JP3608211B2 - Manufacturing method of high purity hydrogen peroxide solution - Google Patents

Manufacturing method of high purity hydrogen peroxide solution Download PDF

Info

Publication number
JP3608211B2
JP3608211B2 JP31478993A JP31478993A JP3608211B2 JP 3608211 B2 JP3608211 B2 JP 3608211B2 JP 31478993 A JP31478993 A JP 31478993A JP 31478993 A JP31478993 A JP 31478993A JP 3608211 B2 JP3608211 B2 JP 3608211B2
Authority
JP
Japan
Prior art keywords
exchange resin
hydrogen peroxide
peroxide solution
anion exchange
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31478993A
Other languages
Japanese (ja)
Other versions
JPH07172805A (en
Inventor
敏 田口
紳一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP31478993A priority Critical patent/JP3608211B2/en
Publication of JPH07172805A publication Critical patent/JPH07172805A/en
Application granted granted Critical
Publication of JP3608211B2 publication Critical patent/JP3608211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、LSIなどの半導体製造プロセスに用いられる高純度過酸化水素水の製造方法に関するものである。
【0002】
【従来の技術】
近年LSIの高集積化に伴い、半導体製造プロセスに用いられる材料のクリーン化の要求が一段と厳しくなりつつある。ウェハーに付着するゴミや金属類は、半導体の信頼性に影響を及ぼし、また歩留まり低下の原因となるため、これらの付着を極力少なくすることが工業的に半導体を製造する上で重要となっている。
【0003】
過酸化水素水は、LSI等半導体製造プロセスにおけるウェハーの洗浄工程において、アンモニア水、塩酸、硫酸又はフッ酸と混合して用いられる。過酸化水素水が塩酸、硫酸又はフッ酸と混合して用いられる場合には、洗浄液からの金属のウェハーへの付着はないといわれているが、粒子除去を目的としてアンモニア水と混合して用いるときには洗浄液から鉄やアルミニウム等の金属類がウェハー表面に付着する事が報告されている。また、塩素イオンや硫酸イオンの存在が金属付着に悪影響を及ぼすことも明らかにされつつあり、これら陰イオンも低減された過酸化水素水が要求されている。
【0004】
従来半導体製造プロセスに用いられる高純度過酸化水素水は主としてイオン交換樹脂と接触させる方法で製造することが知られている。それらの例として、USP2,676,923号公報には核スルホン化されたカチオン交換樹脂と過酸化水素水を接触させて金属類を除去する方法が記載されている。特開昭62−187103号公報にはピリジン系アニオン交換樹脂とカチオン交換樹脂の併用が記載されており、この時カチオン交換樹脂と接触させた後アニオン交換樹脂と接触させることにより硫酸根の増加を招かず過酸化水素水の高純度化が図れるとされている。また特公昭35−16677号公報には重炭酸型のアニオン交換樹脂と過酸化水素水を接触させる方法の記載がある。
【0005】
しかしこれら公知の方法では通液方法によりカルボン酸類や塩素イオンをかなり低減することは可能であるのもの、金属類と硫酸根を同時に低減することはできなかった。
【0006】
