JPH04150934A - Preparation of emulsion resin - Google Patents

Preparation of emulsion resin

Info

Publication number
JPH04150934A
JPH04150934A JP27332490A JP27332490A JPH04150934A JP H04150934 A JPH04150934 A JP H04150934A JP 27332490 A JP27332490 A JP 27332490A JP 27332490 A JP27332490 A JP 27332490A JP H04150934 A JPH04150934 A JP H04150934A
Authority
JP
Japan
Prior art keywords
emulsion
polymerization
monomer
inner cylinder
polymerization initiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27332490A
Other languages
Japanese (ja)
Other versions
JP2984851B2 (en
Inventor
Eiji Tanaka
田中 永二
Fumio Yoshino
吉野 文夫
Kunio Kataoka
邦夫 片岡
Yasuo Noda
野田 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Chemical Engineering Co Ltd
DIC Corp
Original Assignee
Kansai Chemical Engineering Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Chemical Engineering Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical Kansai Chemical Engineering Co Ltd
Priority to JP2273324A priority Critical patent/JP2984851B2/en
Publication of JPH04150934A publication Critical patent/JPH04150934A/en
Application granted granted Critical
Publication of JP2984851B2 publication Critical patent/JP2984851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To prepare an emulsion resin generating no destruction of particles and reduced in the generation of floc by adding a polymerizable org. compound, a liquid medium and a polymerization initiator to the annular part of a coaxial double rotary cylinder wherein an outer cylinder is stopped and an inner cylinder is rotated. CONSTITUTION:A polymerization initiator is received in catalyst tanks 1, 2 and a monomer emulsion consisting of a liquid medium, which consists of a polymerizable org. compound such as styrene and a nonionic surfactant, and water is received in a monomer tank 3. The polymerization initiator and the monomer emulsion are continuously dripped in the annular part of a coaxial double rotary cylinder from the respective tanks 1, 2, 3 while an inner cylinder 9 is rotated at proper rpm by a motor 4 and automatically mixed by the rotation of the inner cylinder 9 and a radical is generated by redox reaction to start polymerization. Cooling water is passed through a pipe inlet 10 and an outlet 11 to control the temp. in the system. The supplied catalyst aqueous solution and the monomer emulsion are converted to a polymer emulsion which in turn enters a product receiving tank 12. By this method, a product reduced in particle size distribution is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は共軸二重回転円筒を用いることによる水性エマ
ルジョンの乳化重合法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for emulsion polymerization of aqueous emulsions by using coaxial double rotating cylinders.

(従来の技術) 従来乳化重合法として、重合性有機化合物、乳化液体及
び重合開始剤を攪拌翼を有する種型反応器に投入し、回
分式重合によりエマルジョン樹脂を得る方法が知られて
いる。
(Prior Art) As a conventional emulsion polymerization method, a method is known in which a polymerizable organic compound, an emulsified liquid, and a polymerization initiator are charged into a seed reactor having a stirring blade, and an emulsion resin is obtained by batch polymerization.

また従来連続乳化重合法としては21重合性有機化合物
、乳化液体及び重合開始剤をループ状管型反応器、多段
攪拌槽列等に連続的に供給しエマルジョン樹−脂一を得
る方法が知られている。
Furthermore, as a conventional continuous emulsion polymerization method, a method is known in which a polymerizable organic compound, an emulsified liquid, and a polymerization initiator are continuously supplied to a loop-shaped tubular reactor, a multistage stirring tank array, etc. to obtain an emulsion resin. ing.

しかし、攪拌翼を有する種型反応器による場合には、攪
拌翼による粒子破壊が生じ、フロックの発生や反応器壁
面への付着が著しい。
However, in the case of using a seed type reactor having stirring blades, particles are destroyed by the stirring blades, resulting in significant floc formation and adhesion to the walls of the reactor.

またループ状管型反応器とは、例えば特公昭47−33
272号公報に開示されているようなループ状になった
パイプ及び、ループ内の液と供給された液を混合し且つ
両者を循環させる役目を兼ねた循環ポンプから成る反応
器をいい、バイブの外部にジャケットを設け、加熱冷却
が行えるようになっている。反応器の容積は比較的小さ
く、容積に対する伝熱面が大きいのが特徴である。通常
のパイプ内循環速度は外部からの重合液の添加速度より
も約25倍以上も高い。従って、ポンプ内での剪断力が
大きく、粒子破壊が生じ易く、フロック形成、壁面への
付着が著しい。
In addition, the loop-shaped tubular reactor is, for example,
A reactor consisting of a loop-shaped pipe as disclosed in Publication No. 272, and a circulation pump that serves to mix the liquid in the loop and the supplied liquid and circulate both. A jacket is provided on the outside to enable heating and cooling. The reactor has a relatively small volume and is characterized by a large heat transfer surface relative to its volume. Typical pipe circulation rates are about 25 times higher than the external addition rate of polymerization liquid. Therefore, the shearing force within the pump is large, particles are easily broken, and floc formation and adhesion to walls are significant.

