JP2005060479A - Production method for highly monodisperse fine particle - Google Patents

Production method for highly monodisperse fine particle Download PDF

Info

Publication number
JP2005060479A
JP2005060479A JP2003290625A JP2003290625A JP2005060479A JP 2005060479 A JP2005060479 A JP 2005060479A JP 2003290625 A JP2003290625 A JP 2003290625A JP 2003290625 A JP2003290625 A JP 2003290625A JP 2005060479 A JP2005060479 A JP 2005060479A
Authority
JP
Japan
Prior art keywords
weight
seed particles
ethylenically unsaturated
fine particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003290625A
Other languages
Japanese (ja)
Inventor
Hidekazu Sawada
英一 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003290625A priority Critical patent/JP2005060479A/en
Publication of JP2005060479A publication Critical patent/JP2005060479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing highly monodisperse crosslinked fine particles having a uniform particle size and excellent in dynamic strength, by a simple polymerization reaction. <P>SOLUTION: The production method comprises causing seed particles dispersed in an aqueous dispersion medium to adsorb an ethylenically unsaturated monomer and polymerizing the monomer in the presence of an oil-soluble polymerization initiator. In the method, the ethylenically unsaturated monomer is caused to contain at least 15 wt.% monomer having at least two ethylenically unsaturated groups, then finely dispersed in water together with the oil-soluble polymerization initiator, adsorbed by the seed particles, and polymerized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、シード重合法によって均一な粒径を有する高単分散微粒子を製造する方法に関する。   The present invention relates to a method for producing highly monodispersed fine particles having a uniform particle size by seed polymerization.

液晶パネル用スペーサー、クロマトグラフィ用充填剤、診断試薬等に用いられる高分子微粒子には、その粒径が均一であることが要求されている。
従来、このような粒径が均一な微粒子を得る方法としては、主に懸濁重合で得られた微粒子を乾式又は湿式の分級装置を用いて分級する方法が挙げられる。
しかし、このような方法では、収率が著しく低くなり、粒径の均一性も十分とはいえなかった。
Polymer fine particles used for liquid crystal panel spacers, chromatographic fillers, diagnostic reagents and the like are required to have a uniform particle size.
Conventionally, as a method for obtaining fine particles having a uniform particle size, a method of classifying fine particles mainly obtained by suspension polymerization using a dry or wet classifier can be mentioned.
However, in such a method, the yield is remarkably lowered and the uniformity of the particle size is not sufficient.

さらに、乳化重合では、ミクロンオーダーの微粒子の合成は困難であり、分散重合ではミクロンオーダーの単分散微粒子は得られるが、架橋微粒子を得ることは困難であった。   Furthermore, in the emulsion polymerization, it is difficult to synthesize micron order fine particles, and in the dispersion polymerization, micron order monodisperse fine particles are obtained, but it is difficult to obtain crosslinked fine particles.

ミクロンオーダーの単分散架橋微粒子を製造する方法としては、例えば、特公昭57−24369号公報には二段階膨潤シード重合法が開示され、特公平5−64964号公報には非イオン性化合物を用いた改良膨潤シード重合法が開示されている。しかしながら、これらの方法は、いずれも単量体の移動を促進するような助剤を用いて単量体をシード粒子に拡散させた後、重合させることにより未架橋又は架橋微粒子を製造しているが、特に架橋性微粒子を製造する際に、重合中に助剤がブリードアウトして、多孔性の微粒子が生成するという問題点があった。   As methods for producing micron-order monodisperse crosslinked fine particles, for example, Japanese Patent Publication No. 57-24369 discloses a two-stage swelling seed polymerization method, and Japanese Patent Publication No. 5-64964 uses a nonionic compound. An improved swollen seed polymerization process has been disclosed. However, all of these methods produce uncrosslinked or crosslinked fine particles by polymerizing the monomer after diffusing the monomer into the seed particles using an auxiliary agent that promotes the movement of the monomer. However, particularly in the production of crosslinkable fine particles, there is a problem that the auxiliary agent bleeds out during the polymerization to generate porous fine particles.

また、例えば、特許文献1や特許文献2には、低分子量の種ラテックスに対して20〜500倍の体積の単量体や有機化合物を吸収させ重合する方法が開示されている。しかし、得られる微粒子は粒径精度が悪く、種ラテックスと吸収される物質の分子構造が異なる場合は、互いに相分離を起こし、重合が進むにつれて内部にボイドや亀裂が発生して、生成した微粒子の力学的強度が著しく低下するという問題点があった。
特公昭63−32500号公報 特公平4−71921号公報
Further, for example, Patent Document 1 and Patent Document 2 disclose a method of polymerizing by absorbing a monomer or an organic compound having a volume 20 to 500 times that of a low molecular weight seed latex. However, the obtained fine particles have poor particle size accuracy, and when the molecular structure of the seed latex and the absorbed material is different, phase separation occurs between each other, and voids and cracks are generated inside as the polymerization proceeds, resulting in the generated fine particles There was a problem that the mechanical strength of the material was significantly reduced.
Japanese Patent Publication No. 63-32500 Japanese Examined Patent Publication No. 4-71921

本発明は、上記問題点に鑑み、その目的は、簡単な重合反応により均一な粒径を有し、力学的強度が優れる高単分散微粒子の製造方法を提供することにある。   In view of the above problems, an object of the present invention is to provide a method for producing highly monodispersed fine particles having a uniform particle size and excellent mechanical strength by a simple polymerization reaction.