即ち、過酸化水素水とアニオン交換樹脂との接触のみではアニオン類及び酸素と結合してアニオンとなっている金属類は低減できるものの、カチオンとして存在する金属類は除去できない。次に過酸化水素水とカチオン交換樹脂との接触のみではカチオンとして存在する金属類は低減できるが、アニオン類やアニオン性金属が除去できない。更に、アニオン交換樹脂とカチオン交換樹脂を併用して過酸化水素水と接触させる場合、最後にカチオン交換樹脂と接触させると金属類は良く低減できるものの、金属類の低減能の良いスルホン酸型強酸性カチオン交換樹脂では硫酸根が増大する。一方最後にアニオン交換樹脂と接触させると硫酸根は良く低減できるものの金族類又は塩素イオンの低減が不十分となる。これは塩素型アニオン交換樹脂を用いるとアニオン性金属や硫酸根とイオン交換された塩素イオンが過酸化水素水中に混入し、また特公昭35−16677号公報にある重炭酸ナトリウムで再生されたアニオン交換樹脂では、再生後十分水洗を行っても過酸化水素水と接触させることによりナトリウムが樹脂から溶出することによる。
【0007】
【発明が解決しようとする課題】
かかる現状に鑑み、本発明の目的は、半導体製造プロセスで用いられる金属類や塩素イオン及び硫酸根の低減された高純度過酸化水素水を製造する方法を提供することに存する。
【0008】
【課題を解決するための手段】
本発明者らは上記の課題を解決すべくイオン交換樹脂の再生方法や通液方法を鋭意検討の結果、粗過酸化水素水を、炭酸アンモニウムを用いて炭酸型としたアニオン交換樹脂又は重炭酸アンモニウムを用いて重炭酸型としたアニオン交換樹脂と接触させることにより、低金属、低塩素イオンかつ低硫酸根濃度の過酸化水素水を製造できることを見いだし、本発明に至った。
【0009】
即ち本発明は、粗過酸化水素水を精製して高純度過酸化水を製造するにあたり、粗過酸化水素水を、炭酸アンモニウムを用いて炭酸型としたアニオン交換樹脂又は重炭酸アンモニウムを用いて重炭酸型としたアニオン交換樹脂と接触させることを特徴とする高純度過酸化水素の製造方法に係るものである。
【0010】
粗過酸化水素水としては、工業的に製造されているアントラキノン法などにより製造される過酸化水素水を用いることができる。また、電子工業用等と称する工業用より純度の高い過酸化水素水を用いてもよい。その濃度は半導体製造プロセス用には20〜30%のものが用いられていることから20%以上であればよいが、あまり高濃度の過酸化水素水とイオン交換樹脂を接触させるとイオン交換樹脂の劣化が速まったり、イオン交換樹脂からの不純物の溶出が起こったりすることもあるので、20%から40%で用いるのが好ましい。より低濃度で使用する場合にはそれに応じた濃度の過酸化水素水を原料とすることもできる。
【0011】
アニオン類及び金属類を十分低減させるため、粗過酸化水素水はアニオン交換樹脂及びカチオン交換樹脂の両方と接触させる。各樹脂とは1段で接触させてもよいし、多段で接触させてもよい。ただ処理の最終は先に述べた問題点を解決するためアニオン交換樹脂にし、更に炭酸アンモニウム又は重炭酸アンモニウムで炭酸型又は重炭酸型にされたものを用いることが好ましい。
【0012】
アニオン交換樹脂としては強塩基型及び弱塩基型の何れを用いても良い。
通常アニオン交換樹脂は塩素型叉は水酸型として供給されるので、コンディショニングとして新規のアニオン交換樹脂を用いる場合には使用前に炭酸型又は重炭酸型に変換する。変換方法としてはタンクや反応器を用い、炭酸アンモニウム又は重炭酸アンモニウムの水溶液中にアニオン交換樹脂を懸濁させる方法もあるが、カラムにアニオン交換樹脂を充填して炭酸アンモニウム又は重炭酸アンモニウムの水溶液を通液するのが工業的には一般的である。
【0013】
用いる炭酸アンモニウム又は重炭酸アンモニウムの水溶液の濃度は0.1から1.2Nであるが、0.3から1.2Nが好ましい。
【0014】
カラムへの通液には、通液速度は空塔速度(以下SVと略す)で0.5から20hr−1である。通液量としては、変換する官能基に対し炭酸根又は重炭酸根が当量比で2倍以上になるように、使用する炭酸アンモニウム又は重炭酸アンモニウムの水溶液の濃度により決定すればよいが、官能基に対する炭酸根又は重炭酸根の当量比は2倍から10倍が好ましい。
【0015】
なお、塩素型として供給されるものは一度水酸型に変換した後炭酸型又は重炭酸型に変換することも可能で、このほうがより完全に変換できるため好ましい。水酸型にするには、水酸化ナトリウム、水酸化カリウムやアンモニア水のようなアルカリ水溶液を用いて変換する。
【0016】
使用済みのアニオン交換樹脂を再生するには新規樹脂を炭酸型又は重炭酸型に変換するのと同様してに炭酸アンモニウム又は重炭酸アンモニウムの水溶液を通液すれば良い。
【0017】
以上に述べた方法で炭酸型又は重炭酸型に変換したのち、過剰の炭酸アンモニウム又は重炭酸アンモニウムを水洗により除去する。
【0018】
