JPH07187616A - Production of hydrogen peroxide solution of high purity - Google Patents

Production of hydrogen peroxide solution of high purity

Info

Publication number
JPH07187616A
JPH07187616A JP5326642A JP32664293A JPH07187616A JP H07187616 A JPH07187616 A JP H07187616A JP 5326642 A JP5326642 A JP 5326642A JP 32664293 A JP32664293 A JP 32664293A JP H07187616 A JPH07187616 A JP H07187616A
Authority
JP
Japan
Prior art keywords
exchange resin
hydrogen peroxide
resin
peroxide solution
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5326642A
Other languages
Japanese (ja)
Inventor
Satoshi Taguchi
敏 田口
Shinichi Murakami
紳一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5326642A priority Critical patent/JPH07187616A/en
Priority to KR1019940024816A priority patent/KR950017730A/en
Publication of JPH07187616A publication Critical patent/JPH07187616A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/013Separation; Purification; Concentration
    • C01B15/0135Purification by solid ion-exchangers or solid chelating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To obtain a hydrogen peroxide solution of high purity which is optimal for a semiconductor producing proceess and in which metals, chloride ions and sulfurate radicals have been reduced by bringing crude hydrogen peroxide solution into contact with a specified ion exchange resin. CONSTITUTION:A crude hydrogen peroxide solution of 20-30wt.% industrially produced by an anthraquinone method and having purity higher than the industrial one so called that used for electronic industry, etc., is brough into contact with an anion exchang resin and/or a cation exchange resin in multiple stages, and is brought into contact with a cation exchange resin of <=5 degree of cross- linking in a final stage. The cation exchange resin is used as a hydrogen type. That is, after a column is filled with the cation exchange resin and mineral acid is passed through the resin to turn in into the hydrogen type, it is washed with water to remove excess mineral acid, the washed resin is used. The anion exchange resin is fed as a chlorine type or a hydroxyl type. That is, a column is filled with the and resin ammonium carbonate or ammonium bicarbonate is passed through the resin, and the resin thus obtained is used. Crude hydrogen peroxide solution is passed through the column filled with the anion and/or cation exchange resin to collect impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSI等半導体製造プ
ロセスに用いられる高純度過酸化水素水の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity hydrogen peroxide water used in a semiconductor or other semiconductor manufacturing process.

【0002】[0002]

【従来の技術】近年LSIの高集積化に伴い、半導体製
造プロセスに用いられる材料のクリーン化の要求が一段
と厳しくなりつつある。ウェハーに付着するゴミや金属
類は半導体の信頼性に影響を及ぼし、歩留まり低下の原
因となるため、これらの付着を極力抑制することが工業
的に半導体を製造する上で非常に重要となっている。
2. Description of the Related Art In recent years, with the high integration of LSIs, the demand for cleaner materials used in semiconductor manufacturing processes has become more severe. Dust and metals that adhere to wafers affect the reliability of semiconductors and reduce yield, so it is extremely important to suppress these adhesions as much as possible in order to industrially manufacture semiconductors. There is.

【0003】過酸化水素水はLSI等半導体製造プロセ
スにおいてウェハーの洗浄工程で、アンモニア水、塩
酸、硫酸又はフッ酸と混合して用いられる。過酸化水素
水が塩酸、硫酸又はフッ酸と混合して用いられる場合に
は洗浄液からの金属のウェハーへの付着は無いと言われ
ているが、粒子除去を目的としてアンモニア水と混合し
て用いるときには洗浄液から鉄やアルミニウム等の金属
類がウェハー表面に付着する事が報告されている。また
塩素イオンや硫酸イオンの存在が金属付着に悪影響を及
ぼすことも明らかにされつつあり、これら陰イオンも低
減された過酸化水素水が要求されている。
Hydrogen peroxide water is used as a mixture with ammonia water, hydrochloric acid, sulfuric acid or hydrofluoric acid in a wafer cleaning step in a semiconductor manufacturing process such as LSI. It is said that when hydrogen peroxide water is mixed with hydrochloric acid, sulfuric acid or hydrofluoric acid, no metal adheres to the wafer from the cleaning solution, but it is used as a mixture with ammonia water for the purpose of removing particles. It is sometimes reported that metals such as iron and aluminum adhere to the wafer surface from the cleaning solution. In addition, it is becoming clear that the presence of chlorine ions and sulfate ions adversely affects metal adhesion, and there is a demand for hydrogen peroxide water in which these anions are reduced.