本発明の高単分散微粒子の製造方法は、水性分散媒に分散させたシード粒子に、エチレン性不飽和単量体を吸着させ、油溶性重合開始剤の存在下で重合させる際に、該エチレン性不飽和単量体として、分子中にエチレン性不飽和基を2つ以上有する単量体を15重量%以上含有するエチレン性不飽和単量体を油溶性重合開始剤と共に水中で微分散させた後、シード粒子に吸収させ重合することを特徴とする。   The method for producing highly monodispersed fine particles of the present invention comprises adsorbing an ethylenically unsaturated monomer on seed particles dispersed in an aqueous dispersion medium, and polymerizing in the presence of an oil-soluble polymerization initiator. As an unsaturated monomer, an ethylenically unsaturated monomer containing 15% by weight or more of a monomer having two or more ethylenically unsaturated groups in the molecule is finely dispersed in water together with an oil-soluble polymerization initiator. Then, it is absorbed into seed particles and polymerized.

上記シード粒子としては、スチレン及びその誘導体を50重量%以上含有する重合体が用いられる。このシード粒子において、スチレン及びその誘導体の割合は、少なくなると後で添加される分子中にエチレン性不飽和基を2つ以上有する単量体と相分離を起こし、生成する架橋微粒子の力学的強度が著しく低下する。   As the seed particles, polymers containing 50% by weight or more of styrene and derivatives thereof are used. In this seed particle, when the ratio of styrene and its derivative decreases, the mechanical strength of the resulting crosslinked fine particles undergoes phase separation with a monomer having two or more ethylenically unsaturated groups in the molecule added later. Is significantly reduced.

上記スチレン誘導体としては、p−メチルスチレン、p−クロロスチレン、p−クロロメチルスチレン、p−メトキシスチレン等が挙げられ、これらは単独で用いられても二種以上が併用されてもよい。
上記スチレン及びその誘導体以外の成分としては、(メタ)アクリル酸、(メタ)アクリル酸エステル、ブタジエン等が用いられる。
Examples of the styrene derivative include p-methylstyrene, p-chlorostyrene, p-chloromethylstyrene, and p-methoxystyrene. These may be used alone or in combination of two or more.
As components other than the styrene and derivatives thereof, (meth) acrylic acid, (meth) acrylic acid ester, butadiene and the like are used.

上記シード粒子の重量平均分子量は、小さくなると微粒子が合着を起こしやすくなり単分散真球微粒子が形成されず、大きくなると後で添加される分子中にエチレン性不飽和基を2つ以上有する単量体と相分離を起こし、生成する架橋微粒子の力学的強度が著しく低下するので、10,000〜30,000が好ましい。   When the weight average molecular weight of the seed particle is small, fine particles are likely to coalesce, and monodisperse spherical particles are not formed. When the weight average molecular weight is large, a single particle having two or more ethylenically unsaturated groups is added in a molecule added later. 10,000 to 30,000 is preferable because it causes phase separation from the monomer and mechanical strength of the resulting crosslinked fine particles is significantly reduced.

上記シード粒子の重量平均分子量を好ましい範囲に制御するために、連鎖移動剤を用いても良い。連鎖移動剤としては、特に限定されず、重合の際に一般的に用いられる連鎖移動剤が用いられて良いが、単量体に対する60℃での連鎖移動定数が1以下、好ましくは0.5以下、より好ましくは0.2以下のものが用いられる。好適に用いられる連鎖移動剤として、例えば、1−メチル−4−イソプロピリデン−シクロヘキサンが挙げられる。連鎖移動剤の量は、シード粒子の重量平均分子量や単量体の種類等により適宜決定されるが、通常は単量体100重量部に対して1〜20重量部が用いられる。   In order to control the weight average molecular weight of the seed particles within a preferable range, a chain transfer agent may be used. The chain transfer agent is not particularly limited, and a chain transfer agent generally used in the polymerization may be used, but the chain transfer constant at 60 ° C. with respect to the monomer is 1 or less, preferably 0.5. Hereinafter, more preferably 0.2 or less is used. As a chain transfer agent used suitably, 1-methyl-4-isopropylidene-cyclohexane is mentioned, for example. The amount of the chain transfer agent is appropriately determined depending on the weight average molecular weight of the seed particles, the kind of the monomer, and the like, but usually 1 to 20 parts by weight is used with respect to 100 parts by weight of the monomer.

上記シード粒子としては、平均粒径0.1〜10μmで、且つCv値〔(粒径標準偏差/平均粒径)×100で表される〕が10以下の非架橋型の粒子が好ましい。これらのシード粒子は、例えば、ソープフリー重合又は分散重合を用いて製造されるが、これらの方法に限定されず公知の技術が適用可能である。   The seed particles are preferably non-crosslinked particles having an average particle size of 0.1 to 10 μm and a Cv value [(standard particle size deviation / average particle size) × 100] of 10 or less. These seed particles are produced using, for example, soap-free polymerization or dispersion polymerization, but are not limited to these methods, and known techniques can be applied.