多段攪拌槽列とは、攪拌翼を具備した反応槽を直列に数
個結合し、供給量に見合う量がオーバフローし、次の攪
拌槽に流れ重合が継続するカスケード状の反応槽群を意
味し、槽内の滞留時間分布が広くな4つで粒径分布が広
いエマルジョンが生成される。従って、この装置では攪
拌翼による粒子破壊が発生し、フロックの発生、翼及び
壁面への付着が大きい。
A multi-stage stirring tank array refers to a cascade-like reaction tank group in which several reaction tanks equipped with stirring blades are connected in series, and the amount corresponding to the supply amount overflows and flows to the next stirring tank to continue polymerization. , an emulsion with a wide particle size distribution is produced when the residence time distribution in the tank is wide. Therefore, in this device, particle destruction occurs due to the stirring blades, and a large amount of flocs is generated and adheres to the blades and wall surfaces.

(発明が解決しようとする゛課題) 本発明の目的は、エマルジョン樹脂を製造するに際し、
粒子破壊を生ぜず、フロックの発生が少ない等の機械的
シェアの少ない状態で、エマルジョン樹脂を製造する方
法を提供することである。
(Problems to be Solved by the Invention) The purpose of the present invention is to:
It is an object of the present invention to provide a method for producing an emulsion resin in a state where mechanical shear is low, such as without causing particle destruction and with little generation of flocs.

(課題を解決するための手段) 本発明者らは上記課題を解決すべく鋭意研究を重ねた結
果、本発明を完成するに至った。
(Means for Solving the Problems) As a result of intensive research to solve the above problems, the present inventors have completed the present invention.

即ち本発明は重合性有機化合物を液体媒質中で乳化重合
を行うことによりエマルジョン樹脂を製造する方法にお
いて、外円筒を静止し内円筒を回転させる共軸二重回転
円筒の環状部に、重合性有機化合物(A)と、重合性有
機化合物(A)を乳化重合せしめる液体媒質(B)と重
合開始剤(C)とを加えることを特徴するエマルジョン
樹脂の製造方法である。
That is, the present invention provides a method for producing an emulsion resin by carrying out emulsion polymerization of a polymerizable organic compound in a liquid medium. This is a method for producing an emulsion resin characterized by adding an organic compound (A), a liquid medium (B) for emulsion polymerization of the polymerizable organic compound (A), and a polymerization initiator (C).

本発明4こ使用する重合性有機化合物(A)とは、一般
にラジカル発生触媒のもとて重合を生じる物質をいい、
例えばスチレン、酢酸ビニルエチレン等のビ;、ル化合
物、メチルメタクリレート、エチルメタクリレート、メ
タアクリル酸等のα−アルキルアクリロイル基を有する
化合物、エチルアクリレート、ブチルアクリレート、ア
クリル酸等のアクIJ Dイル基を有する化合物等が挙
げられる。
The polymerizable organic compound (A) used in the present invention 4 generally refers to a substance that polymerizes under a radical-generating catalyst,
For example, styrene, vinyl compounds such as vinyl acetate, compounds having α-alkyl acryloyl groups such as methyl methacrylate, ethyl methacrylate, and methacrylic acid, and compounds having an α-alkyl acryloyl group such as ethyl acrylate, butyl acrylate, and acrylic acid. Examples include compounds that have

重合性有機化合物を水性エマルジョンにするため、液体
媒質(B)として各種の界面活性剤が用いられる。一般
的には、ポリオキシエチレン脂肪酸エステル、ポリオキ
シエチレンアルキルフェニルエーテル等のノニオン系界
面活性剤、アルキル硫酸ソーダ、アルキルアリールスル
ホン酸ソーダ、又はそれらのアンモニウム塩等のアニオ
ン系Fit活性剤、ボビビニルアルコールやヒドロキシ
エチルセルロース等の保護コロイド等が用いられる。
In order to make a polymerizable organic compound into an aqueous emulsion, various surfactants are used as the liquid medium (B). In general, nonionic surfactants such as polyoxyethylene fatty acid esters and polyoxyethylene alkylphenyl ethers, anionic Fit activators such as sodium alkyl sulfate, sodium alkylaryl sulfonate, or their ammonium salts, and bobivinyl Protective colloids such as alcohol and hydroxyethyl cellulose are used.