【0004】従来半導体製造プロセスに用いられる高純
度過酸化水素水は主としてイオン交換樹脂と接触させる
方法で製造することが知られている.それらの例とし
て、USP2,676,923号公報には核スルホン化
されたカチオン交換樹脂と粗過酸化水素水を接触させて
金属類を除去する方法が記載されている。特開昭62−
187103号公報にはピリジン系アニオン交換樹脂と
カチオン交換樹脂の併用が記載されており、この時カチ
オン交換樹脂と接触させた後アニオン交換樹脂と接触さ
せることにより硫酸根の増加を招かず過酸化水素水の高
純度化が図れるとされている。
It is known that the high-purity hydrogen peroxide solution used in the conventional semiconductor manufacturing process is manufactured mainly by a method of contacting with an ion exchange resin. As an example thereof, USP 2,676,923 discloses a method of removing metals by contacting a sulfonated cation exchange resin with a nucleus and a crude hydrogen peroxide solution. JP 62-
Japanese Patent No. 187103 describes the combined use of a pyridine-based anion exchange resin and a cation exchange resin. At this time, by contacting with a cation exchange resin and then with an anion exchange resin, an increase in sulfate radicals is not caused and hydrogen peroxide is increased. It is said that water can be highly purified.

【0005】しかしこれら公知の方法では通液方法によ
りカルボン酸類や塩素イオンをかなり低減することは可
能であるのもの、金属類と硫酸根を同時に低減すること
とはできなかった。
However, in these known methods, it is possible to considerably reduce carboxylic acids and chloride ions by the liquid passing method, but it is not possible to simultaneously reduce metals and sulfate radicals.

【0006】即ち、粗過酸化水素水と従来用いられてい
たカチオン交換樹脂との接触のみではカチオンとして存
在する金属類は低減できるが、アニオン類やアニオン性
金属が除去できない。更に、アニオン交換樹脂とカチオ
ン交換樹脂を併用して粗過酸化水素と接触させる場合、
最後にカチオン交換樹脂と接触させると金属類は良く低
減できるものの、金属類の低減能の良いスルホン酸型強
酸性カチオン交換樹脂では硫酸根が増大する。一方最後
にアニオン交換樹脂と接触させると硫酸根は良く低減で
きるものの金属類又は塩素イオンの低減が不十分とな
る。これは塩素型アニオン交換樹脂を用いるとアニオン
性金属や硫酸根とイオン交換された塩素イオンが過酸化
水素水中に混入し、また特公昭35−116677号公
報にある重炭酸ナトリウムで再生されたアニオン交換樹
脂では、再生後十分水洗を行っても粗過酸化水素水と接
触させることによりナトリウムがアニオン交換樹脂から
溶出することによる。
That is, the metals present as cations can be reduced only by contacting the crude hydrogen peroxide solution with the conventionally used cation exchange resin, but the anions and anionic metals cannot be removed. Furthermore, when the anion exchange resin and the cation exchange resin are used in contact with crude hydrogen peroxide,
Finally, when the cation exchange resin is brought into contact with the cation exchange resin, the metals can be reduced well, but in the sulfonic acid type strongly acidic cation exchange resin having a good ability to reduce the metals, the sulfate radicals increase. On the other hand, when it is finally brought into contact with the anion exchange resin, the sulfate group can be reduced well, but the reduction of metals or chloride ion becomes insufficient. This is because when a chlorine type anion exchange resin is used, chlorine ions ion-exchanged with anionic metals and sulfates are mixed in hydrogen peroxide water, and anions regenerated with sodium bicarbonate in Japanese Patent Publication No. 35-116677. This is because sodium is eluted from the anion exchange resin when the exchange resin is brought into contact with the crude hydrogen peroxide solution even if it is sufficiently washed with water after regeneration.