本発明に用いるカチオン交換樹脂は官能基としてスルホン酸基を有する強酸型カチオン交換樹脂を用いる。該カチオン交換樹脂は水素型として用いる。ナトリウム型として供給されるものは塩酸や硫酸のような鉱酸により水素型に変換される。変換方法はアニオン交換樹脂と同様にカラム通液で行うのが工業的には好ましい。即ち、0.1から2Nの鉱酸を官能基に対する酸の当量比を2倍以上になるようにして、SV=0.5〜10hr−1で、カチオン樹脂を充填したカラムに通液すればよい。勿論、通液方式以外の方法でも塩素型が水素型に変換できる方法であれは構わない。水素型に変換した後、カチオン交換樹脂を水洗し過剰の鉱酸を除去する。
【0019】
なおコンディショニングの際に、通常行われる酸及びアルカリの通液を繰り返すことは本発明を実施する上でなんら支障は無い。
【0020】
上述した方法により炭酸型又は重炭酸型とされたアニオン交換樹脂および水素型とされたカチオン交換樹脂と原料の粗過酸化水素水を接触させる。接触方法としては、過酸化水素水中に所望の型に変換されたアニオン交換樹脂及び/又はカチオン交換樹脂を入れて攪拌するなどというバッチ方法でも可能であるが、アニオン交換樹脂又はカチオン交換樹脂が充填されたカラムに、過酸化水素水を通液する方法が工業的方法として好ましい。
【0021】
カラムへのアニオン交換樹脂及び/又はカチオン交換樹脂の充填高さは金属類やアニオン類のリークを防ぐためには20cm以上とすればよいが、30cm以上であればより好ましい。
【0022】
通液速度はSVで0.1〜20hr−1であるが、0.5〜10がより好ましい。
【0023】
通液時に過酸化水素水がアニオン交換樹脂との接触により僅かではあるが分解を起こすため、より分解の起こりにくい低温で行うことが原料の粗過酸化水素水を効率的に利用でき、また処理の安定の見地からも好ましい。具体的には−10〜30℃で行うのが好ましく、−10〜10℃が更に好ましい。
【0024】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明する。
実施例−1
強塩基性アニオン交換樹脂であるダイヤイオンSA20A(4級アンモニウム2型、三菱化成社商標名)をカラムに30cmの層高で充填し、コンディショニングとしてまず1N水酸化ナトリウムを官能基の5倍当量になる量をSV=5hr−1で通液し、次いで樹脂量の5倍量の超純水で水洗した。次に1N塩酸を官能基の5倍当量になる量をSV=5hr−1で通液し、次いで樹脂量の5倍量の超純水で水洗した。更に1N水酸化ナトリウム−超純水−1N塩酸−超純水での通液を上述の通り2回繰り返したのち、再度1N水酸化ナトリウムを官能基の5倍当量になる量をSV=5hr−1で通液し、次いで樹脂量の5倍量の超純水で水洗し該アニオン交換樹脂を水酸型に変換した。次に1N重炭酸アンモニウムを官能基の5倍当量になる量をSV=5hr−1で通液し、最後に樹脂量の10倍量の超純水を通液することにより水洗し、該アニオン交換樹脂を重炭酸型に変換した。
【0025】
別のカラムに強酸性カチオン交換樹脂であるダイヤイオンSK1B(三菱化成社商標名)を30cmの層高で充填し、官能基の5倍当量に相当する1N塩酸−樹脂量の5倍量の超純水−官能基の5倍当量に相当する1N水酸化ナトリウム−樹脂量の5倍量の超純水による通液を3回繰り返した後、官能基の5倍当量に相当する1N塩酸をSV=5hr−1で通液し、最後に樹脂量の10倍量の超純水を通液することにより水洗し、該カチオン交換樹脂を水素型に変換した。
【0026】
原料として金属類が0.数〜数10ppb、硫酸根及び塩素イオンを数10ppb含む31%過酸化水素水を用い、該過酸化水素水をカチオン交換樹脂カラム、アニオン交換樹脂カラムの順に25℃、SV=5hr−1で通液した。
【0027】
カラムから流出する過酸化水素水をを捕集し、この中に含まれる金属類及び塩素イオン、硫酸根を分析した。金属類はNa,Ca,Al,Feなど何れも0.1ppb以下であり、塩素イオン、硫酸根は5ppb以下であった。なお、金属類の分析はICP−MS法ならびにフレームレス原子吸光法、塩素イオン、硫酸根の分析はイオンクロマトグラフィー法で行った。
【0028】
実施例−2
アニオン交換樹脂の最終型を炭酸型とするためアニオン交換樹脂のコンディショニング時の最終薬剤として1N炭酸アンモニウムを官能基の10倍当量となるように通液し、アニオン交換樹脂の15倍量の超純水で水洗した他は実施例−1と同様にして原料過酸化水素水の通液を行った。得られた過酸化水素水の金属類は何れも0.1ppb以下であり、塩素イオン、硫酸根は5ppb以下であった。
【0029】
実施例−3
通液時の温度を7℃とした他は実施例−1と同様にして原料過酸化水素水の通液を行った。得られた過酸化水素水の金属類は何れも0.1ppb以下であり、塩素イオン、硫酸根は5ppb以下であった。
【0030】
実施例−4
アニオン交換樹脂として強塩基性のダイヤイオンSA10A(4級アンモニウム1型、三菱化成社商標名)を、カチオン交換樹脂として強酸性カチオン交換樹脂であるダイヤイオンSK1Bを用いた他は、実施例−1と同様にして原料過酸化水素水の通液を行った。得られた過酸化水素水の金属類は何れも0.1ppb以下であり、塩素イオン、硫酸根は5ppb以下であった。