本発明に用いる共軸回転円筒は図1に示す通り、中心軸
を共有する内円筒と外円筒から成り、外円筒を固定し、
内円筒をある範囲内の回転数で回転すると二旧筒間の環
状部に入れた液体は内円筒を取り巻くドーナツ状の渦(
ティラー渦)を形成する。渦の発生は以下に述べるTa
数で規定される。
As shown in Fig. 1, the coaxial rotating cylinder used in the present invention consists of an inner cylinder and an outer cylinder that share a central axis, and the outer cylinder is fixed.
When the inner cylinder is rotated at a certain rotation speed, the liquid in the annular part between the two old cylinders forms a donut-shaped vortex (
tiller vortex). The generation of vortices is caused by Ta described below.
Defined by number.

−d Ta= ×(a / R1) I/1 μ R1:内円筒の外径 d :内外円筒の環状部の巾 W :内円筒回転角速度 P :液密度 μ :液粘度 Ta数が大きくなると(2000以上)、渦が消滅し全
体が一体となった乱流状態となり好ましくない。またT
a数が小さすぎると(40以下)、渦が発生せず混合が
十分行われない為好ましくない。
-d Ta= ×(a/R1) I/1 μ R1: Outer diameter of the inner cylinder d: Width of the annular portion of the inner and outer cylinders W: Inner cylinder rotational angular velocity P: Liquid density μ: Liquid viscosity As the Ta number increases ( 2000 or more), the vortex disappears and the whole becomes a unified turbulent state, which is not preferable. Also T
If the a number is too small (40 or less), no vortex will be generated and sufficient mixing will not occur, which is not preferable.

従って、Ta数は60〜600の値でほどよい渦の発生
がみらするので、この範囲が好ましい。
Therefore, the Ta number is preferably in the range of 60 to 600 since moderate vortices are generated.

この高量の境界(特に内向流)を越える物質移動は非常
に小さいため、一対の渦は/<・ソチ攪拌槽の性質があ
る。本発明はかかる共軸二重回転円筒流動系の高量の独
立性に着目したもので、いわばバッチ反応をバッチ式及
び連続的に実施しようとするものである。
Since the mass transfer across this high-volume boundary (especially inward flow) is very small, the pair of vortices has the properties of a Sochi stirred tank. The present invention focuses on the high degree of independence of such a coaxial double-rotating cylindrical flow system, and attempts to carry out a so-called batch reaction batchwise and continuously.

次に、第3図に沿ってエマルジョン樹脂を連続的に製造
する方法について説明する。
Next, a method for continuously producing emulsion resin will be explained along FIG. 3.

触媒槽1にメタ重亜硫酸ソーダ等の還元剤、触媒槽2に
過硫酸カリウム等の酸化剤、モノマ槽3にモノマの乳化
液体を入れる。モーター4にて内円筒を適当な回転数(
約60〜ioorpm)にて回転させながら各種から共
軸回転円筒の環状部に連続的に滴下する。触媒とモノマ
の混合は、内円筒の回転により自動的に行われ、レドッ
クス反応によりラジカルが発生し、重合が開始される。
A reducing agent such as sodium metabisulfite is placed in the catalyst tank 1, an oxidizing agent such as potassium persulfate is placed in the catalyst tank 2, and a monomer emulsion liquid is placed in the monomer tank 3. Motor 4 rotates the inner cylinder at an appropriate speed (
While rotating at a speed of about 60 to ioorpm), drops are continuously dropped from each type onto the annular portion of the coaxially rotating cylinder. The catalyst and monomer are mixed automatically by the rotation of the inner cylinder, and radicals are generated by a redox reaction to initiate polymerization.

系内の温度は常温から徐々に上昇し、規定温度に達する
と冷却水を通ずることにより温度が適温に制御される。
The temperature inside the system gradually rises from room temperature, and when it reaches a specified temperature, the temperature is controlled to an appropriate temperature by passing cooling water through the system.

重合温度は40〜80℃、好ましくは40〜60℃であ
る。80°Cより高いと粒子の融着が生じ、40 ’C
より低いと反応器の滞留時間内にモノマのポリマへの転
化が充分なされない。
The polymerization temperature is 40-80°C, preferably 40-60°C. If the temperature is higher than 80°C, particle fusion will occur;
If it is lower, the conversion of monomer to polymer will not be sufficient within the residence time of the reactor.

供給された触媒水溶液及びモノマ乳化液はポリマエマル
ジョンに転化しオーバフローラインを通じて製品受は槽
10に導かれる。モノマ転化率が不充分な場合は触媒を
追加して転化率を上げることが可能である。
The supplied catalyst aqueous solution and monomer emulsion are converted into a polymer emulsion, and the product receiver is introduced into the tank 10 through an overflow line. If the monomer conversion rate is insufficient, it is possible to increase the conversion rate by adding a catalyst.