【0007】[0007]

【発明が解決しようとする課題】かかる現状に鑑み、本
発明の目的は、金属類、塩素イオン及び硫酸根の低減さ
れた高純度過酸化水素水であって、よって半導体製造プ
ロセスに最適に用いられる高純度過酸化水素水を製造す
る方法を提供することに存する。
In view of the above situation, an object of the present invention is to provide a highly pure hydrogen peroxide solution in which metals, chloride ions and sulfates are reduced, and therefore, it is optimally used in a semiconductor manufacturing process. It exists in providing the method of manufacturing the high purity hydrogen peroxide solution.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記の課題
を解決すべくイオン交換樹脂を用いた粗過酸化水素水の
精製について鋭意検討の結果、本発明に至った。
Means for Solving the Problems The present inventors have completed the present invention as a result of intensive studies on purification of crude hydrogen peroxide solution using an ion exchange resin in order to solve the above problems.

【0009】即ち本発明は、粗過酸化水素水を精製して
高純度過酸化水素水を製造するにあたり、粗過酸化水素
水を、架橋度が5以下である強酸性カチオン交換樹脂と
接触させることを特徴とする高純度過酸化水素水の製造
方法に係るものである。
That is, according to the present invention, in purifying crude hydrogen peroxide solution to produce high purity hydrogen peroxide solution, the crude hydrogen peroxide solution is contacted with a strongly acidic cation exchange resin having a degree of crosslinking of 5 or less. The present invention relates to a method for producing high-purity hydrogen peroxide water, which is characterized in that

【0010】粗過酸化水素水としては、工業的に製造さ
れているアントラキノン法などにより製造される過酸化
水素水を用いることができる。また電子工業用等と称す
る工業用より純度の高い過酸化水素水を用いても良い。
その濃度は半導体製造プロセス用には20〜30重量%
のものが用いられていることから20重量%以上であれ
ばよいが、あまり高濃度の過酸化水素水とイオン交換樹
脂を接触させるとイオン交換樹脂の劣化が速まったり、
イオン交換樹脂からの不純物の溶出が起こったりするこ
ともあるので、20重量%から40重量%で用いるのが
好ましい。半導体製造プロセスにおいてより低濃度で使
用する場合にはそれに応じた濃度の過酸化水素水を原料
とすることもできる。
As the crude hydrogen peroxide solution, hydrogen peroxide solution produced by the industrially produced anthraquinone method or the like can be used. Further, it is possible to use hydrogen peroxide water having a higher purity than that for industrial use, which is referred to as for electronic industries.
Its concentration is 20-30% by weight for semiconductor manufacturing process
Since it is used, it may be 20% by weight or more, but if the hydrogen peroxide solution having a too high concentration is brought into contact with the ion exchange resin, the deterioration of the ion exchange resin is accelerated,
Since the elution of impurities from the ion exchange resin may occur, it is preferably used in an amount of 20% by weight to 40% by weight. When used at a lower concentration in the semiconductor manufacturing process, a hydrogen peroxide solution having a concentration corresponding thereto can be used as a raw material.

【0011】アニオン類及び金属類を十分低減させるた
め、粗過酸化水素水はアニオン交換樹脂及びカチオン交
換樹脂の両方と接触させることが好ましい。各樹脂とは
1段で接触させてもよいし、多段で接触させてもよい。
ただ処理の最終は先に述べた問題点を解決するためカチ
オン交換樹脂にすることが好ましい。
In order to sufficiently reduce the anions and metals, the crude hydrogen peroxide solution is preferably contacted with both the anion exchange resin and the cation exchange resin. The resin may be contacted in one step or in multiple steps.
However, it is preferable to use a cation exchange resin at the end of the treatment in order to solve the above-mentioned problems.

【0012】本発明に用いるカチオン交換樹脂は、架橋
度が5以下、好ましくは4以下である強酸性カチオン交
換樹脂である。該架橋度が過大であると、過酸化水素水
中の硫酸根の濃度が高くなる。なお、該架橋度とは、交
換樹脂中のジビニルベンゼンの重量%を意味する。
The cation exchange resin used in the present invention is a strongly acidic cation exchange resin having a degree of crosslinking of 5 or less, preferably 4 or less. If the degree of cross-linking is excessive, the concentration of sulfate radicals in hydrogen peroxide water will increase. The degree of crosslinking means the weight% of divinylbenzene in the exchange resin.