上記エチレン性不飽和単量体としては、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン等のスチレン誘導体;塩化ビニル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;アクリロニトリル等の不飽和ニトリル類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸エステル誘導体;ブタジエン、イソプレン等の共役ジエン類等の単官能性単量体が挙げられ、これらは単独で用いられてもよく、二種以上が併用されてもよい。   Examples of the ethylenically unsaturated monomers include styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene, and chloromethylstyrene; vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate. ; Unsaturated nitriles such as acrylonitrile; (meth) such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate Acrylic ester derivatives; monofunctional monomers such as conjugated dienes such as butadiene and isoprene may be mentioned, and these may be used alone or in combination of two or more.

また、上記分子中にエチレン性不飽和基を2つ以上有するエチレン性不飽和単量体としては、ジビニルベンゼン、エチレンオキシドジ(メタ)アクリレート、テトラエチレンオキシドジ(メタ)アクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリアクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート等の多官能性単量体が挙げられ、これらは単独で用いられてもよく、二種以上が併用されてもよい。   Examples of the ethylenically unsaturated monomer having two or more ethylenically unsaturated groups in the molecule include divinylbenzene, ethylene oxide di (meth) acrylate, tetraethylene oxide di (meth) acrylate, and 1,6-hexanediol. Polyfunctional monomers such as diacrylate, neopentyl glycol diacrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane triacrylate, tetramethylolpropane tetra (meth) acrylate, and the like are used alone. Or two or more of them may be used in combination.

上記エチレン性不飽和性単量体のうち、上記分子中にエチレン性不飽和基を2つ以上有するエチレン性不飽和性単量体の割合は、少なくなると微粒子の力学的強度が低下するので、15重量%以上が好ましく、より好ましくは30重量%以上である。   Among the ethylenically unsaturated monomers, the proportion of the ethylenically unsaturated monomer having two or more ethylenically unsaturated groups in the molecule decreases the mechanical strength of the fine particles as it decreases. It is preferably 15% by weight or more, more preferably 30% by weight or more.

上記エチレン性不飽和単量体の添加量は、少なくなる架橋成分が不足し生成する微粒子の力学的強度が不十分となり、多くなくなると生成する微粒子の粒径精度が悪くなるので、シード粒子1重量部に対して1〜20重量部である。   The amount of the ethylenically unsaturated monomer added is insufficient for the cross-linking component to be reduced, resulting in insufficient mechanical strength of the generated fine particles. It is 1-20 weight part with respect to a weight part.

上記油溶性重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5−トリメチルヘキサノイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ−t−ブチルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビスシクロヘキサカルボニトリル、2、2'-アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系化合物などが挙げられる。   Examples of the oil-soluble polymerization initiator include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxy-2- Organic peroxides such as ethyl hexanoate and di-t-butyl peroxide; azobisisobutyronitrile, azobiscyclohexacarbonitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), etc. Examples include azo compounds.

本発明の製造方法では、上記エチレン性不飽和単量体を油溶性重合開始剤と共に水中で微分散させて微分散エマルジョンとした後、該微分散エマルジョンと水分散媒に分散させたシード粒子(シード粒子分散液)とを混合し、該シード粒子にエチレン性不飽和単量体と油溶性重合開始剤とを吸着させ重合を行う。   In the production method of the present invention, the above-mentioned ethylenically unsaturated monomer is finely dispersed in water together with an oil-soluble polymerization initiator to form a finely dispersed emulsion, and then seed particles dispersed in the finely dispersed emulsion and an aqueous dispersion medium ( Seed particle dispersion) is mixed, and the ethylenically unsaturated monomer and the oil-soluble polymerization initiator are adsorbed on the seed particles for polymerization.

上記重合工程では、上記エチレン性不飽和単量体を油溶性重合開始剤と共に水中で微分散させた後、シード粒子に吸着させる方法が好ましい。エチレン性不飽和単量体と油溶性重合開始剤を微分散させるには、ホモジナイザー等により微分散してもよく、超音波処理、ナノマイザーやマウントガウリン型の微細乳化機により微分散してもよい。
また、上記両成分の微分散エマルジョンを得るためには、予め両成分を混合して微分散してもよく、各成分を別々に微分散した後両成分を混合してもよい。
In the polymerization step, a method in which the ethylenically unsaturated monomer is finely dispersed in water together with an oil-soluble polymerization initiator and then adsorbed onto seed particles is preferable. In order to finely disperse the ethylenically unsaturated monomer and the oil-soluble polymerization initiator, they may be finely dispersed by a homogenizer or the like, or may be finely dispersed by ultrasonic treatment, a nanomizer or a mount gaurine type fine emulsifier. .
In addition, in order to obtain a finely dispersed emulsion of both components, both components may be mixed and finely dispersed in advance, or both components may be mixed after finely dispersing each component separately.

上記微分散エマルジョンの粒径は、上記シード粒子の粒径より小さい方が好ましい。このような粒径を選択することにより、上記エチレン性不飽和単量体と油溶性重合開始剤とが水中に溶解し、シード粒子に拡散する速度を速めることができる。この拡散速度が遅くなると、生成する微粒子の粒径分布精度が悪くなる。   The particle size of the finely dispersed emulsion is preferably smaller than the particle size of the seed particles. By selecting such a particle size, the speed at which the ethylenically unsaturated monomer and the oil-soluble polymerization initiator are dissolved in water and diffused into the seed particles can be increased. When this diffusion rate becomes slow, the particle size distribution accuracy of the fine particles to be produced deteriorates.