本発明で得られるエマルジョン樹脂の粒子径分布は、T
a渦の特性から比較的狭いので、エマルジョン樹脂製造
上のシード(種)粒子として用いるのが好適である。こ
の様な用途秤使用する場合は、系の固形分は40%以下
となるであろう。
The particle size distribution of the emulsion resin obtained in the present invention is T
Due to the characteristics of the a-vortex, it is relatively narrow, so it is suitable for use as seed particles in the production of emulsion resins. If such an application scale is used, the solids content of the system will be less than 40%.

また、かかる装置を連続的に数個直列につないで各ステ
ップ毎にモノマ乳化液及び触媒を前ステップの生成物に
混合し、連続的にシード重合を行うことも好適である。
It is also preferable to connect several such devices in series and mix the monomer emulsion and the catalyst with the product of the previous step in each step to carry out seed polymerization continuously.

かかる方法によれば、50〜60%の固形分のエマルジ
ョン樹」旨も得られ、バッチ重合で得られる粒子径分布
に近い製品が得られる。
According to such a method, an emulsion resin having a solids content of 50 to 60% can also be obtained, and a product having a particle size distribution close to that obtained by batch polymerization can be obtained.

モノマはあらかじめ乳化した状態で反応系に加えても良
いが、モノマと乳化液体(界面活性剤水溶液)を別々に
反応系に加えても良い。別々に加えた場合はモノマが乳
化する迄時間がかかるので滞留時間を少し長く取る必要
がある。
The monomer may be added to the reaction system in a pre-emulsified state, or the monomer and the emulsifying liquid (aqueous surfactant solution) may be added to the reaction system separately. If added separately, it will take time for the monomers to emulsify, so it is necessary to allow a slightly longer residence time.

重合開始剤(C)としては、一般的なレドックス系重合
開始剤が用いられ、酸化剤として過硫酸カリウム、過硫
酸アンモニウム等の無機過酸化物、t−ブチルヒドロパ
ーオキサイド等の有41過酸化物のうちから選ばれる一
種類、還元剤としてメタ重亜硫酸ソーダ、重亜硫酸ソー
ダ、ナトリウムホルムアルデヒドスルホキシレートのう
ちから選ばれる一種類の組合せが挙げられる。この重合
開始剤(C)の量は重合性有機化合物(A)に対して0
.2〜3重量%用いられる。
As the polymerization initiator (C), a general redox polymerization initiator is used, and as an oxidizing agent, inorganic peroxides such as potassium persulfate and ammonium persulfate, and 41 peroxides such as t-butyl hydroperoxide are used. Examples include one type selected from among the above, and a combination of one type selected from among sodium metabisulfite, sodium bisulfite, and sodium formaldehyde sulfoxylate as the reducing agent. The amount of this polymerization initiator (C) is 0 relative to the polymerizable organic compound (A).
.. 2-3% by weight is used.

(実施例) 以下本発明を実施例に従い説明する。(Example) The present invention will be described below with reference to Examples.

尚、実施例中の部数及びパーセント(%)は全て重量に
基づくものである。
Note that all parts and percentages (%) in the examples are based on weight.

実施例1 第1図に示すリアクタ(内容積1.51)にモノマの乳
化溶液を40部、脱イオン水50部を加え、約40°C
に加温後、ピロ亜硫酸ソーダ0. 25部、過硫酸アン
モニウム0.25部を加え、重合を開始させた後、下記
(1)、(II)及びモノマの乳化溶液を570部、2
時間かけて滴下し、乳化重合体を得た。
Example 1 40 parts of a monomer emulsified solution and 50 parts of deionized water were added to the reactor shown in Fig. 1 (inner volume 1.51), and the temperature was heated to about 40°C.
After heating to , add 0.0% sodium pyrosulfite. After adding 25 parts of ammonium persulfate and 0.25 parts of ammonium persulfate to start polymerization, 570 parts of an emulsified solution of the following (1), (II) and monomers were added.
The mixture was added dropwise over time to obtain an emulsion polymer.

モノマ乳化溶液 脱イオン水        146.4部エマルゲン9
31      32.9部(花王(株)製品、アニオ
ン乳化剤) ノイゲンEA−1427,5部 (第一1工業製薬(株)製品 ノニオン乳化剤 ) ハイテノールN−087,5部 (第1工業製薬(株)製品 アニオン乳化剤 ) ブチルアクリレート      220部スチレン  
        183部80%アクリル酸     
15.3部得られた乳化重合体を抜き出し、内円筒及び
外円筒への付着を調べたところ、はとんど付着は認めら
れなかった。
Monomer emulsification solution Deionized water 146.4 parts Emulgen 9
31 32.9 parts (Kao Corporation product, anionic emulsifier) Neugen EA-1427, 5 parts (Daiichi Kogyo Seiyaku Co., Ltd. product nonionic emulsifier) Hytenol N-087, 5 parts (Daiichi Kogyo Seiyaku Co., Ltd. product, nonionic emulsifier) ) Product anionic emulsifier ) Butyl acrylate 220 parts Styrene
183 parts 80% acrylic acid
When 15.3 parts of the obtained emulsion polymer was taken out and adhesion to the inner cylinder and outer cylinder was examined, almost no adhesion was observed.