【0013】本発明のカチオン交換樹脂は水素型として
用いる。ナトリウム型として供給されるものは塩酸や硫
酸のような鉱酸により水素型に変換される。変換方法は
タンクや反応器を用い、塩酸や硫酸のような鉱酸の水溶
液中にカチオン交換樹脂を懸濁させる方法もあるが、カ
ラムにカチオン交換樹脂を充填して鉱酸の水溶液を通液
するのが工業的には一般的である。即ち、0.1から2
Nの鉱酸を用い、通液速度は空塔速度(以下SVと略
す)で0.5から20hr-1とする。通液量としては官
能基に対する酸の当量比を2倍以上になるようにする。
水素型に変換した後、カチオン交換樹脂を水洗し過剰の
鉱酸を除去する。
The cation exchange resin of the present invention is used in the hydrogen form. What is supplied as the sodium form is converted to the hydrogen form by a mineral acid such as hydrochloric acid or sulfuric acid. There is also a conversion method that uses a tank or a reactor and suspends the cation exchange resin in an aqueous solution of a mineral acid such as hydrochloric acid or sulfuric acid. It is generally industrially done. That is, 0.1 to 2
The flow rate of the superficial flow (hereinafter abbreviated as SV) is 0.5 to 20 hr −1 using N mineral acid. The amount of liquid to be passed is such that the equivalent ratio of the acid to the functional group is double or more.
After conversion to the hydrogen form, the cation exchange resin is washed with water to remove excess mineral acid.

【0014】使用済みのカチオン交換樹脂を再生するに
は新規樹脂を水素型に変換するのと同様にして鉱酸の水
溶液を通液すれば良い。
In order to regenerate the used cation exchange resin, the aqueous solution of the mineral acid may be passed through in the same manner as converting the new resin into the hydrogen form.

【0015】アニオン交換樹脂としては強塩基型及び弱
塩基型の何れを用いても良い。
As the anion exchange resin, either a strong base type or a weak base type may be used.

【0016】通常アニオン交換樹脂は塩素型又は水酸型
として供給される。塩素型では生成過酸化水素水に塩素
イオンが混入する問題があり、水酸型では過酸化水素の
著しい分解が起こるため、コンディショニングとして新
規のアニオン交換樹脂を用いる場合には使用前に炭酸型
又は重炭酸型に変換する。変換方法としてはカチオン交
換樹脂と同様にカラム通液で行うことが工業的に好まし
い。即ち、0.1〜1.2Nの炭酸アンモニウム又は重
炭酸アンモニウム水溶液を官能基に対する当量比が2倍
以上になるようにして、SV=0.1〜20hr-1で、
アニオン交換樹脂を充填したカラムに通液すれば良い。
The anion exchange resin is usually supplied as a chlorine type or a hydroxide type. In the chlorine type, there is a problem that chlorine ions are mixed in the generated hydrogen peroxide solution, and in the hydroxyl type, significant decomposition of hydrogen peroxide occurs.Therefore, when using a new anion exchange resin for conditioning, the carbonate type or Convert to bicarbonate form. As a conversion method, it is industrially preferable to perform column conversion as in the case of the cation exchange resin. That is, 0.1 to 1.2 N ammonium carbonate or ammonium bicarbonate aqueous solution is used so that the equivalent ratio to the functional group is more than twice, and SV = 0.1 to 20 hr −1 ,
The liquid may be passed through a column packed with an anion exchange resin.

【0017】なお、塩素型として供給されるものは一度
水酸型に変換した後炭酸型又は重炭酸型に変換すること
も可能で、このほうがより完全に変換できるため好まし
い。水酸型にするには、水酸化ナトリウム、水酸化カリ
ウムやアンモニア水のようなアルカリ水溶液を用いて変
換する。以上に述べた方法で炭酸型又は重炭酸型に変換
したのち、過剰の炭酸アンモニウム又は重炭酸アンモニ
ウムを水洗により除去する。
It is preferable that what is supplied as a chlorine type can be converted into a hydroxide type once and then a carbonate type or a bicarbonate type, which is more preferable because it can be converted more completely. To make it into the hydroxide form, conversion is carried out using an alkaline aqueous solution such as sodium hydroxide, potassium hydroxide or aqueous ammonia. After conversion to the carbonate type or bicarbonate type by the method described above, excess ammonium carbonate or ammonium bicarbonate is removed by washing with water.