上記シード粒子に上記微分散エマルジョンを吸着させるには、シード粒子分散液と微分散エマルジョンを混合し、室温で1〜12時間攪拌することにより行われるが、30〜50℃に加温することにより吸着を促進することができる。   In order to adsorb the finely dispersed emulsion to the seed particles, the seed particle dispersion and the finely dispersed emulsion are mixed and stirred at room temperature for 1 to 12 hours, but by heating to 30 to 50 ° C. Adsorption can be promoted.

上記微分散エマルジョンの吸着による上記シード粒子は膨潤度は、上記シード粒子分散液と上記微分散エマルジョンとの混合割合を調節することにより任意に選択することができるが、本発明では、2〜15倍の膨潤度が好ましい。
ここでいう膨潤度とは、膨潤前のシード粒子に対する膨潤後の微粒子の体積比で定義される。吸着の終了は、光学顕微鏡での観察により粒径の拡大を確認することにより判定する。
The degree of swelling of the seed particles by adsorption of the finely dispersed emulsion can be arbitrarily selected by adjusting the mixing ratio of the seed particle dispersion and the finely dispersed emulsion. Double swelling is preferred.
The degree of swelling here is defined by the volume ratio of the fine particles after swelling to the seed particles before swelling. The end of adsorption is determined by confirming the enlargement of the particle diameter by observation with an optical microscope.

上記重合工程において、上記シード粒子と、該シード粒子に吸着された微分散エマルジョンとを重合する。重合温度は、使用するエチレン性不飽和単量体や油溶性重合開始剤の種類によって、適宜選択することができるが、通常は、25〜100℃が好ましく、より好ましくは50〜90℃である。
また、上記シード粒子に、上記エチレン性不飽和単量体と油溶性重合開始剤とが完全に吸着された後で重合を開始するのが好ましい。
In the polymerization step, the seed particles are polymerized with the finely dispersed emulsion adsorbed on the seed particles. The polymerization temperature can be appropriately selected depending on the type of ethylenically unsaturated monomer and oil-soluble polymerization initiator used, but is usually preferably 25 to 100 ° C, more preferably 50 to 90 ° C. .
The polymerization is preferably started after the ethylenically unsaturated monomer and the oil-soluble polymerization initiator are completely adsorbed on the seed particles.

上記重合工程において、重合体微粒子の分散安定性を向上させるために、界面活性剤や高分子分散安定剤を添加してもよい。このような界面活性剤としては、ラウリル硫酸ナトリウム、ラウリルベンゼンスルホン酸ナトリウム等のアニオン系界面活性剤;ポリビニルピロリドン、ゼラチン、デンプン、ヒドロキシエチルセルロース、ポリビニルエーテル、ポリビニルアルコール等の高分子分散安定剤が挙げられ、これらは単独で用いられてもよく、二種以上が併用されてもよい。   In the polymerization step, a surfactant or a polymer dispersion stabilizer may be added in order to improve the dispersion stability of the polymer fine particles. Examples of such surfactants include anionic surfactants such as sodium lauryl sulfate and sodium lauryl benzene sulfonate; and polymer dispersion stabilizers such as polyvinyl pyrrolidone, gelatin, starch, hydroxyethyl cellulose, polyvinyl ether, and polyvinyl alcohol. These may be used alone or in combination of two or more.

上記界面活性剤や高分子分散安定剤は、シード粒子にエチレン性不飽和単量体及び重合開始剤を吸収させた後で添加してもよいし、上記エチレン性不飽和単量体及び重合開始剤を微分散させる時に添加してもよい。
微分散時の添加によって、微分散時の安定化と重合時の分散安定化との両方を得ることができる。
The surfactant or the polymer dispersion stabilizer may be added after the ethylenically unsaturated monomer and the polymerization initiator are absorbed in the seed particles, or the ethylenically unsaturated monomer and the polymerization start may be added. It may be added when the agent is finely dispersed.
By addition during fine dispersion, both stabilization during fine dispersion and dispersion stabilization during polymerization can be obtained.

上記重合方法により得られる高単分散微粒子の粒径は、用いられるシード粒子の粒径、上記エチレン性不飽和単量体とシード粒子の混合割合によって自由に設計可能であるが、特に、上記重合方法は粒径1〜10μm、Cv値5以下の高単分散架橋微粒子の製造に好適である。   The particle diameter of the highly monodispersed fine particles obtained by the polymerization method can be freely designed according to the particle diameter of the seed particles used and the mixing ratio of the ethylenically unsaturated monomer and the seed particles. The method is suitable for producing highly monodispersed crosslinked fine particles having a particle diameter of 1 to 10 μm and a Cv value of 5 or less.

重合後の微粒子は、遠心分離して水相を除去し、水及び溶剤で洗浄した後、乾燥単離することができる。   The fine particles after polymerization can be isolated by drying after centrifugation to remove the aqueous phase, washing with water and a solvent.