【0031】
実施例−5
アニオン交換樹脂として強塩基性のダイヤイオンSA10Aを、カチオン交換樹脂として強酸性カチオン交換樹脂であるダイヤイオンSK1Bを用い、実施例−1と同様にしてアニオン交換樹脂及びカチオン交換樹脂のコンディショニングを行った。なお、今回は各樹脂のカラムを2本ずつ用意し、カチオン−アニオン−カチオン−アニオンの順に連結した。このカラムに工業グレードの過酸化水素水を25℃、SV=5hr−1で通液した。なおこの原料過酸化水素水中の不純物として、Naが数1000ppb、Al,Ca、Feが数10〜数100ppb含まれており、塩素イオン及び硫酸根も数100ppb含まれていた。4本のカラムを通って流出した過酸化水素水中の金属イオンはNa、Al、Fe、Ca等全て0.1ppb以下であり、塩素イオン及び硫酸根も5ppb以下であった。
【0032】
比較例−1
アニオン交換樹脂の最終コンディショニング薬剤を重炭酸ナトリウムを用いた他は、実施例−1と同様にして原料過酸化水素水の通液を行った。流出液中の塩素イオン及び硫酸根の濃度は5ppb以下であり、殆どの金属類も0.1ppb以下であったが、Naは1.4ppbと高かった。
【0033】
【発明の効果】
以上説明したとおり、本発明により、半導体製造プロセスで用いられる金属類や塩素イオン及び硫酸根の低減された高純度過酸化水素水を製造する方法を提供することができた。
[0001]
[Industrial application fields]
The present invention relates to a method for producing a high-purity hydrogen peroxide solution used in a semiconductor production process such as LSI.
[0002]
[Prior art]
In recent years, with the high integration of LSIs, the requirement for cleaning materials used in semiconductor manufacturing processes is becoming more severe. Since dust and metals adhering to the wafer affect the reliability of the semiconductor and reduce the yield, it is important to reduce these adhesions as much as possible in industrially manufacturing semiconductors. Yes.
[0003]
The hydrogen peroxide solution is used by mixing with ammonia water, hydrochloric acid, sulfuric acid or hydrofluoric acid in a wafer cleaning step in a semiconductor manufacturing process such as LSI. When hydrogen peroxide water is mixed with hydrochloric acid, sulfuric acid or hydrofluoric acid, it is said that the metal does not adhere to the wafer from the cleaning solution, but it is used with ammonia water for the purpose of particle removal. Sometimes, it has been reported that metals such as iron and aluminum adhere to the wafer surface from the cleaning solution. In addition, it has been clarified that the presence of chlorine ions and sulfate ions has an adverse effect on metal adhesion, and a hydrogen peroxide solution in which these anions are also reduced is required.
[0004]
Conventionally, it is known that high-purity hydrogen peroxide water used in a semiconductor manufacturing process is mainly manufactured by a method of contacting with an ion exchange resin. As an example thereof, US Pat. No. 2,676,923 discloses a method for removing metals by bringing a cation exchange resin nucleated with a sulfonate into contact with hydrogen peroxide. JP-A-62-187103 describes the combined use of a pyridine-based anion exchange resin and a cation exchange resin. At this time, the contact with the cation exchange resin is followed by contact with the anion exchange resin to increase the sulfate radical. It is said that the hydrogen peroxide solution can be highly purified without inviting it. Japanese Patent Publication No. 35-16677 discloses a method of bringing a bicarbonate type anion exchange resin into contact with hydrogen peroxide.
[0005]
However, in these known methods, it is possible to considerably reduce carboxylic acids and chloride ions by the liquid passing method, but it has not been possible to simultaneously reduce metals and sulfate radicals.
[0006]
That is, only the contact between the hydrogen peroxide solution and the anion exchange resin can reduce the anion and the metal that forms an anion by binding to oxygen, but the metal present as a cation cannot be removed. Next, only the contact between the hydrogen peroxide solution and the cation exchange resin can reduce the metals present as cations, but the anions and anionic metals cannot be removed. Furthermore, when an anion exchange resin and a cation exchange resin are used in combination and contacted with hydrogen peroxide, the sulfonic acid type strong acid has a good ability to reduce metals, although the metals can be reduced well by contacting with the cation exchange resin at the end. In the cationic cation exchange resin, the sulfate radical increases. On the other hand, when it is finally brought into contact with an anion exchange resin, although sulfate radicals can be reduced well, reduction of metals or chloride ions becomes insufficient. This is because, when a chlorine type anion exchange resin is used, anion metal and sulfate ions ion exchanged with hydrogen peroxide are mixed in hydrogen peroxide water, and an anion regenerated with sodium bicarbonate disclosed in Japanese Patent Publication No. 35-16677. In the case of an exchange resin, sodium is eluted from the resin by contact with a hydrogen peroxide solution even after sufficient washing with water.
[0007]
[Problems to be solved by the invention]
In view of the current situation, an object of the present invention is to provide a method for producing high purity hydrogen peroxide water with reduced metals, chloride ions and sulfate radicals used in a semiconductor production process.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have intensively studied a method for regenerating and passing the ion exchange resin, and as a result, anion exchange resin or bicarbonate obtained by converting the crude hydrogen peroxide solution into a carbonate type using ammonium carbonate. It has been found that a hydrogen peroxide solution having a low metal concentration, a low chloride ion concentration and a low sulfate radical concentration can be produced by contacting with an anion exchange resin made of bicarbonate using ammonium.
[0009]
That is, in the present invention, a crude hydrogen peroxide solution is purified by using an anion exchange resin or ammonium bicarbonate in which the crude hydrogen peroxide solution is carbonated using ammonium carbonate. The present invention relates to a method for producing high-purity hydrogen peroxide, which is brought into contact with a bicarbonate type anion exchange resin.
[0010]
As the crude hydrogen peroxide solution, hydrogen peroxide solution produced by an anthraquinone method or the like produced industrially can be used. Alternatively, hydrogen peroxide water having a higher purity than that for industrial use, which is referred to as electronic industry use, may be used. The concentration may be 20% or more because 20 to 30% is used for the semiconductor manufacturing process. However, if the hydrogen peroxide solution and the ion exchange resin are brought into contact with a very high concentration, the ion exchange resin is used. It is preferable to use it at 20% to 40% because deterioration of the resin may be accelerated or impurities may be eluted from the ion exchange resin. When used at a lower concentration, a hydrogen peroxide solution having a concentration corresponding thereto can be used as a raw material.
[0011]
In order to sufficiently reduce anions and metals, the crude hydrogen peroxide solution is brought into contact with both the anion exchange resin and the cation exchange resin. Each resin may be contacted in one stage or in multiple stages. However, in order to solve the above-mentioned problems, it is preferable to use an anion exchange resin at the end of the treatment, and further use a carbonate or bicarbonate type that is converted to ammonium carbonate or ammonium bicarbonate.
[0012]
As the anion exchange resin, either a strong base type or a weak base type may be used.
Since anion exchange resins are usually supplied in the form of chlorine or hydroxide, when a new anion exchange resin is used for conditioning, it is converted to a carbonate type or bicarbonate type before use. As a conversion method, there is a method of suspending an anion exchange resin in an aqueous solution of ammonium carbonate or ammonium bicarbonate using a tank or a reactor, but the column is filled with an anion exchange resin and an aqueous solution of ammonium carbonate or ammonium bicarbonate. It is common industrially to pass through.
[0013]
The concentration of the aqueous solution of ammonium carbonate or bicarbonate to be used is 0.1 to 1.2N, preferably 0.3 to 1.2N.
[0014]
For the flow through the column, the liquid flow rate is a superficial velocity (hereinafter abbreviated as SV) of 0.5 to 20 hr −1 . The amount of liquid flow may be determined by the concentration of the aqueous solution of ammonium carbonate or ammonium bicarbonate used so that the equivalent ratio of carbonate or bicarbonate to the functional group to be converted is two times or more. The equivalent ratio of carbonate or bicarbonate to the group is preferably 2 to 10 times.
[0015]
In addition, what is supplied as a chlorine type | mold can also be converted into a carbonate type or a bicarbonate type after converting into a hydroxyl type once, and since this can convert more completely, it is preferable. In order to obtain the hydroxyl type, conversion is performed using an alkaline aqueous solution such as sodium hydroxide, potassium hydroxide or aqueous ammonia.
[0016]
In order to regenerate the used anion exchange resin, an aqueous solution of ammonium carbonate or ammonium bicarbonate may be passed in the same manner as converting the new resin to the carbonate type or bicarbonate type.
[0017]
After conversion to the carbonate type or bicarbonate type by the method described above, excess ammonium carbonate or ammonium bicarbonate is removed by washing with water.
[0018]
As the cation exchange resin used in the present invention, a strong acid cation exchange resin having a sulfonic acid group as a functional group is used. The cation exchange resin is used as a hydrogen type. What is supplied as sodium form is converted to hydrogen form by mineral acids such as hydrochloric acid and sulfuric acid. It is industrially preferable that the conversion method is carried out through a column as in the case of the anion exchange resin. That is, if 0.1 to 2N mineral acid is passed through a column packed with a cationic resin at SV = 0.5 to 10 hr −1 so that the equivalent ratio of the acid to the functional group is twice or more. Good. Of course, any method other than the liquid passing method may be used as long as the chlorine type can be converted to the hydrogen type. After conversion to the hydrogen form, the cation exchange resin is washed with water to remove excess mineral acid.
[0019]
It should be noted that repeating the normal acid and alkali flow during conditioning does not cause any trouble in practicing the present invention.
[0020]
The raw material hydrogen peroxide solution is brought into contact with the anion exchange resin made into the carbonate type or bicarbonate type and the cation exchange resin made into the hydrogen type by the method described above. As a contact method, a batch method in which an anion exchange resin and / or a cation exchange resin converted into a desired type in hydrogen peroxide water is stirred is possible, but the anion exchange resin or cation exchange resin is filled. A method of passing hydrogen peroxide solution through the prepared column is preferable as an industrial method.
[0021]
In order to prevent leakage of metals and anions, the packing height of the anion exchange resin and / or cation exchange resin into the column may be 20 cm or more, but more preferably 30 cm or more.
[0022]
The liquid passing speed is 0.1 to 20 hr −1 in SV, but 0.5 to 10 is more preferable.
[0023]
Since the hydrogen peroxide solution is slightly decomposed by contact with the anion exchange resin when the liquid is passed, the raw hydrogen peroxide solution can be used efficiently and processed at a low temperature at which decomposition is less likely to occur. It is also preferable from the viewpoint of stability. Specifically, it is preferably performed at −10 to 30 ° C., more preferably −10 to 10 ° C.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.
Example-1
Diaion SA20A (quaternary ammonium type 2, trade name of Mitsubishi Kasei Co., Ltd.), which is a strongly basic anion exchange resin, is packed in a column with a layer height of 30 cm, and as a conditioning, first, 1N sodium hydroxide is added to 5 times the functional group equivalent. Then, SV = 5 hr −1 , and then washed with ultrapure water 5 times the amount of resin. Next, 1N hydrochloric acid was passed through SV = 5 hr −1 in an amount equivalent to 5 times the functional group, and then washed with ultrapure water 5 times the amount of resin. Furthermore, after repeating the flow of 1N sodium hydroxide-ultra pure water-1N hydrochloric acid-ultra pure water twice as described above, the amount of 1N sodium hydroxide to be 5 times equivalent to the functional group is again set to SV = 5 hr − 1 and then washed with ultrapure water 5 times the amount of the resin to convert the anion exchange resin to the hydroxy type. Next, 1N ammonium bicarbonate was passed in an amount equivalent to 5 times the functional group at SV = 5 hr −1 , and finally ultrapure water of 10 times the amount of resin was passed through to wash with water, and the anion The exchange resin was converted to bicarbonate type.
[0025]
In another column, Diaion SK1B (trade name of Mitsubishi Kasei Co., Ltd.), which is a strongly acidic cation exchange resin, is packed at a layer height of 30 cm, and the amount of 1N hydrochloric acid-resin equivalent to 5 times the functional group is more than 5 times the amount. After passing through the ultrapure water 5 times the amount of 1N sodium hydroxide-resin equivalent to 5 times equivalent of pure water-functional group three times, 1N hydrochloric acid equivalent to 5 times equivalent of functional group was added to SV. = 5 hr −1 , and finally, the cation exchange resin was converted to the hydrogen type by washing with water by passing 10 times the amount of the ultrapure water.
[0026]
Metals are 0. Using 31% hydrogen peroxide solution containing several to several tens of ppb and several tens of ppb of sulfate groups and chlorine ions, the hydrogen peroxide solution was passed through the cation exchange resin column and the anion exchange resin column in this order at 25 ° C. and SV = 5 hr −1 . Liquid.
[0027]
The hydrogen peroxide solution flowing out from the column was collected, and the metals, chloride ions, and sulfate groups contained therein were analyzed. As for metals, Na, Ca, Al, Fe, etc. were all 0.1 ppb or less, and chloride ions and sulfate radicals were 5 ppb or less. Metals were analyzed by ICP-MS and flameless atomic absorption, and chloride ions and sulfate groups were analyzed by ion chromatography.
[0028]
Example-2
Since the final type of the anion exchange resin is a carbonic acid type, 1N ammonium carbonate is passed as a final agent during conditioning of the anion exchange resin so as to be 10 times equivalent to the functional group, and the ultrapure amount is 15 times that of the anion exchange resin. The raw material hydrogen peroxide solution was passed in the same manner as in Example 1 except that it was washed with water. All of the obtained hydrogen peroxide water metals were 0.1 ppb or less, and chloride ions and sulfate radicals were 5 ppb or less.
[0029]
Example-3
The raw material hydrogen peroxide solution was passed in the same manner as in Example 1 except that the temperature at the time of passing was 7 ° C. All of the obtained hydrogen peroxide water metals were 0.1 ppb or less, and chloride ions and sulfate radicals were 5 ppb or less.
[0030]
Example-4
Example 1 except that strongly basic Diaion SA10A (quaternary ammonium type 1, trade name of Mitsubishi Kasei Co., Ltd.) was used as the anion exchange resin, and Diaion SK1B, which is a strongly acidic cation exchange resin, was used as the cation exchange resin. The raw material hydrogen peroxide solution was passed in the same manner as described above. All of the obtained hydrogen peroxide water metals were 0.1 ppb or less, and chloride ions and sulfate radicals were 5 ppb or less.
[0031]
Example-5
The anion exchange resin and the cation exchange resin were conditioned in the same manner as in Example 1 using the strongly basic diaion SA10A as the anion exchange resin and Diaion SK1B as the strong acid cation exchange resin as the cation exchange resin. . In this case, two columns of each resin were prepared and connected in the order of cation-anion-cation-anion. An industrial grade hydrogen peroxide solution was passed through the column at 25 ° C. and SV = 5 hr −1 . As impurities in this raw material hydrogen peroxide water, Na was contained in several thousand ppb, Al, Ca, and Fe were contained in several tens to several hundred ppb, and chlorine ions and sulfate radicals were also contained in several hundred ppb. The metal ions in the hydrogen peroxide water that flowed out through the four columns were all less than 0.1 ppb, such as Na, Al, Fe, and Ca, and the chlorine ions and sulfate radicals were also less than 5 ppb.
[0032]
Comparative Example-1
The raw hydrogen peroxide solution was passed in the same manner as in Example 1 except that sodium bicarbonate was used as the final conditioning agent for the anion exchange resin. The concentration of chloride ions and sulfate radicals in the effluent was 5 ppb or less, and most metals were 0.1 ppb or less, but Na was as high as 1.4 ppb.
[0033]
【The invention's effect】
As described above, according to the present invention, a method for producing a high-purity hydrogen peroxide solution with reduced metals, chloride ions and sulfate radicals used in a semiconductor production process could be provided.

Claims (1)

粗過酸化水素水を精製して高純度過酸化水素水を製造するにあたり、粗過酸化水素水を、炭酸アンモニウムを用いて炭酸型としたアニオン交換樹脂又は重炭酸アンモニウムを用いて重炭酸型としたアニオン交換樹脂と接触させることを特徴とする高純度過酸化水素水の製造方法。In producing a high-purity hydrogen peroxide solution by refining the crude hydrogen peroxide solution, the crude hydrogen peroxide solution is converted into a carbonate type using an anion exchange resin or ammonium bicarbonate made into a carbonate type using ammonium carbonate. A method for producing a high-purity hydrogen peroxide solution comprising contacting with an anion exchange resin.
JP31478993A 1993-12-15 1993-12-15 Manufacturing method of high purity hydrogen peroxide solution Expired - Fee Related JP3608211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31478993A JP3608211B2 (en) 1993-12-15 1993-12-15 Manufacturing method of high purity hydrogen peroxide solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31478993A JP3608211B2 (en) 1993-12-15 1993-12-15 Manufacturing method of high purity hydrogen peroxide solution

Publications (2)

Publication Number Publication Date
JPH07172805A JPH07172805A (en) 1995-07-11
JP3608211B2 true JP3608211B2 (en) 2005-01-05

Family

ID=18057617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31478993A Expired - Fee Related JP3608211B2 (en) 1993-12-15 1993-12-15 Manufacturing method of high purity hydrogen peroxide solution

Country Status (1)

Country Link
JP (1) JP3608211B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210052679A (en) 2019-10-30 2021-05-11 주식회사 삼양사 Mixed bed ion exchange resin comprising anion exchange resin and cation exchange resin, method for preparing the same and method for purifying hydrogen peroxide solution using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4056695B2 (en) 2000-06-21 2008-03-05 三徳化学工業株式会社 Method for producing purified hydrogen peroxide water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210052679A (en) 2019-10-30 2021-05-11 주식회사 삼양사 Mixed bed ion exchange resin comprising anion exchange resin and cation exchange resin, method for preparing the same and method for purifying hydrogen peroxide solution using the same

Also Published As

Publication number Publication date
JPH07172805A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
US6896867B2 (en) Process for producing a purified aqueous hydrogen peroxide solution
EP0774442B1 (en) Process for producing a purified aqueous hydrogen peroxide solution
CN1898000A (en) Selective fluoride and ammonia removal by chromatographic separation of wastewater
EP1167289B1 (en) Process for producing a purified aqueous hydrogen peroxide solution
JP3608211B2 (en) Manufacturing method of high purity hydrogen peroxide solution
JP3171058B2 (en) Hydrogen peroxide water purification method
KR20190080193A (en) Method for purifying hydrogen peroxide solution using anion exchange resin and cation exchange resin
JPH07187616A (en) Production of hydrogen peroxide solution of high purity
JP3724247B2 (en) Method for purifying hydrogen peroxide water
JP3531403B2 (en) Hydrogen peroxide water purification method
JPH0920505A (en) Purification of hydrogen peroxide aqueous solution
CN113200519B (en) Method for removing fluorine in high-concentration fluorine-containing hydrochloric acid and application
JP3680867B2 (en) Method for purifying hydrogen peroxide water
JP3818323B2 (en) Method for producing purified hydrogen peroxide
JP2534861B2 (en) Method for producing high-purity hydrazine hydrate
JP3900211B2 (en) Manufacturing method of high purity hydrogen peroxide solution
KR102346921B1 (en) Mixed bed ion exchange resin comprising anion exchange resin and cation exchange resin, method for preparing the same and method for purifying hydrogen peroxide solution using the same
JPH0274515A (en) Production of high-purity silica
JP7403902B1 (en) Method for producing organic sulfonic acid compound
US2510855A (en) Removal of silicon compounds from water
JPH0615266A (en) Concentration of fluorine-containing waste water
JP2000153166A (en) Regeneration of mixed bed type ion exchange apparatus
JP3852981B2 (en) Method for purifying hydrogen peroxide water
JPH0912306A (en) Method for refining aqueous hydrogen peroxide
JPH11171508A (en) Purification of aqueous hydrogen peroxide

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees