bleeds out during the polymerization to generate porous fine particles. For example, Japanese Patent Publication No. 63-32,500 and Japanese Patent Publication No. 4-71921 disclose a method in which a monomer or an organic compound having a volume 20 to 500 times that of a low molecular weight seed latex is absorbed and polymerized. A method for doing so is disclosed. However, the obtained fine particles have poor particle size accuracy, and when the molecular structure of the seed latex and the substance to be absorbed are different, phase separation occurs, and voids and cracks are generated inside as the polymerization proceeds, and the generated fine particles However, there is a problem that the mechanical strength of the steel is remarkably reduced. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to produce highly monodispersed fine particles having a uniform particle size and excellent mechanical strength by a simple polymerization reaction. It is to provide a method. The method for producing highly monodispersed fine particles of the present invention comprises the steps of:
When the ethylenically unsaturated monomer is adsorbed and polymerized in the presence of an oil-soluble polymerization initiator, a monomer having two or more ethylenically unsaturated groups in the molecule as the ethylenically unsaturated monomer The method is characterized in that an ethylenically unsaturated monomer containing 15% by weight or more of the polymer is finely dispersed in water together with an oil-soluble polymerization initiator, and is then absorbed by seed particles and polymerized. As the seed particles, a polymer containing 50% by weight or more of styrene and its derivatives is used. In the seed particles, the ratio of styrene and its derivative decreases as the ratio decreases, causing phase separation with a monomer having two or more ethylenically unsaturated groups in a molecule to be added later, and the mechanical strength of the resulting crosslinked fine particles. Is significantly reduced. Examples of the styrene derivative include p-methylstyrene, p-chlorostyrene, p-chloromethylstyrene, p-methoxystyrene and the like. These may be used alone or in combination of two or more. Good. As the components other than the styrene and its derivatives, (meth) acrylic acid, (meth) acrylate, butadiene and the like are used. When the weight-average molecular weight of the seed particles is small, monodisperse spherical fine particles are not formed. And the mechanical strength of the resulting crosslinked fine particles is significantly reduced.
000. The seed particles have an average particle size of 0.1.
Non-crosslinked particles having a diameter of 10 to 10 μm and a Cv value (expressed as (particle diameter standard deviation / average particle diameter) × 100) of 10 or less are preferred. These seed particles are produced using, for example, soap-free polymerization or dispersion polymerization, but are not limited to these methods, and a known technique can be applied. The above ethylenically unsaturated monomers include styrene, α-methylstyrene, p-methylstyrene and p-methylstyrene.
Styrene derivatives such as chlorostyrene and chloromethylstyrene; vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate; unsaturated nitriles such as acrylonitrile; methyl (meth) acrylate, ethyl (meth) acrylate, ( (Meth) acrylate derivatives such as butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and stearyl (meth) acrylate; monofunctional monomers such as conjugated dienes such as butadiene and isoprene; These may be used alone or in combination of two or more. The ethylenically unsaturated monomers having two or more ethylenically unsaturated groups in the molecule include divinylbenzene, ethylene oxide di (meth) acrylate, tetraethylene oxide di (meth) acrylate,
Polyfunctional monomers such as 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane tri (meth) acrylate, tetramethylol methane triacrylate, and tetramethylol propane tetra (meth) acrylate; These may be used alone or in combination of two or more. When the proportion of the ethylenically unsaturated monomer having two or more ethylenically unsaturated groups in the molecule among the above ethylenically unsaturated monomers decreases, the mechanical strength of the fine particles decreases. Therefore, 15% by weight or more is preferable,
It is more preferably at least 30% by weight. The amount of the ethylenically unsaturated monomer added is:
When the amount of the cross-linking component to be reduced is insufficient, the mechanical strength of the generated fine particles becomes insufficient, and when the amount is not large, the accuracy of the generated fine particles is deteriorated.
-20 parts by weight. The above oil-soluble polymerization initiator includes, for example,
Benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide,
3,5,5-trimethylhexanoyl peroxide,