本発明の高単分散架橋微粒子の製造方法の構成は、上述の通りであり、簡単な重合反応によって均一な粒径を有し、力学的な強度の高い高単分散微粒子を高収率で得ることができる。   The structure of the method for producing highly monodispersed crosslinked fine particles of the present invention is as described above, and high monodispersed fine particles having a uniform particle diameter and high mechanical strength are obtained in a high yield by a simple polymerization reaction. be able to.

次に、本発明の実施例を説明する。
シード粒子の製造
(1)シード粒子(A)
ポリビニルピロリドン(重量平均分子量3万)1.2重量部、アニオン界面活性剤(和光純薬工業社製「エアゾールOT」)0.57重量部及びアゾビスイソブチロニトリル1.43重量部をエタノール83.8重量部に溶解させた溶液を、攪拌しながら窒素気流下でスチレン14重量部を投入し、70℃に昇温させ24時間重合反応を行い、シード粒子(A)分散液を得た。得られたシード粒子(A)は、平均粒径1.63μm、Cv値2.2、重量平均分子量(Mw)=5,000、数平均分子量(Mn)2,400であった。
Next, examples of the present invention will be described.
Production of seed particles (1) Seed particles (A)
1.2 parts by weight of polyvinylpyrrolidone (weight average molecular weight 30,000), 0.57 parts by weight of an anionic surfactant (“Aerosol OT” manufactured by Wako Pure Chemical Industries, Ltd.) and 1.43 parts by weight of azobisisobutyronitrile The solution dissolved in 83.8 parts by weight was charged with 14 parts by weight of styrene under a nitrogen stream while stirring, and the temperature was raised to 70 ° C. to conduct a polymerization reaction for 24 hours to obtain a seed particle (A) dispersion. . The obtained seed particles (A) had an average particle size of 1.63 μm, a Cv value of 2.2, a weight average molecular weight (Mw) = 5,000, and a number average molecular weight (Mn) of 2,400.

(2)シード粒子(B)
シード粒子(A)の合成において、アゾイソブチロニトリルの使用量を0.45重量部に変えたこと以外は、シード粒子(A)と同様にして重合しシード粒子(B)を得た。得られた、シード粒子(B)は平均粒径1.6μm、Cv値2.31、Mw =18,000、Mn =7,500であった。
(2) Seed particles (B)
In the synthesis of seed particles (A), seed particles (B) were obtained by polymerization in the same manner as seed particles (A) except that the amount of azoisobutyronitrile used was changed to 0.45 parts by weight. The obtained seed particles (B) had an average particle size of 1.6 μm, a Cv value of 2.31, Mw = 18,000, and Mn = 7,500.

(3)シード粒子(C)
シード粒子(A)の合成において、アゾイソブチロニトリルの使用量を2.9重量部に変えたこと以外は、シード粒子(A)と同様にして重合しシード粒子(C)を得た。得られたシード粒子(C)は平均粒径1.88μm、Cv値2.4、Mw =2,100、Mn =800であった。
(3) Seed particles (C)
In the synthesis of seed particles (A), polymerization was performed in the same manner as seed particles (A) except that the amount of azoisobutyronitrile used was changed to 2.9 parts by weight to obtain seed particles (C). The seed particles (C) thus obtained had an average particle size of 1.88 μm, a Cv value of 2.4, Mw = 2,100, and Mn = 800.

(4)シード粒子(D)
シード粒子(A)の合成において、スチレンに代えて、スチレン7重量部、p−メチルスチレン6重量部及びアクリル酸1重量部を使用したこと以外は、シード粒子(A)と同様にして重合しシード粒子(D)を得た。
得られたシード粒子(D)は平均粒径1.65μm、Cv値2.4、Mw =5,200、Mn =2,100であった。
(4) Seed particles (D)
In the synthesis of seed particles (A), polymerization was performed in the same manner as seed particles (A) except that 7 parts by weight of styrene, 6 parts by weight of p-methylstyrene and 1 part by weight of acrylic acid were used instead of styrene. Seed particles (D) were obtained.
The obtained seed particles (D) had an average particle diameter of 1.65 μm, a Cv value of 2.4, Mw = 5,200, and Mn = 2,100.

(5)シード粒子(E)
シード粒子(A)の合成において、アゾイソブチロニトリルの使用量を0.23重量部に変えたこと以外は、シード粒子(A)と同様にして重合しシード粒子(E)を得た。得られたシード粒子(E)は平均粒径1.58μm、Cv値2.34、Mw =39,000、Mn =17,600であった。
(5) Seed particles (E)
In the synthesis of seed particles (A), seed particles (E) were obtained by polymerization in the same manner as seed particles (A) except that the amount of azoisobutyronitrile used was changed to 0.23 parts by weight. The obtained seed particles (E) had an average particle size of 1.58 μm, a Cv value of 2.34, Mw = 39,000, and Mn = 17,600.

(6)シード粒子(F)
シード粒子(A)の合成において、アゾイソブチロニトリルの使用量を11.2重量部に変えたこと以外は、シード粒子(A)と同様にして重合しシード粒子(F)を得た。得られたシード粒子(F)は、粒子が偏平で平均粒径の測定が不可能であり、Cv値が多分散、Mw =800、Mn =350であった。
(6) Seed particles (F)
In the synthesis of seed particles (A), polymerization was carried out in the same manner as seed particles (A) except that the amount of azoisobutyronitrile used was changed to 11.2 parts by weight to obtain seed particles (F). The obtained seed particles (F) had a flat particle and an average particle size could not be measured, and the Cv value was polydisperse, Mw = 800, Mn = 350.

(7)シード粒子(G)
シード粒子(A)の合成において、スチレンに代えてメタクリル酸メチルを使用したこと以外は、シード粒子(A)と同様にして重合しシード粒子(G)を得た。得られたシード粒子(G)は、平均粒径1.66μm、Cv値2.25、Mw =5,200、Mn =2,100であった。
(7) Seed particles (G)
In the synthesis of seed particles (A), seed particles (G) were obtained by polymerization in the same manner as seed particles (A) except that methyl methacrylate was used instead of styrene. The obtained seed particles (G) had an average particle diameter of 1.66 μm, a Cv value of 2.25, Mw = 5,200, and Mn = 2,100.

(7)シード粒子(H)
シード粒子(A)の合成において、アゾイソブチロニトリルの使用量を0.2重量部、1メチル4イソプロピリデンシクロヘキサン2重量部を加えたこと以外は、シード粒子(A)と同様にして重合しシード粒子(H)を得た。得られたシード粒子(H)は、平均粒径1.61μm、Cv値2.28、Mw =26,000、Mn =13,200であった。
(7) Seed particles (H)
In the synthesis of seed particles (A), polymerization was carried out in the same manner as seed particles (A) except that 0.2 parts by weight of azoisobutyronitrile was added and 2 parts by weight of 1-methyl 4-isopropylidenecyclohexane was added. Seed particles (H) were obtained. The obtained seed particles (H) had an average particle size of 1.61 μm, a Cv value of 2.28, Mw = 26,000, and Mn = 1,200.

(実施例1)
上記シード粒子(A)5重量部に、イオン交換水200重量部とラウリル硫酸ナトリウム0.13重量部を加え均一に分散させ、シード粒子分散液を得た。
別途、スチレン50重量%とジビニルベンゼン50重量%からなるエチレン性不飽和単量体混合物40重量部に、過酸化ベンゾイル0.6重量部を加えてホモジナイザーで粗分散した後、超音波処理により平均粒径0.2μmに微分散乳化した。得られた乳化液を、前記シード粒子分散液に加え、25℃、200rpmで3時間攪拌すると完全に単量体混合物はシード粒子に吸収された。
次いで、この分散液にポリビニルアルコール(日本合成化学社製「GH−17」、ケン化度88モル%)の3重量%水溶液100重量部を加えた後、200rpmで攪拌しながら窒素下、70℃で12時間重合を行い、ポリマー微粒子の分散液を得た。得られた分散液を遠心分離によりポリマー微粒子をを取り出し、イオン交換水及びエタノールで3回洗浄して後乾燥を行い、高単分散架橋微粒子(収率98%、平均粒径3.19μm、Cv値2.14)を得た。この高単分散架橋微粒子を光学顕微鏡(オリンパス光学社製「BX−40」)で×1,000倍で観察したところ、均一な構造であった。
(Example 1)
To 5 parts by weight of the seed particles (A), 200 parts by weight of ion exchange water and 0.13 parts by weight of sodium lauryl sulfate were added and dispersed uniformly to obtain a seed particle dispersion.
Separately, 0.6 parts by weight of benzoyl peroxide was added to 40 parts by weight of an ethylenically unsaturated monomer mixture consisting of 50% by weight of styrene and 50% by weight of divinylbenzene, and the mixture was roughly dispersed with a homogenizer, and then averaged by ultrasonic treatment. It was finely dispersed and emulsified to a particle size of 0.2 μm. When the obtained emulsion was added to the seed particle dispersion and stirred at 25 ° C. and 200 rpm for 3 hours, the monomer mixture was completely absorbed by the seed particles.
Next, after adding 100 parts by weight of a 3% by weight aqueous solution of polyvinyl alcohol (“GH-17” manufactured by Nippon Synthetic Chemical Co., Ltd., saponification degree: 88 mol%) to this dispersion, 70 ° C. under nitrogen with stirring at 200 rpm. Polymerization was carried out for 12 hours to obtain a dispersion of polymer fine particles. The resulting dispersion is centrifuged to remove the polymer fine particles, washed with ion-exchanged water and ethanol three times, and then dried to obtain highly monodispersed crosslinked fine particles (yield 98%, average particle size 3.19 μm, Cv The value 2.14) was obtained. When the highly monodispersed crosslinked fine particles were observed with an optical microscope (Olympus Optical Co., Ltd. “BX-40”) at a magnification of 1,000 times, the structure was uniform.

(実施例2)
シード粒子(A)に代えて、シード粒子(B)を使用したこと以外は、実施例1と同様にして、高単分架橋散微粒子(収率98%、平均粒径3.16μm、Cv値2.25)を得た。この高単分散架橋微粒子を光学顕微鏡で観察したところ、均一な構造であった。
(Example 2)
Except that the seed particles (B) were used in place of the seed particles (A), the same as in Example 1, highly monocrosslinked fine particles (yield 98%, average particle size 3.16 μm, Cv value) 2.25) was obtained. When the highly monodispersed crosslinked fine particles were observed with an optical microscope, the structure was uniform.

(実施例3)
シード粒子(A)に代えて、シード粒子(C)を使用したこと以外は、実施例1と同様にして、高単分散架橋微粒子(収率98%、平均粒径3.3μm、Cv値2.32)を得た。この高単分散架橋微粒子を光学顕微鏡で観察したところ、均一な構造であった。
(Example 3)
Highly monodisperse crosslinked fine particles (yield 98%, average particle size 3.3 μm, Cv value 2) in the same manner as in Example 1 except that seed particles (C) were used instead of seed particles (A). .32) was obtained. When the highly monodispersed crosslinked fine particles were observed with an optical microscope, the structure was uniform.

(実施例4)
シード粒子(A)に代えて、シード粒子(D)を使用したこと以外は、実施例1と同様にして、高単分散架橋微粒子(収率98%、平均粒径3.28μm、Cv値2.3)を得た。この高単分散架橋微粒子を光学顕微鏡で観察したところ、均一な構造であった。
Example 4
Highly monodisperse crosslinked fine particles (yield 98%, average particle size 3.28 μm, Cv value 2) in the same manner as in Example 1 except that seed particles (D) were used instead of seed particles (A). .3) was obtained. When the highly monodispersed crosslinked fine particles were observed with an optical microscope, the structure was uniform.

(実施例5)
スチレン50重量%とジビニルベンゼン50重量%からなるエチレン性不飽和単量体混合物の使用量を10重量部としたこと以外は、実施例1と同様にして、高単分架橋散微粒子(収率99%、平均粒径2.33μm、Cv値2.2)を得た。この高単分散架橋微粒子を光学顕微鏡で観察したところ、均一な構造であった。
(Example 5)
Except that the amount of the ethylenically unsaturated monomer mixture composed of 50% by weight of styrene and 50% by weight of divinylbenzene was changed to 10 parts by weight, it was the same as in Example 1 except that the highly monocrosslinked fine particles (yield) 99%, average particle size 2.33 μm, Cv value 2.2). When the highly monodispersed crosslinked fine particles were observed with an optical microscope, the structure was uniform.

(実施例6)
スチレン50重量%とジビニルベンゼン50重量%からなるエチレン性不飽和単量体混合物の使用量を80重量部としたこと以外は、実施例1と同様にして、高単分散架橋微粒子(収率97%、平均粒径4.1μm、Cv値2.09)を得た。この高単分散架橋微粒子を光学顕微鏡で観察したところ、均一な構造であった。
(Example 6)
Highly monodisperse crosslinked fine particles (yield 97), except that the amount of the ethylenically unsaturated monomer mixture composed of 50% by weight of styrene and 50% by weight of divinylbenzene was changed to 80 parts by weight. %, Average particle size 4.1 μm, Cv value 2.09). When the highly monodispersed crosslinked fine particles were observed with an optical microscope, the structure was uniform.

(実施例7)
シード粒子(A)に代えて、シード粒子(H)を使用したこと以外は、実施例1と同様にして、高単分散架橋微粒子(収率98%、平均粒径3.22μm、Cv値2.31)を得た。この高単分散架橋微粒子を光学顕微鏡で観察したところ、均一な構造であった。
(Example 7)
Highly monodisperse crosslinked fine particles (yield 98%, average particle size 3.22 μm, Cv value 2) in the same manner as in Example 1 except that seed particles (H) were used instead of seed particles (A). .31) was obtained. When the highly monodispersed crosslinked fine particles were observed with an optical microscope, the structure was uniform.

(比較例1)
シード粒子(A)に代えて、シード粒子(E)を使用したこと以外は、実施例1と同様にして、高単分散架橋微粒子(収率98%、平均粒径3.14μm、Cv値2.38)を得た。この高単分散架橋微粒子を光学顕微鏡で観察したところ、多数のボイドが認められた。
(Comparative Example 1)
Highly monodisperse crosslinked fine particles (yield 98%, average particle size 3.14 μm, Cv value 2) in the same manner as in Example 1 except that seed particles (E) were used instead of seed particles (A). .38) was obtained. When the highly monodispersed crosslinked fine particles were observed with an optical microscope, many voids were observed.

(比較例2)
シード粒子(A)に代えて、シード粒子(F)を使用したこと以外は、実施例1と同様にして、高単分散架橋微粒子を得ようとしたが、ゲル化を起こし高単分散架橋微粒子は得られなかった。
(Comparative Example 2)
High monodisperse crosslinked fine particles were obtained in the same manner as in Example 1 except that seed particles (F) were used in place of the seed particles (A). Was not obtained.

(比較例3)
シード粒子(A)に代えて、シード粒子(G)を使用したこと以外は、実施例1と同様にして、高単分散架橋微粒子(収率98%、平均粒径3.23μm、Cv値2.45)を得た。この高単分散架橋微粒子を光学顕微鏡で観察したところ、多数のボイドが認められた。
(Comparative Example 3)
Highly monodisperse crosslinked fine particles (yield 98%, average particle size 3.23 μm, Cv value 2) in the same manner as in Example 1 except that seed particles (G) were used instead of seed particles (A). .45) was obtained. When the highly monodispersed crosslinked fine particles were observed with an optical microscope, many voids were observed.

(比較例4)
スチレン50重量%とジビニルベンゼン50重量%からなるエチレン性不飽和単量体混合物の使用量を4重量部としたこと以外は、実施例1と同様にして、高単分散架橋微粒子(収率99%、平均粒径1.98μm、Cv値2.2)を得た。この高単分散架橋微粒子を光学顕微鏡で観察したところ、多数のボイドが認められた。
(Comparative Example 4)
Highly monodisperse crosslinked fine particles (yield 99) in the same manner as in Example 1 except that the amount of the ethylenically unsaturated monomer mixture composed of 50% by weight of styrene and 50% by weight of divinylbenzene was changed to 4 parts by weight. %, Average particle size 1.98 μm, Cv value 2.2). When the highly monodispersed crosslinked fine particles were observed with an optical microscope, many voids were observed.

(比較例5)
スチレン50重量%とジビニルベンゼン50重量%からなるエチレン性不飽和単量体混合物の使用量を200重量部としたこと以外は、実施例1と同様にして、高単分散架橋微粒子(収率97%、平均粒径5.21μm、Cv値多分散であった)を得た。
(Comparative Example 5)
Highly monodisperse crosslinked fine particles (yield 97), except that the amount of the ethylenically unsaturated monomer mixture composed of 50% by weight of styrene and 50% by weight of divinylbenzene was changed to 200 parts by weight. %, Average particle size 5.21 μm, Cv value polydispersion).

Claims (1)

水性分散媒に分散させた重量平均分子量1,000〜30,000のスチレン及びその誘導体を50重量%以上含有するシード粒子に、エチレン性不飽和単量体を吸着させ、油溶性重合開始剤の存在下で重合させる際に、該エチレン性不飽和単量体として、分子中にエチレン性不飽和基を2つ以上有する単量体を15重量%以上含有するエチレン性不飽和単量体を使用し、該エチレン性不飽和単量体100重量部を油溶性重合開始剤と共に水中で微分散させた後、シード粒子5〜100重量部に吸収させ重合することを特徴とする高単分散微粒子の製造方法。   An ethylenically unsaturated monomer is adsorbed on seed particles containing 50% by weight or more of styrene having a weight average molecular weight of 1,000 to 30,000 and a derivative thereof dispersed in an aqueous dispersion medium. When polymerizing in the presence, an ethylenically unsaturated monomer containing 15% by weight or more of a monomer having two or more ethylenically unsaturated groups in the molecule is used as the ethylenically unsaturated monomer And 100 parts by weight of the ethylenically unsaturated monomer is finely dispersed in water together with an oil-soluble polymerization initiator, and then absorbed and polymerized in 5 to 100 parts by weight of seed particles. Production method.
JP2003290625A 2003-08-08 2003-08-08 Production method for highly monodisperse fine particle Pending JP2005060479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290625A JP2005060479A (en) 2003-08-08 2003-08-08 Production method for highly monodisperse fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290625A JP2005060479A (en) 2003-08-08 2003-08-08 Production method for highly monodisperse fine particle

Publications (1)

Publication Number Publication Date
JP2005060479A true JP2005060479A (en) 2005-03-10

Family

ID=34368605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290625A Pending JP2005060479A (en) 2003-08-08 2003-08-08 Production method for highly monodisperse fine particle

Country Status (1)

Country Link
JP (1) JP2005060479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393573A (en) * 2020-03-25 2020-07-10 白银科奥夫化学科技有限公司 Functionalized monodisperse microsphere material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393573A (en) * 2020-03-25 2020-07-10 白银科奥夫化学科技有限公司 Functionalized monodisperse microsphere material and preparation method thereof

Similar Documents

Publication Publication Date Title
US8143327B2 (en) Method for producing core-shell fine particle and method for producing intermediate which is used for production of the core-shell fine particle
JP5554111B2 (en) Method for producing monodisperse polymer particles
JP2002080503A (en) Hollow polymer fine particle and method for producing the same
JPS61215603A (en) Production of polymer particle
JP3600845B2 (en) Hollow polymer particles and method for producing the same
JP2000191818A (en) Preparation of porous particulate
JP3580320B2 (en) Method for producing polymer particles
JPH07103206B2 (en) Method for producing crosslinked polymer particles
JPS61215604A (en) Production of polymer particle
JP4268639B2 (en) Spherical resin fine particles, method for producing spherical resin fine particles, and spacer for liquid crystal display element
JP3487665B2 (en) Method for producing polymer fine particles
JP3534862B2 (en) Method for producing highly monodispersed fine particles
JP2005060479A (en) Production method for highly monodisperse fine particle
JPH08134115A (en) Production of highly monodisperse fine particle
JPH0564964B2 (en)
JP3130437B2 (en) Method for producing polymer particles of uniform size
JPS61225254A (en) Fine particle having uniform particle size and production thereof
JPH0834804A (en) Production of fine polymer particle
JPH0977833A (en) Production of high-monodisperse crosslinked fine particulate
JPH0859712A (en) Production of highly monodispersing fine particle
JPH07196752A (en) Modification of crosslinked polymer particles
JPH01314962A (en) Filler for liquid chromatography
JPH08231657A (en) Preparation of fine resin particle having rough surface
JP3709056B2 (en) Method for producing polymer fine particles
JPH08100006A (en) Production of monodisperse polymer particle