【0018】使用済みのアニオン交換樹脂を再生するに
は新規樹脂を炭酸型又は重炭酸型に変換するのと同様し
てに炭酸アンモニウム又は重炭酸アンモニウムの水溶液
を通液すれば良い。
In order to regenerate the used anion exchange resin, an aqueous solution of ammonium carbonate or ammonium bicarbonate may be passed in the same manner as in the case of converting the new resin into a carbonate type or a bicarbonate type.

【0019】なおコンディショニングの際に、通常行わ
れる酸及びアルカリの通液を繰り返すことは本発明を実
施する上でなんら支障は無い。
It should be noted that repeating the usual acid and alkali passages during conditioning does not cause any problems in the practice of the present invention.

【0020】上述した方法により炭酸型又は重炭酸型と
されたアニオン交換樹脂および水素型とされたカチオン
交換樹脂と粗過酸化水素水を接触させる。接触方法とし
ては、過酸化水素水中に所望の型に変換されたアニオン
交換樹脂および/又はカチオン交換樹脂を入れて撹拌す
るなどというバッチ方法でも可能であるが、アニオン交
換樹脂又はカチオン交換樹脂が充填されたカラムに、過
酸化水素水を通液する方法が工業的に好ましい。
By the above-described method, the carbonate type or bicarbonate type anion exchange resin and the hydrogen type cation exchange resin are brought into contact with the crude hydrogen peroxide solution. The contacting method may be a batch method in which an anion exchange resin and / or a cation exchange resin converted into a desired form are placed in hydrogen peroxide water and stirred, but the anion exchange resin or the cation exchange resin is filled. A method of passing hydrogen peroxide solution through the prepared column is industrially preferable.

【0021】カラムへのアニオン交換樹脂および/又は
カチオン交換樹脂の充填高さは金属類やアニオン類のリ
ークを防ぐためには20cm以上とすればよいが、30
cm以上であればより好ましい。通液速度はSVで0.
1〜20hr-1であるが、0.5〜10がより好まし
い。
The height of packing of the anion exchange resin and / or the cation exchange resin in the column may be 20 cm or more in order to prevent leakage of metals and anions.
More preferably, it is at least cm. The liquid passing speed is SV of 0.
It is 1 to 20 hr -1 , but 0.5 to 10 is more preferable.

【0022】なお、粗過酸化水素水とカチオン交換樹脂
の接触時の温度は−10〜30℃で行うのが好ましく、
−10〜10℃で行うのがより好ましい。
The temperature at the time of contact between the crude hydrogen peroxide solution and the cation exchange resin is preferably -10 to 30 ° C,
It is more preferable to carry out at -10 to 10 ° C.

【0023】以上述べた方法により、低金属、低アニオ
ン濃度で半導体製造用として好ましい高純度過酸化水素
水を得ることができる。
According to the method described above, highly pure hydrogen peroxide water having a low metal and a low anion concentration, which is preferable for semiconductor production, can be obtained.

【0024】[0024]

【実施例】以下本発明を実施例及び比較例により更に詳
細に説明する。 実施例−1 強塩基性アニオン交換樹脂であるダイヤイオンSA10
A(4級アンモニウム1型、三菱化成社商標名)をカラ
ムに30cmの層高で充填し、コンディショニングとし
てまず1N水酸化ナトリウムの官能基の5倍当量になる
量をSV=5hr-1で通液し、次いで樹脂量の5倍量の
超純水で水洗した。次に1N塩酸の官能基の5倍当量に
なる量をSV=5hr-1で通液し、次いで樹脂量の5倍
量の超純水で水洗した。更に1N水酸化ナトリウム−超
純水−1N塩酸−超純水での通液を上述の通り2回繰り
返したのち、再度1N水酸化ナトリウムの官能基の5倍
当量になる量をSV=5hr-1で通液し、次いで樹脂量
の5倍量の超純水で水洗し該アニオン交換樹脂を水酸型
に変換した。次に1N重炭酸アンモニウムの官能基の5
倍当量になる量をSV=5hr-1で通液し、最後に樹脂
量の10倍量の超純水を通液することにより水洗し、該
アニオン交換樹脂を重炭酸型に変換した。別のカラム
に、ジビニルベンゼンにより架橋され、その架橋度が4
で強酸性カチオン交換樹脂であるダイヤイオンSK10
4(三菱化成社商標名)を30cmの層高で充填し、官
能基の5倍当量に相当する1N塩酸−樹脂量の5倍量の
超純水−官能基の5倍当量に相当する1N水酸化ナトリ
ウム−樹脂量の5倍量の超純水による通液を3回繰り返
した後、官能基の5倍当量に相当する1N塩酸をSV=
5hr-1で通液し、最後に樹脂量の10倍量の超純水を
通液することにより水洗し、該カチオン交換樹脂を水素
型に変換した。原料として金属類が0.数〜数10pp
b、硫酸根及び塩素イオンを数10ppb含む31%粗
過酸化水素水を用い、該過酸化水素水をアニオン交換樹
脂カラム、カチオン交換樹脂カラムの順に7℃、SV=
4hr-1で通液した。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. Example-1 Diaion SA10 which is a strongly basic anion exchange resin
A (Quaternary ammonium type 1, trade name of Mitsubishi Kasei Co., Ltd.) was packed in a column with a bed height of 30 cm, and as conditioning, an amount equivalent to 5 times the functional groups of 1N sodium hydroxide was passed at SV = 5 hr −1 . The solution was drained and then washed with ultrapure water in an amount 5 times the amount of the resin. Next, an amount equivalent to 5 times the functional groups of 1N hydrochloric acid was passed through with SV = 5 hr -1 , and then washed with ultrapure water in an amount 5 times the amount of the resin. Further 1N sodium hydroxide - ultrapure water -1N hydrochloric - ultrapure water in liquid permeability of the After repeated twice as described above, the amount of SV = 5 hr become 5 equivalents again functional groups 1N sodium hydroxide - The solution was passed through 1 and then washed with 5 times the resin amount of ultrapure water to convert the anion exchange resin to the hydroxide type. Next, 5 of the functional groups of 1N ammonium bicarbonate
The anion-exchange resin was converted to a bicarbonate type by passing an amount equivalent to a double equivalent at SV = 5 hr −1 and finally washing by passing an amount of ultrapure water 10 times the amount of the resin. Another column is cross-linked with divinylbenzene and the degree of cross-linking is 4
And strong acid cation exchange resin, DIAION SK10
4 (trade name of Mitsubishi Kasei Co., Ltd.) with a bed height of 30 cm, and 1N hydrochloric acid corresponding to 5 times equivalent of the functional group-ultra pure water of 5 times the amount of resin-1N equivalent to 5 times equivalent of the functional group. Sodium hydroxide-5 times the amount of the resin passed by ultrapure water was repeated 3 times, and 1N hydrochloric acid corresponding to 5 times the equivalent of the functional group was added to SV =
The solution was passed at 5 hr −1 and finally washed with water by passing an amount of ultrapure water 10 times the amount of the resin to convert the cation exchange resin into a hydrogen type. Metals as raw materials are 0. Number to 10 pp
b, 31% crude hydrogen peroxide water containing several 10 ppb of sulfate radicals and chloride ions is used, and the hydrogen peroxide water is anion exchange resin column and cation exchange resin column in that order at 7 ° C., SV =
The solution was passed for 4 hr -1 .

【0025】カラムから流出する過酸化水素水をを捕集
し、この中に含まれる金属類及び塩素イオン、硫酸根を
分析した。金属類はNa,Ca,Al,Feなど何れも
0.1ppb以下であり、塩素イオン、硫酸根は10p
pb以下であり、非常に高純度であった。
The hydrogen peroxide solution flowing out from the column was collected, and the metals, chloride ions and sulfates contained in this solution were analyzed. Metals such as Na, Ca, Al, and Fe are all 0.1 ppb or less, and chloride ion and sulfate group are 10 p
It was not more than pb and was very high in purity.

【0026】なお、金属類の分析はICP−MS法なら
びにフレームレス原子吸光法、塩素イオン、硫酸根の分
析はイオンクロマトグラフィー法で行った。
The metals were analyzed by the ICP-MS method and the flameless atomic absorption method, and the chloride ion and the sulfate group were analyzed by the ion chromatography method.

【0027】実施例−2 アニオン交換樹脂として強塩基性アニオン交換樹脂であ
るダイヤイオンSA20A(4級アンモニウム2型、三
菱化成社商標名)を用い、実施例−1と同様にしてコン
ディショニングを行った。カチオン交換樹脂は実施例−
1と同様にしてコンディショニングを行ったSK104
を用いた。なお各樹脂のカラムは2本ずつ用意し、アニ
オン−カチオン−アニオン−カチオンの順に連結した。
このカラムに工業グレードの過酸化水素水を6℃、SV
=5hr-1で通液した。なおこの粗過酸化水素水中には
Naが数1000ppb、Al、Ca、Feが数10〜
数100ppb含まれており、塩素イオン及び硫酸根も
数100ppb含まれていた。4本のカラムを通って流
出した過酸化水素水中の金属イオンはNa、Al、F
e、Ca等全て0.1ppb以下であり、塩素イオン及
び硫酸根も10ppb以下であった。
Example-2 Conditioning was carried out in the same manner as in Example-1 using Diaion SA20A (Quaternary ammonium type 2, trade name of Mitsubishi Kasei Co., Ltd.) which is a strongly basic anion exchange resin as the anion exchange resin. . Example of cation exchange resin-
Conditioned SK104 as in 1.
Was used. Two columns of each resin were prepared and connected in the order of anion-cation-anion-cation.
Industrial grade hydrogen peroxide solution was added to this column at 6 ℃ and SV
= 5 hr −1. In this crude hydrogen peroxide solution, several thousand ppb of Na and several tens of Al, Ca and Fe are contained.
Several hundred ppb was contained, and chlorine ion and sulfate were also contained in several hundred ppb. Metal ions in hydrogen peroxide water flowing out through the four columns are Na, Al, F
e, Ca, etc. were all 0.1 ppb or less, and chloride ion and sulfate group were also 10 ppb or less.

【0028】比較例−1 カチオン交換樹脂として、ジビニルベンゼンにより架橋
され、その架橋度8の強酸性カチオン交換樹脂であるダ
イヤイオンSK1B(三菱化成社商標名)を用いた他
は、実施例−1と同様にして実施例−1で用いたのと同
じ粗過酸化水素水の通液を行った。流出液中の金属類は
何れも0.1ppb以下であり、塩素イオンも10pp
b以下であったが、硫酸根は45ppbと高かった。
Comparative Example-1 Example 1 was repeated except that DIAION SK1B (trade name of Mitsubishi Kasei Co., Ltd.), which is a strongly acidic cation exchange resin having a degree of crosslinking of 8 and crosslinked with divinylbenzene, was used as the cation exchange resin. The same crude hydrogen peroxide solution as that used in Example-1 was passed in the same manner as in. The metals in the effluent are all 0.1 ppb or less, and the chlorine ions are 10 pp
Although it was less than b, the sulfate group was as high as 45 ppb.

【0029】[0029]

【発明の効果】以上説明したとおり、本発明により、金
属類、塩素イオン及び硫酸根の低減された高純度過酸化
水素水であって、よって半導体製造プロセスに最適に用
いられる高純度過酸化水素水を製造する方法を提供する
ことができた。
Industrial Applicability As described above, according to the present invention, a high-purity hydrogen peroxide solution with reduced metals, chloride ions, and sulfate radicals, which is optimally used in a semiconductor manufacturing process, can be obtained. A method for producing water could be provided.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粗過酸化水素水を精製して高純度過酸化
水素水を製造するにあたり、粗過酸化水素水を、架橋度
が5以下である強酸性カチオン交換樹脂と接触させるこ
とを特徴とする高純度過酸化水素水の製造方法。
1. A method of purifying crude hydrogen peroxide solution to produce high-purity hydrogen peroxide solution, which comprises contacting the crude hydrogen peroxide solution with a strongly acidic cation exchange resin having a degree of crosslinking of 5 or less. And a method for producing high-purity hydrogen peroxide water.
JP5326642A 1993-12-24 1993-12-24 Production of hydrogen peroxide solution of high purity Pending JPH07187616A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5326642A JPH07187616A (en) 1993-12-24 1993-12-24 Production of hydrogen peroxide solution of high purity
KR1019940024816A KR950017730A (en) 1993-12-24 1994-09-29 Process for producing high purity hydrogen peroxide water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5326642A JPH07187616A (en) 1993-12-24 1993-12-24 Production of hydrogen peroxide solution of high purity