得られた乳化重合体溶液の性状は表1に示すごときであ
った。
The properties of the obtained emulsion polymer solution were as shown in Table 1.

比較例1 第2図の攪拌翼を保持した検量リアクタに実施例1と同
様にして乳化重合を行ない、乳化重合体を得た。
Comparative Example 1 Emulsion polymerization was carried out in the same manner as in Example 1 in a weighing reactor equipped with a stirring blade shown in FIG. 2 to obtain an emulsion polymer.

得られた乳化重合体を抜き出した後、攪拌翼及びリアク
タ内壁への付着を調べたところ、著しい付着が認易られ
た。
After the obtained emulsion polymer was extracted, it was examined for adhesion to the stirring blades and the inner wall of the reactor, and significant adhesion was observed.

得られた乳化重合体溶液の性状は表1に示すごときであ
った。
The properties of the obtained emulsion polymer solution were as shown in Table 1.

実施例2 第3図に示すリアクタの上部から重合触媒溶液(m)及
び(IV)を100m1/分ずつ、モノマの乳化溶液を
45m1/分、連続的にチャージし、系内の温度を約4
0°Cに保ちながら、リアクタ下部より連続的に抜き出
し、乳化重合体を得た。
Example 2 Polymerization catalyst solutions (m) and (IV) were continuously charged at 100 ml/min each and monomer emulsified solution at 45 ml/min from the upper part of the reactor shown in Fig. 3, and the temperature in the system was kept at about 4.
While maintaining the temperature at 0°C, it was continuously extracted from the lower part of the reactor to obtain an emulsion polymer.

重合触媒溶液(m) ナトリウムホルムアルデヒドスルホ牛ンレートの0.3
%脱イオン水溶液 重合触媒溶液(TV) 過硫酸アンモニウムの0.3%脱イオン水溶液 モノマ乳化溶液 (乳化溶液100部当りの仕込量) 脱イオン水         51部 →テムルP3       1.5部 (花王(株)製品、アニオン乳化剤) ノイゲンEA−190D    1.1部く第1工業製
薬(株)製品 ノニオン乳化剤 ) ノイゲンEA−17O3 (第1工業製薬(株)製品    1.1部ノニオン乳
化剤) ノイゲ7EA−800,6部 (第1工業製薬(株)製品 ノニオン乳化剤) アクリル酸エチル     35.0部メチルメタクリ
レート     7. 0部メタクリル酸      
  2.3部N−メチロールアクリル アマイド(60%水溶液)1.0部 反応を6時間継続した後、内円筒及び外円筒への付着を
調べた所、はとんど付着は認められなかった。
Polymerization catalyst solution (m) 0.3 of sodium formaldehyde sulfonate
% deionized aqueous polymerization catalyst solution (TV) 0.3% ammonium persulfate deionized aqueous monomer emulsified solution (amount charged per 100 parts of emulsified solution) Deionized water 51 parts → Temul P3 1.5 parts (Kao Corporation) Product, anionic emulsifier) Neugen EA-190D 1.1 parts nonionic emulsifier manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) Neugen EA-17O3 (product manufactured by Daiichi Kogyo Seiyaku Co., Ltd. 1.1 parts nonionic emulsifier) Neugen 7EA-800, 6 parts (nonionic emulsifier manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) Ethyl acrylate 35.0 parts Methyl methacrylate 7. 0 parts methacrylic acid
2.3 parts N-methylol acrylamide (60% aqueous solution) 1.0 part After the reaction was continued for 6 hours, adhesion to the inner cylinder and outer cylinder was examined, and almost no adhesion was observed.

得られ−た乳化重合体溶液の性状は表1に示すごときで
あった。
The properties of the emulsion polymer solution obtained were as shown in Table 1.

実施例3 第3図に示すリアクタの上部から重合触媒溶液(I)及
び(It)を59m1/分ずつ、モノマの乳化溶液を1
07m1/分連続的にチャージし、系内の温度を約60
°Cに保ちながら、リアクタ下部より同量を連続的に抜
き出し、乳化重合体を得た。
Example 3 Polymerization catalyst solutions (I) and (It) were poured into the upper part of the reactor shown in Fig. 3 at a rate of 59 ml/min, and a monomer emulsified solution was added at 1/min.
Continuously charge 07ml/min to bring the temperature inside the system to about 60℃.
While maintaining the temperature at °C, the same amount was continuously withdrawn from the lower part of the reactor to obtain an emulsion polymer.