Organic peroxides such as t-butylperoxy-2-ethylhexanoate and di-t-butyl peroxide; azobisisobutyronitrile, azobiscyclohexacarbonitrile, 2,2′-azobis (2, Azo compounds such as 4-dimethylvaleronitrile). In the production method of the present invention, the above-mentioned ethylenically unsaturated monomer is finely dispersed in water together with an oil-soluble polymerization initiator to form a finely dispersed emulsion, and then dispersed in the finely dispersed emulsion and an aqueous dispersion medium. The seed particles (seed particle dispersion) are mixed, and the ethylenically unsaturated monomer and the oil-soluble polymerization initiator are adsorbed on the seed particles to perform polymerization. In the above-mentioned polymerization step, it is preferable that the ethylenically unsaturated monomer is finely dispersed in water together with an oil-soluble polymerization initiator and then adsorbed on seed particles. To finely disperse the ethylenically unsaturated monomer and the oil-soluble polymerization initiator, they may be finely dispersed by a homogenizer or the like, or may be finely dispersed by ultrasonic treatment, a nanomizer or a mount Gaulin type fine emulsifier. . In order to obtain a finely dispersed emulsion of both components, both components may be mixed and finely dispersed in advance, or each component may be separately finely dispersed and then both components may be mixed. The particle size of the finely dispersed emulsion is preferably smaller than the particle size of the seed particles. By selecting such a particle size, the rate at which the ethylenically unsaturated monomer and the oil-soluble polymerization initiator dissolve in water and diffuse into the seed particles can be increased. When the diffusion speed is reduced, the particle size distribution accuracy of the generated fine particles is deteriorated. In order to adsorb the finely dispersed emulsion on the seed particles, the seed particle dispersion and the finely dispersed emulsion are mixed and stirred at room temperature for 1 to 12 hours. By doing so, adsorption can be promoted. The degree of swelling of the seed particles due to the adsorption of the finely dispersed emulsion can be arbitrarily selected by adjusting the mixing ratio of the seed particle dispersion and the finely dispersed emulsion. A swelling degree of 2 to 15 times is preferred. The degree of swelling here is defined by the volume ratio of the fine particles after swelling to the seed particles before swelling. The end of the adsorption is determined by confirming the enlargement of the particle size by observation with an optical microscope. In the polymerization step, the seed particles are polymerized with the finely dispersed emulsion adsorbed on the seed particles. The polymerization temperature can be appropriately selected depending on the type of the ethylenically unsaturated monomer or the oil-soluble polymerization initiator to be used, but is usually preferably 25 to 100 ° C, more preferably 50 to 90 ° C. . Further, it is preferable to start the polymerization after the ethylenically unsaturated monomer and the oil-soluble polymerization initiator are completely adsorbed on the seed particles. In the above polymerization step, a surfactant or a polymer dispersion stabilizer may be added in order to improve the dispersion stability of the polymer fine particles. Examples of such a surfactant include anionic surfactants such as sodium lauryl sulfate and sodium laurylbenzenesulfonate; and polymer dispersion stabilizers such as polyvinylpyrrolidone, gelatin, starch, hydroxyethylcellulose, polyvinyl ether, and polyvinyl alcohol. These may be used alone or in combination of two or more. The above-mentioned surfactant or polymer dispersion stabilizer may be added after the ethylenically unsaturated monomer and the polymerization initiator are absorbed in the seed particles, or the above-mentioned ethylenically unsaturated monomer may be added. And when the polymerization initiator is finely dispersed. By addition at the time of fine dispersion, both the stability at the time of fine dispersion and the dispersion at the time of polymerization can be obtained. The particle size of the highly monodispersed fine particles obtained by the above polymerization method can be freely designed depending on the particle size of the seed particles used and the mixing ratio of the ethylenically unsaturated monomer and the seed particles. The above polymerization method has a particle size of 1 to 1
It is suitable for the production of highly monodispersed crosslinked fine particles having 0 μm and a Cv value of 5 or less. After polymerization, the fine particles can be centrifuged to remove the aqueous phase, washed with water and a solvent, and then dried and isolated. Next, embodiments of the present invention will be described. Production of Seed Particles (1) Seed Particles (A) 1.2 parts by weight of polyvinylpyrrolidone (weight average molecular weight 30,000), 0.57 parts by weight of an anionic surfactant (“Aerosol OT” manufactured by Wako Pure Chemical Industries, Ltd.) and azo A solution prepared by dissolving 1.43 parts by weight of bisisobutyronitrile in 83.8 parts by weight of ethanol was mixed with styrene 1 under a nitrogen stream while stirring.
4 parts by weight were charged, the temperature was raised to 70 ° C., and a polymerization reaction was carried out for 24 hours to obtain a seed particle (A) dispersion. The resulting seed particles (A) had an average particle size of 1.63 μm and a Cv value of 2.
2. The weight average molecular weight (Mw) was 5,000 and the number average molecular weight (Mn) was 2,400. (2) Seed Particles (B) In the synthesis of the seed particles (A), the amount of azoisobutyronitrile was changed to 0.45 parts by weight in the same manner as the seed particles (A). Polymerization was performed to obtain seed particles (B). The obtained seed particles (B) have an average particle size of 1.6 μm.
m, Cv value 2.31, Mw = 18,000, Mn = 7,
500. (3) Seed Particles (C) In the synthesis of the seed particles (A), except that the amount of azoisobutyronitrile used was changed to 2.9 parts by weight, the same procedure as for the seed particles (A) was carried out. Polymerization was performed to obtain seed particles (C). The resulting seed particles (C) have an average particle size of 1.88 μm.
m, Cv value 2.4, Mw = 2,100, Mn = 800. (4) Seed particles (D) In the synthesis of the seed particles (A), instead of styrene,
Polymerization was carried out in the same manner as for the seed particles (A), except that 7 parts by weight of styrene, 6 parts by weight of p-methylstyrene and 1 part by weight of acrylic acid were used to obtain seed particles (D). The resulting seed particles (D) had an average particle size of 1.65 μm and Cv
The value was 2.4, Mw = 5,200, Mn = 2,100. (5) Seed particles (E) In the synthesis of the seed particles (A), except that the amount of azoisobutyronitrile used was changed to 0.28 parts by weight, the same procedure as for the seed particles (A) was carried out. Polymerization was performed to obtain seed particles (E). The resulting seed particles (E) had an average particle size of 1.61 μm.
m, Cv value 2.28, Mw = 28,000, Mn = 1
3,500. (6) Seed Particles (F) In the synthesis of the seed particles (A), the amount of azoisobutyronitrile was changed to 11.2 parts by weight in the same manner as the seed particles (A). Polymerization was performed to obtain seed particles (F). The resulting seed particles (F) had flat particles, the average particle size of which was not measurable, a Cv value of polydisperse, and Mw = 8.
00, Mn = 350. (7) Seed Particles (G) Polymerization and seed particles (G) were prepared in the same manner as the seed particles (A) except that methyl methacrylate was used in place of styrene in the synthesis of the seed particles (A). Got. The resulting seed particles (G) have an average particle size of 1.66 μm,
The v value was 2.25, Mw = 5,200, Mn = 2,100. (Example 1) To 5 parts by weight of the seed particles (A), 200 parts by weight of ion-exchanged water and 0.13 parts by weight of sodium lauryl sulfate were added and uniformly dispersed to obtain a seed particle dispersion. Separately, 0.6 part by weight of benzoyl peroxide was added to 40 parts by weight of an ethylenically unsaturated monomer mixture composed of 50% by weight of styrene and 50% by weight of divinylbenzene, and coarsely dispersed with a homogenizer. It was finely dispersed and emulsified to a particle size of 0.2 μm. The obtained emulsion was added to the seed particle dispersion, and the mixture was added at 25 ° C. and 200 rpm.
After stirring at m for 3 hours, the monomer mixture was completely absorbed by the seed particles. Next, polyvinyl alcohol (“GH-17” manufactured by Nippon Synthetic Chemical Co., Ltd., saponification degree 88) was added to the dispersion.
Mol%) of 100% by weight of a 3% by weight aqueous solution.
Polymerization was carried out at 70 ° C. for 12 hours under nitrogen while stirring at 00 rpm to obtain a dispersion of polymer fine particles. Polymer particles were taken out of the obtained dispersion by centrifugation, washed three times with ion-exchanged water and ethanol, and then dried to obtain highly monodispersed crosslinked fine particles (yield 98%, average particle size 3.1).
9 μm and a Cv value of 2.14) were obtained. These highly monodispersed crosslinked fine particles were subjected to an optical microscope ("BX-4" manufactured by Olympus Optical Co., Ltd.).
0 ") at a magnification of 1,000 times, the structure was uniform. Example 2 Instead of the seed particles (A),
Except for using the seed particles (B), highly single crosslinked fine particles (98% yield, average particle size 3.16 μm, Cv value 2.25) were obtained in the same manner as in Example 1. Observation of these highly monodispersed crosslinked fine particles with an optical microscope revealed a uniform structure. Example 3 Instead of the seed particles (A),
Except for using the seed particles (C), highly monodispersed crosslinked fine particles (98% yield, average particle size 3.3 μm, Cv value 2.32) were obtained in the same manner as in Example 1. Observation of these highly monodispersed crosslinked fine particles with an optical microscope revealed a uniform structure. Example 4 Instead of the seed particles (A),
Except for using the seed particles (D), highly monodispersed crosslinked fine particles (98% yield, average particle size 3.28 μm, Cv value 2.3) were obtained in the same manner as in Example 1. Observation of these highly monodispersed crosslinked fine particles with an optical microscope revealed a uniform structure. Example 5 The procedure of Example 1 was repeated except that the amount of the ethylenically unsaturated monomer mixture comprising 50% by weight of styrene and 50% by weight of divinylbenzene was changed to 10 parts by weight. Single-part crosslinked fine particles (99% yield, average particle size 2.33 μm, Cv value 2.2) were obtained. Observation of these highly monodispersed crosslinked fine particles with an optical microscope revealed a uniform structure. Example 6 The procedure of Example 1 was repeated except that the amount of the ethylenically unsaturated monomer mixture consisting of 50% by weight of styrene and 50% by weight of divinylbenzene was changed to 80 parts by weight. Monodispersed crosslinked fine particles (yield 97%, average particle size 4.1 μm, Cv value 2.09) were obtained. Observation of these highly monodispersed crosslinked fine particles with an optical microscope revealed a uniform structure. (Comparative Example 1) Instead of the seed particles (A),
Except for using the seed particles (E), highly monodispersed crosslinked fine particles (98% yield, average particle size 3.22 μm, Cv value 2.31) were obtained in the same manner as in Example 1. Observation of these highly monodispersed crosslinked fine particles with an optical microscope revealed many voids. (Comparative Example 2) Instead of the seed particles (A),
Except for using the seed particles (F), it was attempted to obtain highly monodispersed crosslinked fine particles in the same manner as in Example 1, but gelation was caused and no highly monodispersed crosslinked fine particles were obtained. (Comparative Example 3) Instead of the seed particles (A),
Except for using the seed particles (G), highly monodisperse crosslinked fine particles (98% yield, average particle size 3.23 μm, Cv value 2.45) were obtained in the same manner as in Example 1. Observation of these highly monodispersed crosslinked fine particles with an optical microscope revealed many voids. Comparative Example 4 Example 1 was repeated except that the amount of the ethylenically unsaturated monomer mixture consisting of 50% by weight of styrene and 50% by weight of divinylbenzene was changed to 4 parts by weight.
In the same manner as described above, highly monodispersed crosslinked fine particles (99% yield, average particle size 1.98 μm, Cv value 2.2) were obtained. Observation of these highly monodispersed crosslinked fine particles with an optical microscope revealed many voids. Comparative Example 5 The same procedure as in Example 1 was repeated except that the amount of the ethylenically unsaturated monomer mixture comprising 50% by weight of styrene and 50% by weight of divinylbenzene was changed to 200 parts by weight. Monodisperse crosslinked fine particles (97% yield,
The average particle size was 5.21 μm and the Cv value was polydispersed). The structure of the method for producing highly monodispersed crosslinked fine particles of the present invention is as described above, and has a uniform particle size by a simple polymerization reaction, and has a high mechanical strength. Dispersed fine particles can be obtained in high yield.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 水性分散媒に分散させた重量平均分子量
1,000〜20,000のスチレン及びその誘導体を
50重量%以上含有する分散重合法を用いて製造される
シード粒子に、エチレン性不飽和単量体を吸着させ、油
溶性重合開始剤の存在下で重合させる際に、該エチレン
性不飽和単量体として、分子中にエチレン性不飽和基を
2つ以上有する単量体を15重量%以上含有するエチレ
ン性不飽和単量体を使用し、該エチレン性不飽和単量体
100重量部を油溶性重合開始剤と共に水中で微分散さ
せた後、シード粒子5〜100重量部に吸収させ重合す
ることを特徴とする高単分散微粒子の製造方法。
(57) [Claim 1] Manufactured by a dispersion polymerization method containing 50% by weight or more of styrene having a weight average molecular weight of 1,000 to 20,000 and a derivative thereof dispersed in an aqueous dispersion medium. When the ethylenically unsaturated monomer is adsorbed on the seed particles to be polymerized and polymerized in the presence of an oil-soluble polymerization initiator, an ethylenically unsaturated group is contained in the molecule as the ethylenically unsaturated monomer. After using an ethylenically unsaturated monomer containing 15% by weight or more of a monomer having two or more monomers, 100 parts by weight of the ethylenically unsaturated monomer is finely dispersed in water together with an oil-soluble polymerization initiator. A method of producing highly monodispersed fine particles, wherein the particles are absorbed by 5 to 100 parts by weight of the seed particles and polymerized.
JP31885294A 1994-12-21 1994-12-21 Method for producing highly monodispersed fine particles Expired - Lifetime JP3534862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31885294A JP3534862B2 (en) 1994-12-21 1994-12-21 Method for producing highly monodispersed fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31885294A JP3534862B2 (en) 1994-12-21 1994-12-21 Method for producing highly monodispersed fine particles

Publications (2)

Publication Number Publication Date
JPH08176214A JPH08176214A (en) 1996-07-09
JP3534862B2 true JP3534862B2 (en) 2004-06-07

Family

ID=18103680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31885294A Expired - Lifetime JP3534862B2 (en) 1994-12-21 1994-12-21 Method for producing highly monodispersed fine particles

Country Status (1)

Country Link
JP (1) JP3534862B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299808B2 (en) * 2007-12-11 2013-09-25 綜研化学株式会社 Method for producing acrylic anti-blocking particles

Also Published As

Publication number Publication date
JPH08176214A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP5554111B2 (en) Method for producing monodisperse polymer particles
JP2002080503A (en) Hollow polymer fine particle and method for producing the same
JPS61215603A (en) Production of polymer particle
JPS61215602A (en) Production of polymer particle
JP2000191818A (en) Preparation of porous particulate
JP3600845B2 (en) Hollow polymer particles and method for producing the same
JPS61215604A (en) Production of polymer particle
JP3580320B2 (en) Method for producing polymer particles
JPH07103206B2 (en) Method for producing crosslinked polymer particles
JP3534862B2 (en) Method for producing highly monodispersed fine particles
JP4268639B2 (en) Spherical resin fine particles, method for producing spherical resin fine particles, and spacer for liquid crystal display element
JP3487665B2 (en) Method for producing polymer fine particles
JPH08134115A (en) Production of highly monodisperse fine particle
JPS62121701A (en) Production of polymer particle
JPH0564964B2 (en)
JP2005060479A (en) Production method for highly monodisperse fine particle
JP3130437B2 (en) Method for producing polymer particles of uniform size
JPH0977833A (en) Production of high-monodisperse crosslinked fine particulate
JPS61225254A (en) Fine particle having uniform particle size and production thereof
JPH0834804A (en) Production of fine polymer particle
JP4094163B2 (en) Method for producing polymer fine particles
JPH0859712A (en) Production of highly monodispersing fine particle
JPS6372713A (en) Production of solvent-resistant fine particle of uniform particle diameter
JP3709056B2 (en) Method for producing polymer fine particles
JPH08100006A (en) Production of monodisperse polymer particle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

EXPY Cancellation because of completion of term