Publications (1)

Publication Number Publication Date
JPH07187616A true JPH07187616A (en) 1995-07-25

Family

ID=18190070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5326642A Pending JPH07187616A (en) 1993-12-24 1993-12-24 Production of hydrogen peroxide solution of high purity

Country Status (2)

Country Link
JP (1) JPH07187616A (en)
KR (1) KR950017730A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896867B2 (en) 2000-06-21 2005-05-24 Santoku Chemical Industries Co., Ltd. Process for producing a purified aqueous hydrogen peroxide solution
JP2007185581A (en) * 2006-01-12 2007-07-26 Nomura Micro Sci Co Ltd Purification method and purification apparatus for oxidizing agent
CN110451460A (en) * 2018-05-07 2019-11-15 中国石油化工股份有限公司 The recovery method of hydrogen peroxide oxidation raffinate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896867B2 (en) 2000-06-21 2005-05-24 Santoku Chemical Industries Co., Ltd. Process for producing a purified aqueous hydrogen peroxide solution
SG115371A1 (en) * 2000-06-21 2005-10-28 Santoku Chemical Ind Co Ltd Process for producing a purified aqueous hydrogen peroxide solution
JP2007185581A (en) * 2006-01-12 2007-07-26 Nomura Micro Sci Co Ltd Purification method and purification apparatus for oxidizing agent
CN110451460A (en) * 2018-05-07 2019-11-15 中国石油化工股份有限公司 The recovery method of hydrogen peroxide oxidation raffinate

Also Published As

Publication number Publication date
KR950017730A (en) 1995-07-20

Similar Documents

Publication Publication Date Title
US4999179A (en) Method for purifying impure aqueous hydrogen peroxide solution
US2677598A (en) Oxidation of ferrous halides to form ferric halides
JP4056695B2 (en) Method for producing purified hydrogen peroxide water
EP0774442B1 (en) Process for producing a purified aqueous hydrogen peroxide solution
US2470500A (en) Demineralizing
EP1167289B1 (en) Process for producing a purified aqueous hydrogen peroxide solution
JP3171058B2 (en) Hydrogen peroxide water purification method
JPH07187616A (en) Production of hydrogen peroxide solution of high purity
KR20190080193A (en) Method for purifying hydrogen peroxide solution using anion exchange resin and cation exchange resin
JP3608211B2 (en) Manufacturing method of high purity hydrogen peroxide solution
EP1166872B1 (en) Method of regenerating ion exchange resin
JP3724247B2 (en) Method for purifying hydrogen peroxide water
JP3531403B2 (en) Hydrogen peroxide water purification method
JP2000153166A (en) Regeneration of mixed bed type ion exchange apparatus
JPH0920505A (en) Purification of hydrogen peroxide aqueous solution
JP3900211B2 (en) Manufacturing method of high purity hydrogen peroxide solution
JP2534861B2 (en) Method for producing high-purity hydrazine hydrate
KR102346921B1 (en) Mixed bed ion exchange resin comprising anion exchange resin and cation exchange resin, method for preparing the same and method for purifying hydrogen peroxide solution using the same
JPH07206804A (en) Purification of taurine
JP2800043B2 (en) Purification of impure aqueous hydrogen peroxide solution
CN113200519B (en) Method for removing fluorine in high-concentration fluorine-containing hydrochloric acid and application
JPH0615266A (en) Concentration of fluorine-containing waste water
EP0966421A2 (en) A method for purification of acids for use in semiconductor processing
JP3818323B2 (en) Method for producing purified hydrogen peroxide
JP3364308B2 (en) Wastewater treatment method and apparatus