重合触媒溶液(1) ピロ亜硫酸ソーダ 脱イオン水 重合触媒溶液(n) 過硫酸アンモニウム 脱イオン水 モノマ乳化溶液 (乳化溶液100部当りの仕込量) 脱イオン水 エーマルゲン931 (花王(株)製品 ノニオン乳化剤) ノイゲンEA−142 (第1工業製薬(株) ノニオン乳化剤) 0.4部 100部 0.4部 100部 24部 5.4部 1゜ 1部 ハイテノールN−08 (第1工業製薬(株) アニオン乳化剤) ブチルアクリレート 1゜ 0部 スチレン 80%アクリル酸 36.0部 30.0部 2.5部 反応を5時間継続した後、リアクタから乳化重合体を抜
き出し内円筒及び外円筒への付着を調べた所、はとんど
付着は認められなかった。
Polymerization catalyst solution (1) Sodium pyrosulfite deionized water Polymerization catalyst solution (n) Ammonium persulfate deionized water Monomer emulsification solution (amount charged per 100 parts of emulsification solution) Deionized water Emalgen 931 (Kao Corporation product nonionic emulsifier) Neugen EA-142 (Daiichi Kogyo Seiyaku Co., Ltd. Nonionic emulsifier) 0.4 parts 100 parts 0.4 parts 100 parts 24 parts 5.4 parts 1°1 part Hytenol N-08 (Daiichi Kogyo Seiyaku Co., Ltd.) Anionic emulsifier) Butyl acrylate 1.0 parts Styrene 80% Acrylic acid 36.0 parts 30.0 parts 2.5 parts After continuing the reaction for 5 hours, the emulsion polymer was extracted from the reactor and its adhesion to the inner and outer cylinders was checked. Upon inspection, no adhesion was found.

得られた乳化重合体溶液の性状は表1に示すごときであ
った。
The properties of the obtained emulsion polymer solution were as shown in Table 1.

比較例2 第4図−に示すリアクタの下部がら、実施例2の重合触
媒溶液A及びBを127m1/分ずつ、モノマの乳化溶
液を57m1/分、連続的にチャージし系内の温度を4
0”Cに保ちながら、リアクタ上部より同量を抜き出し
、乳化重合体を得た。反応を6時間継続した後、攪拌翼
及びリアクタ内壁への付着を調べた所、著しい付着が認
められた。
Comparative Example 2 The lower part of the reactor shown in Figure 4 was continuously charged with the polymerization catalyst solutions A and B of Example 2 at 127 ml/min each and with the monomer emulsified solution at 57 ml/min, and the temperature in the system was lowered to 4.
While maintaining the temperature at 0''C, the same amount was taken out from the upper part of the reactor to obtain an emulsion polymer. After the reaction was continued for 6 hours, the adhesion to the stirring blades and the inner wall of the reactor was examined, and significant adhesion was observed.

得られた乳化重合体の性状を表1に示す。Table 1 shows the properties of the obtained emulsion polymer.

比較例3 第5図に示すループリアクタの循環ポンプ(−軸ネジポ
ンプ)の入口に実施例3の重合触媒溶液(I)及び(n
)を各10.4ml/分、モノマ乳化溶液Cを19m1
/分連続的にチャージし系内の温度を60℃に保ちなが
ら当該ポンプを運転し該環を通る再循環を行いながら、
チャージした液と同量をT型線ぎ手を通して系外に取り
出し、製品とした。
Comparative Example 3 The polymerization catalyst solution (I) and (n
) at 10.4 ml/min each, and 19 ml/min of monomer emulsification solution C.
/ minute while continuously charging and maintaining the temperature in the system at 60°C while operating the pump and performing recirculation through the ring.
The same amount of the charged liquid was taken out of the system through a T-shaped liner to form a product.

得られた製品は、非常にブロックが多く、且つ粒径分布
も広く、使用に適しなかった。又ループリアクタ初管壁
への付着が著しく分解整備を必要とした。
The resulting product had a large number of blocks and a wide particle size distribution, making it unsuitable for use. In addition, there was significant adhesion to the initial pipe wall of the loop reactor, requiring disassembly and maintenance.

得られた乳化重合体の性状を表1に示す。Table 1 shows the properties of the obtained emulsion polymer.

表1における各性状の測定方法は次とおりである。The measurement method for each property in Table 1 is as follows.

表1 (1)粘度測定 BM型粘度計を使用し25℃にて測定した。Table 1 (1) Viscosity measurement Measurement was performed at 25°C using a BM type viscometer.

使用ロータ#1、回転数は60 r pmであった。Rotor #1 was used, and the rotation speed was 60 rpm.

(2)PH測測 定Hメータにて測定した。(2) PH measurement Measured using a constant H meter.

(3)固形分測定 固形分とは樹脂1g当りの不揮発分を意味する。樹脂溶
液約5gを精秤し、105℃の乾燥機にて、2時間乾燥
後、重量を測定し、サンプル採取量で割って求めた。
(3) Measurement of solid content Solid content means non-volatile content per gram of resin. Approximately 5 g of the resin solution was accurately weighed, dried in a dryer at 105° C. for 2 hours, the weight was measured, and the weight was divided by the sample amount.

(4)粒径測定 乳化重合体溶液を希釈しく1−200μg/ml)コル
ターカウンタ(型式N4S:フル久−エレクトロン社製
)にて測定した。
(4) Particle size measurement The emulsion polymer solution was diluted to 1-200 μg/ml) and measured using a Coulter counter (model N4S, manufactured by Furukyu Electron Co., Ltd.).

(発明の効果) 本発明のエマルジョン樹脂の製造方法により次のような
効果が生じる。即ち■攪拌翼や循環ポンプによる機械的
な粒子破壊が小さいので、プロッりや反応器壁面への付
着が少ない。■経時的な粒径変化が小さいため、製品の
品質振れが少なく、バッチプロセスに近い、粒径分布の
狭い製品が得られる。従って、本発明で得られるエマル
ジョン樹脂は、エマルジョン樹脂製造に際してのシープ
として利用するのに好適である。
(Effects of the Invention) The method for producing an emulsion resin of the present invention brings about the following effects. That is, (1) Mechanical particle destruction caused by stirring blades and circulation pumps is small, so there is little splatter or adhesion to the reactor wall. ■Since particle size changes over time are small, product quality fluctuations are small and products with a narrow particle size distribution similar to batch processes can be obtained. Therefore, the emulsion resin obtained in the present invention is suitable for use as a sheep in the production of emulsion resin.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は共軸二重回転円筒におけるバッチ式乳化重合の
フロー図を示し、第2図は攪拌翼を備えたバッチ式乳化
重合のフロー図を示し、第3図は共軸二重回転円筒にお
けるバッチ式乳化重合のフロー図を示し、第4図は多段
攪拌槽列における連続式乳化重合のフロー図を示し、第
5図はループ状背型反必器における連続式乳化重合のフ
ロー図を示す。 1.2;触媒槽、3;モノマ槽、4;モータ4′;定量
ポンプ、5;反応缶、6;ジャケット7;攪拌翼、7−
;仕切板、8;外円筒、9;内円筒、10;冷却水入口
、11;冷却水出口、;製品受は槽、 ;循環ポンプ、 ;圧 力制御装置、15;バイブ
Figure 1 shows a flow diagram of batch emulsion polymerization in coaxial double rotating cylinders, Figure 2 shows a flow diagram of batch emulsion polymerization with stirring blades, and Figure 3 shows a flow diagram of batch emulsion polymerization in coaxial double rotating cylinders. Fig. 4 shows a flow diagram of continuous emulsion polymerization in a multi-stage stirring tank array, and Fig. 5 shows a flow diagram of continuous emulsion polymerization in a loop-shaped back type reactor. show. 1.2; Catalyst tank, 3; Monomer tank, 4; Motor 4'; Metering pump, 5; Reaction can, 6; Jacket 7; Stirring blade, 7-
; Partition plate, 8; Outer cylinder, 9; Inner cylinder, 10; Cooling water inlet, 11; Cooling water outlet, ; Product receiving tank, ; Circulation pump, ; Pressure control device, 15; Vibrator

Claims (1)

【特許請求の範囲】 1、重合性有機化合物を液体媒質中で乳化重合を行うこ
とによりエマルジョン樹脂を製造する方法において、外
円筒を静止し内円筒を回転させる共軸二重回転円筒の環
状部に、重合性有機化合物(A)と、重合性有機化合物 (A)を乳化重合せしめる液体媒質(B)と重合開始剤
(C)とを加えることを特徴とするエマルジョン樹脂の
製造方法。 2、重合性有機化合物を液体媒質中で連続乳化重合を行
うことによりエマルジョン樹脂を連続的に製造する方法
において、外円筒を静止し内円筒を回転させる共軸二重
回転円筒の環状部に、重合性有機化合物(A)と、重合
性有機化合物(A)を乳化重合せしめる液体媒質(B)
と重合開始剤(C)とを連続的に加えることを特徴とす
るエマルジョン樹脂の連続製造方法。
[Claims] 1. In a method for producing an emulsion resin by carrying out emulsion polymerization of a polymerizable organic compound in a liquid medium, an annular portion of a coaxial double rotating cylinder in which the outer cylinder is stationary and the inner cylinder is rotated; A method for producing an emulsion resin, which comprises adding a polymerizable organic compound (A), a liquid medium (B) for emulsion polymerization of the polymerizable organic compound (A), and a polymerization initiator (C) to. 2. In a method for continuously producing an emulsion resin by carrying out continuous emulsion polymerization of a polymerizable organic compound in a liquid medium, in the annular part of a coaxial double rotating cylinder in which the outer cylinder is stationary and the inner cylinder is rotated, A polymerizable organic compound (A) and a liquid medium (B) for emulsion polymerization of the polymerizable organic compound (A)
and a polymerization initiator (C) are continuously added.
JP2273324A 1990-10-15 1990-10-15 Method for producing emulsion resin Expired - Fee Related JP2984851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2273324A JP2984851B2 (en) 1990-10-15 1990-10-15 Method for producing emulsion resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2273324A JP2984851B2 (en) 1990-10-15 1990-10-15 Method for producing emulsion resin

Publications (2)

Publication Number Publication Date
JPH04150934A true JPH04150934A (en) 1992-05-25
JP2984851B2 JP2984851B2 (en) 1999-11-29

Family

ID=17526296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2273324A Expired - Fee Related JP2984851B2 (en) 1990-10-15 1990-10-15 Method for producing emulsion resin

Country Status (1)

Country Link
JP (1) JP2984851B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187227A (en) * 1990-11-19 1992-07-03 Fuji Photo Film Co Ltd Emulsifying method and device
JP2006312165A (en) * 2005-04-08 2006-11-16 Sumitomo Chemical Co Ltd Method for producing emulsion
JP2006316233A (en) * 2005-05-16 2006-11-24 Nippon Shokubai Co Ltd Emulsion
JP2008291221A (en) * 2007-04-26 2008-12-04 Dic Corp Process for preparing aqueous dispersion of emulsion polymer
CN112473472A (en) * 2020-10-26 2021-03-12 安庆泽远化工有限公司 Preparation method of composite waterproof agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187227A (en) * 1990-11-19 1992-07-03 Fuji Photo Film Co Ltd Emulsifying method and device
JP2006312165A (en) * 2005-04-08 2006-11-16 Sumitomo Chemical Co Ltd Method for producing emulsion
JP2006316233A (en) * 2005-05-16 2006-11-24 Nippon Shokubai Co Ltd Emulsion
JP2008291221A (en) * 2007-04-26 2008-12-04 Dic Corp Process for preparing aqueous dispersion of emulsion polymer
CN112473472A (en) * 2020-10-26 2021-03-12 安庆泽远化工有限公司 Preparation method of composite waterproof agent

Also Published As

Publication number Publication date
JP2984851B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
US5470539A (en) Continuous polymerization method and apparatus
JPH10120710A (en) Production of emulsion homopolymer and copolymer and apparatus used therefor
US6264357B1 (en) Apparatus for suspension polymerization
Paquet Jr et al. Tubular reactors for emulsion polymerization: I. Experimental investigation
JP2013523933A (en) Continuous emulsion polymerization method
US4713434A (en) Continuous emulsion polymerization process
JPH04150934A (en) Preparation of emulsion resin
DE69030413T2 (en) Process for the production of vinyl chloride resin
WO2018001474A1 (en) Method for producing vinyl acetate-ethylene copolymers by means of emulsion polymerization
JPH08109208A (en) Production of seed particle for emulsion polymerization and continuous multistage emulsion polymerization process
US3950138A (en) Apparatus for conducting chemical reactions, particularly polymerization, continuously
JPH03197504A (en) Suspension polymerization
JP2001522394A (en) Method for producing particulate homopolymers and copolymers from microsuspension in a tubular reactor
JPH03137104A (en) Method of cyclic tubular polymerization and reactor therefor
JPH10265511A (en) Production of vinyl chloride-based polymer
JP2832867B2 (en) Suspension polymerization method
JPH10152506A (en) Production of polymeric particle
JP3328033B2 (en) Suspension polymerization method
JPH03131603A (en) Suspension polymerization process
JP3645406B2 (en) Vinyl chloride polymer latex for paste processing and method for producing the same
JP2533020B2 (en) Suspension polymerization method
JP2000219702A (en) Production of vinyl chloride polymer latex
JPH0356501A (en) Suspension polymerization
CN106084091B (en) A kind of suspension polymerisation system and suspension polymerization
JPH044202A (en) Method for suspension polymerization

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees