JP3680867B2 - Method for purifying hydrogen peroxide water - Google Patents

Method for purifying hydrogen peroxide water Download PDF

Info

Publication number
JP3680867B2
JP3680867B2 JP15030795A JP15030795A JP3680867B2 JP 3680867 B2 JP3680867 B2 JP 3680867B2 JP 15030795 A JP15030795 A JP 15030795A JP 15030795 A JP15030795 A JP 15030795A JP 3680867 B2 JP3680867 B2 JP 3680867B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
exchange resin
peroxide solution
acid
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15030795A
Other languages
Japanese (ja)
Other versions
JPH0873205A (en
Inventor
庄一郎 梶原
裕一 芹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP15030795A priority Critical patent/JP3680867B2/en
Publication of JPH0873205A publication Critical patent/JPH0873205A/en
Application granted granted Critical
Publication of JP3680867B2 publication Critical patent/JP3680867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は不純物、特に無機不純物を含有する過酸化水素水を安全に精製し、極めて高純度な過酸化水素水を製造する方法である。本発明により精製された過酸化水素水は特に半導体製造分野で使用するのに好適である。
【0002】
【従来の技術】
現在、過酸化水素は主に自動酸化法により製造されているが、この方法によって製造された過酸化水素水中には装置材質等に起因するAlをはじめとして各種無機不純物が混入しており、実用的な使用濃度の10〜70重量%の過酸化水素水中には数百μg/リットルの無機不純物が含まれているのが普通である。しかしながら、半導体製造分野で使用される高純度過酸化水素水に要求される無機不純物の標準的な基準は数μg/リットルまたはそれ以下であり、より高純度に精製する必要がある。
【0003】
従来、過酸化水素水に含まれるこれらの無機不純物を除去、精製する方法として、強酸性カチオン交換樹脂に過酸化水素水を接触させることでカチオン性の金属系不純物を除去することが提案されているが、単に強酸性カチオン交換樹脂に過酸化水素水を接触させるだけではNaなどの易溶な強カチオン性金属系不純物は除去されるものの、完全には溶解しなかったり、あるいは弱カチオン形態、弱アニオン形態、強アニオン形態を一部形成する金属に由来する金属系不純物は除去されない。これらの例としてAl,Fe,Cr等が挙げられる。 さらに、カチオン交換樹脂の過酸化水素水との接触による劣化のため多量の硫酸根が生じてしまう問題点がある。
【0004】
一方、カチオン交換樹脂に続き、4級アンモニウム基およびその対イオンとして水酸化物イオンを構造内に持つ水酸化物(OH)型強塩基性アニオン交換樹脂に過酸化水素水を接触させることで強酸性カチオン交換樹脂では除去できない無機不純物を除去する方法も知られている。
【0005】
しかしながら、水酸化物型強塩基性アニオン交換樹脂を用いる場合には次のような問題点がある。その一つとして、過酸化水素水が水酸化物型強塩基性アニオン交換樹脂と接触すると樹脂の塩基性のため過酸化水素水の分解が促進されることが挙げられる。この分解は過酸化水素水中にFe、Crなどの金属系不純物が存在しているとこれらの相乗作用によって更に促進されてしまう。
【0006】
また、水酸化物型強塩基性アニオン交換樹脂との接触でも、溶解していない金属系不純物、弱カチオン性金属系不純物、弱アニオン性金属系不純物は殆ど除去されず、その結果最近の半導体製造分野で要求される高純度の過酸化水素水を得ることが困難である。
【0007】
ところで、過酸化水素水の分解を抑制する方法として、たとえば、特公昭35−16677号公報ではアニオン交換樹脂中の塩の形を水酸化物型から重炭酸塩型、あるいは炭酸塩型に変え、塩基度を低下させることによりアニオン交換樹脂の使用を可能にすることが示されており、また特開平5−17105号公報では過酸化水素水をアニオン交換樹脂に接触させる際に酸を添加することで過酸化水素水の分解を防止する方法が開示されている。
【0008】
しかしながらこれらの場合でも溶解していない金属系不純物、弱カチオン性金属系不純物、弱アニオン性金属系不純物は除去されずに残存し、高純度の過酸化水素水を得ることはできない。更にこれら残存している金属系不純物の影響のため、完全に過酸化水素の分解を抑えることが難しく、その結果安全に過酸化水素水を精製することは困難である。
【0009】
【発明が解決しようとする課題】
本発明の目的は、金属系不純物、特にAl、Fe、Crが2ppb以下、更には1ppb以下の低濃度にまで除去された高純度の過酸化水素水を、過酸化水素の分解を充分に抑制し、安全に、効率よく製造する方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、前記の課題を解決するべく鋭意検討したところ、予め酸を添加した過酸化水素水を強酸性カチオン交換樹脂単独もしくは強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂の樹脂混合床に接触させると、通常完全には除去が困難なAl,Fe,Crが極めて低い濃度にまで除去されることを見いだし、本発明を完成した。
【0011】
すなわち、本発明は、過酸化水素水を精製するに際し、過酸化水素水に水中25℃での酸解離指数pKaが5以下の酸を過酸化水素水1リットルに対し0.005〜5ミリ当量添加した後、イオン交換樹脂としてスルホン酸基を有するH型の強酸性カチオン交換樹脂、またはイオン交換樹脂がスルホン酸基を有するH型の強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂の混合床に接触させることを特徴とする過酸化水素水の精製方法に係る。
【0012】
本発明によると、酸を添加することなく単に過酸化水素水と強酸性カチオン交換樹脂単独、もしくは強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂との混合床に接触させる従来の精製方法では充分に除去できないところの過酸化水素水に溶解していない金属系不純物、弱カチオン性金属系不純物、弱アニオン性金属系不純物を除去することができる。
【0013】
過酸化水素水に添加する酸は、水中25℃における酸解離指数pKaが5以下の無機または有機の酸であり、過酸化水素と反応する酸は好ましくない。
【0014】
本発明で使用される酸の例としては硫酸、硝酸、塩酸、亜塩素酸、ふっ酸、ホスフィン酸、ホスホン酸、リン酸、二リン酸、トリポリリン酸等の無機酸、さらに蟻酸、酢酸、クロロ酢酸、フルオロ酢酸、酒石酸、安息香酸等のカルボン酸類、ホスホン酸類、スルホン酸類等の有機酸が挙げられる。この中で好ましいものは無機酸であり、特に硫酸、硝酸、塩酸およびリン酸である。最も好ましいものは硫酸または硝酸である。
【0015】
過酸化水素水に添加される酸の量は0.005〜5ミリ当量/リットル−H2 2 が適当であるが、0.005〜1ミリ当量/リットル−H2 2 、特に0.01〜0.5ミリ当量/リットル−H2 2 が好ましい。ここでミリ当量/リットル−H2 2 とは過酸化水素水1リットル中に添加される酸のミリ当量数を表す。
【0016】
精製される過酸化水素水への酸の添加は、強酸性カチオン交換樹脂単独あるいは強酸性カチオン交換樹脂および強塩基性アニオン交換樹脂からなる樹脂混合床に、被精製過酸化水素水が接触する時点で酸が添加されていればよい。すなわち、接触前の過酸化水素水の貯槽に予め酸を添加し混合しても良いし、あるいは強酸性カチオン交換樹脂単独もしくは樹脂混合床への送液ラインに連続的に添加しても良い。
【0017】
接触時の過酸化水素水の温度に特に制限はないが、余りに高い温度では過酸化水素の分解が起こり好ましくなく、また余りにも低い温度も好ましくない。一般的には過酸化水素水の凝固点〜50℃、より好ましくは過酸化水素水の凝固点〜30℃である。
【0018】
本発明の方法に用いられる過酸化水素水の濃度は特には制限されないが、通常5〜60重量%のものが使用される。また用いられる過酸化水素水のpHは、不純物の含有量にもよるが概ね2.0〜5.0(25℃)である。
【0019】
本発明の方法においては、過酸化水素水に酸を添加した後、均一混合状態にて放置し熟成させることが好ましい。酸を添加した過酸化水素水を放置し熟成させることにより、強酸性カチオン交換樹脂単独もしくは強酸性カチオン交換樹脂および強塩基性アニオン交換樹脂の樹脂混合床と接触させた場合、不純物の除去効果が高められる利点がある。熟成時間は好ましくは6時間以上、更に好ましくは12時間以上、最も好ましくは24時間以上である。熟成温度には格別制限はないが、好ましくは−10〜50℃、より好ましくは0〜30℃である。
【0020】
本発明に使用される強酸性カチオン交換樹脂はH型の強酸性カチオン交換樹脂として使用される。強酸性カチオン交換樹脂の種類としては、スルホン酸基を有し、網目状分子構造からなる強酸性カチオン交換樹脂が好ましい。 また、本発明に使用される強塩基性アニオン交換樹脂とは、水酸化物イオン、炭酸イオンおよび重炭酸イオンからなる群から選ばれた少なくとも1種のイオンを構造内に有し、網目状分子構造からなる強塩基性アニオン交換樹脂である。
【0021】
本発明においては、これらのイオンを1種のみ有する強塩基性アニオン交換樹脂を、それぞれ水酸化物(OH)型、炭酸塩型、重炭酸塩型強塩基性アニオン交換樹脂という。
強塩基性アニオン交換樹脂の例として4級アンモニウム基を有するアニオン交換樹脂が挙げられる。
【0022】
本発明の方法において、強酸性カチオン交換樹脂および強塩基性アニオン交換樹脂の樹脂混合床を用いる場合、樹脂混合床における強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂との混合比率は、純水中での体積比で強酸性カチオン交換樹脂の割合が少なくとも10%以上、好ましくは20%以上である。
【0023】
さらに、本発明の方法は連続方式の他、バッチ方式でも実施できる。連続方法の一例としては、強酸性カチオン交換樹脂単独もしくは強酸性カチオン交換樹脂および強塩基性アニオン交換樹脂の樹脂混合床を充填した塔に連続的に過酸化水素水を送液し接触させる方法が挙げられる。この場合、空間速度(hr-1)に格別制限はないが、好ましくは強酸性カチオン交換樹脂もしくは樹脂混合床中の強酸性カチオン交換樹脂に対し、1〜1000、より好ましくは10〜600とすることがよい。
【0024】
本発明の方法によると、Al、Fe、CrがH型強酸性カチオン交換樹脂もしくは強酸性カチオン交換樹脂および強塩基性アニオン交換樹脂の樹脂混合床に、酸が添加された過酸化水素水を接触処理することにより容易にかつ極めて低い濃度にまで除去される。すなわち、酸を添加しない従来の方法では、充分に除去できない一部弱カチオン形態、弱アニオン形態を形成したり、完全には溶解していないAl、Fe、Crなどの金属分をほぼ完全に近い状態にまで徹底的に除去することができる。
【0025】
これは強酸性カチオン交換樹脂単独との接触により精製された過酸化水素中には、極く微量の強アニオン性金属系不純物を除き金属系不純物はほとんど存在しなく、また強酸性カチオン交換樹脂および強塩基性アニオン交換樹脂の樹脂混合床に接触させた場合は強アニオン性金属系不純物さえもほとんど存在しないことを意味する。
【0026】
本発明における過酸化水素水の強酸性カチオン交換樹脂単独への接触の後、引き続き強塩基性アニオン交換樹脂単独または強塩基性アニオン交換樹脂と強酸性カチオン交換樹脂との混合床に接触せしめることにより、添加した酸に由来するアニオンおよびその他アニオン性不純物を除去することができる。
【0027】
さらに本発明の方法は次に示すような利点もある。
従来の精製方法、すなわち酸を添加せず強酸性カチオン交換樹脂と接触させて精製する方法によって得られた過酸化水素水に比べ、酸を添加し強酸性カチオン交換樹脂と接触させて得られた過酸化水素水中には過酸化水素水の分解を促進させる金属系不純物はより少ないため、引き続きアニオン交換樹脂単独またはアニオン交換樹脂とカチオン交換樹脂との混合床に接触せしめる場合でも過酸化水素の分解は充分に抑制される。その結果、アニオン交換樹脂単独もしくはカチオン交換樹脂とアニオン交換樹脂との混合床による精製を安全に実施することができる。
【0028】
同様に本発明における強酸性カチオン交換樹脂および強塩基性アニオン交換樹脂との混合床へ過酸化水素水を接触させた後、必要に応じて強酸性カチオン交換樹脂単独、あるいは強塩基性アニオン交換樹脂単独に接触させても良い。
以上の一連の操作により従来の精製方法に比べ、金属系不純物を徹底的にかつ安全に除去することができる。
【0029】
【実施例】
以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものでない。なお、金属系不純物の測定は、ICP−MS(Inductive coupling - Mass spectrometry)法により、アニオン性不純物の測定はイオンクロマト法によった。
【0030】
実施例1
オルガノ社製強酸性カチオン交換樹脂(アンバーライト201B H型)を直径2.6cmの弗化樹脂製カラムに100ml充填した。硫酸を0.4ミリ当量/リットル−H2 2 添加し、15〜20℃で24時間放置した31%過酸化水素水を空間速度 (hr-1) 500で強酸性カチオン交換樹脂カラムに通液し、精製過酸化水素水を得た。なお精製前の金属不純物含有量は、Al:150ppb、Fe: 5ppb、Cr:10ppbであった。精製後の金属不純物含有量を表1に示す。
【0031】
実施例2
硝酸を0.4ミリ当量/リットル−H2 2 添加し、30時間放置した31%過酸化水素水を使用した他は実施例1と同様に精製し、精製過酸化水素水を得た。精製後の金属不純物含有量を表1に示す。
【0032】
実施例3
硝酸を0.4ミリ当量/リットル−H2 2 添加し、24時間放置した31%過酸化水素水を使用した他は実施例1と同様に精製し、精製過酸化水素水を得た。精製後の金属不純物含有量を表1に示す。
【0033】
実施例4
硝酸を0.4ミリ当量/リットル−H2 2 添加し、36時間放置した31%過酸化水素水を使用し、空間速度 (hr-1) 600で通液した他は実施例1と同様に精製し、精製過酸化水素水を得た。精製後の金属不純物含有量を表1に示す。
【0034】
実施例5
硫酸を添加した31%過酸化水素水を1時間以内に使用した他は実施例1と同様に精製し精製過酸化水素水を得た。精製後の金属不純物含有量を表1に示す。
【0035】
実施例6
硝酸を0.4ミリ当量/リットル−H2 2 添加し、6時間放置した31%過酸化水素水を使用した他は実施例1と同様に精製し、精製過酸化水素水を得た。精製後の金属不純物含有量を表1に示す。
【0036】
【表1】

Figure 0003680867
【0037】
実施例7
オルガノ社製強酸性カチオン交換樹脂(アンバーライト201B H型)、同社製強塩基性アニオン交換樹脂(アンバーライトIRA−900 重炭酸塩型)を体積比1:1で充分混合した樹脂混合床を直径2.6cmの弗化樹脂製カラムに100ml充填した。
これに硫酸を0.4ミリ当量/リットル−H2 2 添加し、15〜20℃で24時間放置した31%過酸化水素水をカラムに対して空間速度 (hr-1) 250で樹脂混合床に通液し、精製過酸化水素水を得た。精製前の不純物量はAl:150ppb,Fe:5ppb、Cr:10ppb、SO4 :20,000ppb、PO4 :200ppbであった。精製後の不純物含有量を表2に示す。
【0038】
実施例8
硝酸を0.4ミリ当量/リットル−H2 2 添加し、24時間放置した31%過酸化水素水を使用した他は実施例7と同様に精製し、精製過酸化水素水を得た。精製前の不純物量はAl:150ppb,Fe:5ppb、Cr:10ppb、NO3 :25,000ppb、PO4 :200ppbであった。精製後の不純物含有量を表2に示す。
【0039】
実施例9
樹脂混合床における強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂の混合割合を1:9にし、空間速度(hr-1)を50にした他は実施例8と同様に精製し、精製過酸化水素水を得た。精製後の不純物含有量を表2に示す。
【0040】
実施例10
強塩基性アニオン交換樹脂としてオルガノ社製強塩基性アニオン交換樹脂(アンバーライトIRA−900 水酸化物型)を使用した他は実施例8と同様に精製し、精製過酸化水素水を得た。精製後の不純物含有量を表2に示す。
【0041】
(以下余白)
【表2】
Figure 0003680867
【0042】
実施例11
オルガノ社製強塩基性アニオン交換樹脂(IRA−900 重炭酸塩型)を直径2.6cmの弗化樹脂製カラムに100ml充填した。カラムの流出側にはそのカラム内で発生したガス量を定量できるように発生ガス定量器をとりつけた。実施例1で得られた精製過酸化水素水を空間速度 (hr-1) 500で強塩基性アニオン交換樹脂カラムに通液し、精製過酸化水素水を得た。
実施例1で得られた精製過酸化水素水のアニオン不純物含有量は、SO4 :20,000ppb、PO4 :200ppbであった。精製後の不純物含有量および精製時のアニオン交換樹脂と過酸化水素水の接触による分解ガス発生量(通液開始1時間後からの1時間に発生したガスのアニオン交換樹脂1ml当たりの容量)を表3に示す。
【0043】
実施例12
実施例2で得られた精製過酸化水素水を使用して、実施例11と同様に精製し、精製過酸化水素を得た。
実施例2で得られた精製過酸化水素水のアニオン不純物含有量は、NO3 :25,000ppb、SO4 :50ppb、PO4 :200ppbであった。精製後の不純物含有量および精製時の強塩基性アニオン交換樹脂と過酸化水素水の接触による分解ガス発生量を表3に示す。
【0044】
実施例13
オルガノ社製強酸性カチオン交換樹脂(201B H型)と同社製強塩基性アニオン交換樹脂(IRA−900 重炭酸塩型)を体積比1:1で混合した混合床を直径2.6cmの弗化樹脂製カラムに100ml充填した。混合床カラムの流出側には実施例11と同様にそのカラム内で発生したガス量を測定できるようにガス発生定量器を取り付けた。実施例3で得られた精製過酸化水素水を空間速度 (hr-1) 250で混合床カラムに通液し、精製過酸化水素水を得た。
実施例3で得られた精製過酸化水素水のアニオン不純物含有量は、NO3 :25,000ppb、SO4 :10ppb、PO4 :200ppbであった。精製後の不純物含有量および精製時の樹脂混合床中のアニオン交換樹脂と過酸化水素水の接触による分解ガス発生量を表3に示す。
【0045】
実施例14
アニオン交換樹脂として、オルガノ製強塩基性アニオン交換樹脂(アンバーライトIRA−900 水酸化物型)を使用し、実施例4で得られた精製過酸化水素水を通液した他は実施例11と同様に精製し、精製過酸化水素水を得た。
実施例4で得られた精製過酸化水素水のアニオン不純物含有量は、NO3 :25,000ppb、SO4 :10ppb、PO4 :200ppbであった。精製後の不純物含有量および精製時のアニオン交換樹脂と過酸化水素水の接触による分解ガス発生量を表3に示す。
【0046】
実施例15
実施例5で得られた精製過酸化水素水を使用した他は実施例11と同様に強塩基性アニオン交換樹脂カラムに通液し、精製過酸化水素水を得た。 実施例5で得られた精製過酸化水素水のアニオン不純物含有量は、SO4 :20,000ppb、PO4 :200ppbであった。精製後の不純物含有量および精製時のアニオン交換樹脂と過酸化水素水の接触による分解ガス発生量を表3に示す。
【0047】
【表3】
Figure 0003680867
【0048】
実施例16
オルガノ社製強酸性カチオン交換樹脂(アンバーライト201B H型)、同社製強塩基性アニオン交換樹脂(アンバーライトIRA−900 重炭酸塩型)を体積比1:1で充分混合した樹脂混合床、及び強塩基性アニオン交換樹脂(同重炭酸塩型)を直径 2.6cmの弗化樹脂製カラムにそれぞれ100ml充填した。 これに硝酸を0.4ミリ当量/リットル−H2 2 添加し、36時間放置した31%過酸化水素水を樹脂混合床、強塩基性アニオン交換樹脂の順に各カラムに対してそれぞれ空間速度 (hr-1) 250、500で通液し、精製過酸化水素水を得た。 精製前の不純物量はAl:150ppb,Fe:5ppb、Cr:10ppb、NO3 :25,000ppb、PO4 :200ppbであった。精製後の不純物含有量を表4に示す。
【0049】
実施例17
オルガノ社製強酸性カチオン交換樹脂(アンバーライト201B H型)、同社製強塩基性アニオン交換樹脂(アンバーライトIRA−900 重炭酸塩型)を体積比1:1で充分混合した樹脂混合床、及び同強酸性カチオン交換樹脂を直径2.6cmの弗化樹脂製カラムにそれぞれ100ml充填した。 これに硝酸を0.4ミリ当量/リットル−H2 2 添加し、24時間放置した31%過酸化水素水を樹脂混合床、強酸性カチオン交換樹脂の順に各カラムに対してそれぞれ空間速度 (hr-1) 250、500で通液し、精製過酸化水素水を得た。
精製前の不純物量はAl:150ppb,Fe:5ppb、Cr:10ppb、NO3 :25,000ppb、PO4 :200ppbであった。精製後の不純物含有量を表4に示す。
【0050】
比較例1
酸を添加しない過酸化水素水を使用した他は実施例1と同様に精製し、精製過酸化水素水を得た。精製後の金属不純物含有量を表5に示す。
【0051】
比較例2
酸を添加しない過酸化水素水を使用した他は実施例4と同様に精製し、精製過酸化水素水を得た。精製後の金属不純物含有量を表5に示す。
【0052】
(以下余白)
【表4】
Figure 0003680867
【0053】
【表5】
Figure 0003680867
【0054】
比較例3
酸を添加しない過酸化水素水を使用した他は実施例7と同様に精製し、精製過酸化水素水を得た。精製前の不純物量はAl:150ppb、Fe:5ppb、Cr:10ppb、PO4 :200ppbであった。精製後の不純物含有量を表6に示す。
【0055】
比較例4
樹脂混合床における強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂の混合割合を1:19にし、空間速度(hr-1)を25にした他は実施例9と同様に精製し、精製過酸化水素水を得た。精製後の不純物含有量を表6に示す。
【0056】
比較例5
カチオン交換樹脂として、オルガノ社製弱酸性カチオン交換樹脂(アンバーライトIRC−50 H型)を使用した他は実施例1と同様に精製し、精製過酸化水素水を得た。精製後の金属不純物含有量を表6に示す。
【0057】
比較例6
強酸性カチオン交換樹脂の代わりに、オルガノ社製強塩基性アニオン交換樹脂(IRA−900 水酸化物型)を使用した他は実施例1と同様に精製し、精製過酸化水素水を得た。精製後の金属不純物含有量を表6に示す。
【0058】
比較例7
強塩基性アニオン交換樹脂(重炭酸塩型)のみからなるカラムを使用し、空間速度(hr-1)を500とした他は実施例7と同様に精製し、精製過酸化水素水を得た。精製後の無機不純物含有量を表6に示す。
【0059】
【表6】
Figure 0003680867
【0060】
比較例8
比較例1で得られた精製過酸化水素水を使用した他は実施例11と同様に精製し、精製過酸化水素水を得た。
比較例1で得られた精製過酸化水素水のアニオン不純物含有量は、SO4 :10ppb、PO4 :200ppbであった。精製後の不純物含有量および精製時のアニオン交換樹脂と過酸化水素水の接触による分解ガス発生量を表7に示す。
【0061】
比較例9
比較例1で得られた精製過酸化水素水を使用した他は実施例13と同様に精製し、精製過酸化水素水を得た。
精製後の不純物含有量および精製時の樹脂混合床中のアニオン交換樹脂と過酸化水素水の接触による分解ガス発生量を表7に示す。
【0062】
比較例10
比較例1で得られた精製過酸化水素水に硫酸を0.4ミリ当量/リットル−H2 2 添加して強塩基性アニオン交換樹脂カラムに通液した他は実施例11と同様に精製し、精製過酸化水素水を得た。
比較例1で得られた精製過酸化水素水に硫酸を添加した後のアニオン不純物含有量は、SO4 :20,000ppb、PO4 :200ppbであった。精製後の不純物含有量および精製時のアニオン交換樹脂と過酸化水素水の接触による分解ガス発生量を表7に示す。
【0063】
比較例11
比較例2で得られた精製過酸化水素水を使用した他は実施例14と同様に精製し、精製過酸化水素水を得た。
比較例2で得られた精製過酸化水素水のアニオン不純物含有量は、SO4 :10ppb、PO4 :200ppbであった。精製後の不純物含有量および精製時のアニオン交換樹脂と過酸化水素水の接触による分解ガス発生量を表7に示す。
【0064】
比較例12
比較例5で得られた精製過酸化水素水を使用した他は実施例11と同様に精製し、精製過酸化水素水を得た。
比較例5で得られた精製過酸化水素水のアニオン不純物含有量は、SO4 :20,000ppb、PO4 :200ppbであった。精製後の不純物含有量および精製時のアニオン交換樹脂と過酸化水素水の接触による分解ガス発生量を表7に示す。
【0065】
【表7】
Figure 0003680867
【0066】
比較例13
酸を添加しない過酸化水素水を使用した他は実施例16と同様に精製し、精製過酸化水素水を得た。精製後の不純物含有量を表8に示す。
【0067】
比較例14
酸を添加しない過酸化水素水を使用した他は実施例17と同様に精製し、精製過酸化水素水を得た。精製後の不純物含有量を表8に示す。
【0068】
【表8】
Figure 0003680867
【0069】
【発明の効果】
本発明によれば、従来の方法では除去の困難な過酸化水素中のAl、Fe、Crなどの金属系不純物を2ppb以下さらには1ppb以下の低濃度にまで除去された高純度の過酸化水素水を、過酸化水素の分解を充分に抑制し、安全に、効率よく製造することができる。[0001]
[Industrial application fields]
The present invention is a method for producing a very high purity hydrogen peroxide solution by safely purifying hydrogen peroxide solution containing impurities, particularly inorganic impurities. The hydrogen peroxide solution purified by the present invention is particularly suitable for use in the semiconductor manufacturing field.
[0002]
[Prior art]
At present, hydrogen peroxide is mainly produced by the auto-oxidation method, but the hydrogen peroxide water produced by this method contains various inorganic impurities such as Al due to the material of the equipment. Usually, several hundred μg / liter of inorganic impurities are contained in 10 to 70% by weight of hydrogen peroxide water at a typical use concentration. However, the standard standard of inorganic impurities required for high-purity hydrogen peroxide used in the semiconductor manufacturing field is several μg / liter or less, and it is necessary to purify to higher purity.
[0003]
Conventionally, as a method for removing and purifying these inorganic impurities contained in hydrogen peroxide, it has been proposed to remove cationic metal impurities by bringing hydrogen peroxide into contact with a strongly acidic cation exchange resin. However, by simply bringing hydrogen peroxide solution into contact with a strongly acidic cation exchange resin, easily soluble strong cationic metal impurities such as Na are removed, but they are not completely dissolved or weakly cation forms, Metal impurities derived from metals that partially form weak anion forms and strong anion forms are not removed. Examples of these include Al, Fe, Cr and the like. Furthermore, there is a problem that a large amount of sulfate radicals are generated due to deterioration of the cation exchange resin due to contact with hydrogen peroxide.
[0004]
On the other hand, following the cation exchange resin, hydrogen peroxide solution is brought into contact with a hydroxide (OH) type strongly basic anion exchange resin having a quaternary ammonium group and a hydroxide ion as its counter ion in the structure. A method for removing inorganic impurities that cannot be removed by a cationic cation exchange resin is also known.
[0005]
However, when a hydroxide type strongly basic anion exchange resin is used, there are the following problems. For example, when the hydrogen peroxide solution comes into contact with a hydroxide type strongly basic anion exchange resin, decomposition of the hydrogen peroxide solution is promoted due to the basicity of the resin. This decomposition is further promoted by the synergistic action of metal impurities such as Fe and Cr in the hydrogen peroxide solution.
[0006]
Also, contact with hydroxide type strongly basic anion exchange resin hardly removes undissolved metal-based impurities, weak cationic metal-based impurities, and weak anionic metal-based impurities. It is difficult to obtain a high purity hydrogen peroxide solution required in the field.
[0007]
By the way, as a method for suppressing the decomposition of hydrogen peroxide solution, for example, in Japanese Patent Publication No. 35-16777, the salt form in the anion exchange resin is changed from a hydroxide type to a bicarbonate type, or a carbonate type. It has been shown that it is possible to use an anion exchange resin by reducing the basicity, and JP-A-5-17105 discloses that an acid is added when hydrogen peroxide is brought into contact with the anion exchange resin. Discloses a method for preventing the decomposition of hydrogen peroxide solution.
[0008]
However, even in these cases, undissolved metal impurities, weak cationic metal impurities, and weak anionic metal impurities remain without being removed, and a high-purity hydrogen peroxide solution cannot be obtained. Furthermore, due to the influence of these remaining metal impurities, it is difficult to completely suppress the decomposition of hydrogen peroxide, and as a result, it is difficult to purify the hydrogen peroxide solution safely.
[0009]
[Problems to be solved by the invention]
The object of the present invention is to sufficiently suppress the decomposition of hydrogen peroxide with high-purity hydrogen peroxide water from which metal impurities, particularly Al, Fe, and Cr, have been removed to a low concentration of 2 ppb or less, and even 1 ppb or less. The object is to provide a safe and efficient manufacturing method.
[0010]
[Means for Solving the Problems]
The present inventors diligently studied to solve the above-mentioned problems. As a result, a hydrogen peroxide solution to which an acid was added in advance was used as a strongly acidic cation exchange resin alone or as a resin mixture of a strongly acidic cation exchange resin and a strongly basic anion exchange resin. It has been found that Al, Fe and Cr, which are usually difficult to remove completely when contacted with the floor, are removed to a very low concentration, and the present invention has been completed.
[0011]
That is, in the present invention, when purifying hydrogen peroxide solution, an acid having an acid dissociation index pKa of 5 or less at 25 ° C. in water is 0.005 to 5 milliequivalents per liter of hydrogen peroxide solution. After addition, an H-type strongly acidic cation exchange resin having a sulfonic acid group as an ion exchange resin, or a mixed bed of an H-type strongly acidic cation exchange resin having a sulfonic acid group and an strongly basic anion exchange resin The present invention relates to a method for purifying hydrogen peroxide water, which is characterized by contacting with water.
[0012]
According to the present invention, a conventional purification method in which a hydrogen peroxide solution and a strong acid cation exchange resin alone or a mixed bed of a strong acid cation exchange resin and a strongly basic anion exchange resin is contacted without adding an acid is sufficient. It is possible to remove metal impurities, weak cationic metal impurities, and weak anionic metal impurities not dissolved in the hydrogen peroxide solution, which cannot be removed.
[0013]
The acid added to the hydrogen peroxide solution is an inorganic or organic acid having an acid dissociation index pKa of 5 or less at 25 ° C. in water, and an acid that reacts with hydrogen peroxide is not preferable.
[0014]
Examples of acids used in the present invention include sulfuric acid, nitric acid, hydrochloric acid, chlorous acid, hydrofluoric acid, phosphinic acid, phosphonic acid, phosphoric acid, diphosphoric acid, tripolyphosphoric acid, and other inorganic acids, as well as formic acid, acetic acid, chloro Examples thereof include carboxylic acids such as acetic acid, fluoroacetic acid, tartaric acid and benzoic acid, and organic acids such as phosphonic acids and sulfonic acids. Among these, preferred are inorganic acids, and particularly sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid. Most preferred is sulfuric acid or nitric acid.
[0015]
The amount of the acid added to the hydrogen peroxide solution is suitably 0.005 to 5 meq / liter-H 2 O 2, but 0.005 to 1 meq / liter-H 2 O 2 , and particularly preferably about 0.005. 01 to 0.5 meq / l -H 2 O 2 is preferred. Here, milliequivalents / liter-H 2 O 2 represents the number of milliequivalents of the acid added to 1 liter of hydrogen peroxide solution.
[0016]
The acid is added to the purified hydrogen peroxide solution at the time when the purified hydrogen peroxide solution comes into contact with a strongly acidic cation exchange resin alone or a resin mixed bed composed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin. It is sufficient that an acid is added. That is, an acid may be added and mixed in advance in a hydrogen peroxide solution storage tank before contact, or may be added continuously to a strongly acidic cation exchange resin alone or a liquid feed line to a resin mixed bed.
[0017]
Although there is no restriction | limiting in particular in the temperature of the hydrogen peroxide solution at the time of contact, When too high temperature, decomposition | disassembly of hydrogen peroxide occurs unpreferably and too low temperature is also unpreferable. Generally, it is from the freezing point of hydrogen peroxide solution to 50 ° C, more preferably from the freezing point of hydrogen peroxide solution to 30 ° C.
[0018]
The concentration of the hydrogen peroxide solution used in the method of the present invention is not particularly limited, but usually 5 to 60% by weight is used. The pH of the hydrogen peroxide solution used is generally 2.0 to 5.0 (25 ° C.) depending on the content of impurities.
[0019]
In the method of the present invention, it is preferable that the acid is added to the hydrogen peroxide solution and then left to be aged in a uniform mixed state. By leaving the hydrogen peroxide solution to which the acid has been added and aging, when it is brought into contact with a strongly acidic cation exchange resin alone or a resin mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin, there is an effect of removing impurities. There are benefits that are enhanced. The aging time is preferably 6 hours or longer, more preferably 12 hours or longer, and most preferably 24 hours or longer. The aging temperature is not particularly limited, but is preferably -10 to 50 ° C, more preferably 0 to 30 ° C.
[0020]
The strong acid cation exchange resin used in the present invention is used as an H-type strong acid cation exchange resin. The strongly acidic cation exchange resin is preferably a strongly acidic cation exchange resin having a sulfonic acid group and having a network molecular structure. In addition, the strongly basic anion exchange resin used in the present invention has at least one ion selected from the group consisting of hydroxide ions, carbonate ions and bicarbonate ions in the structure, and is a network molecule. It is a strongly basic anion exchange resin having a structure.
[0021]
In the present invention, strong basic anion exchange resins having only one of these ions are referred to as hydroxide (OH) type, carbonate type and bicarbonate type strong base anion exchange resins, respectively.
An example of a strongly basic anion exchange resin is an anion exchange resin having a quaternary ammonium group.
[0022]
In the method of the present invention, when a resin mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin is used, the mixing ratio of the strongly acidic cation exchange resin and the strongly basic anion exchange resin in the resin mixed bed is pure water. The ratio of the strongly acidic cation exchange resin is at least 10% or more, preferably 20% or more, by volume ratio.
[0023]
Furthermore, the method of the present invention can be carried out by a batch method as well as a continuous method. As an example of the continuous method, there is a method in which hydrogen peroxide solution is continuously sent to and contacted with a tower packed with a strongly acidic cation exchange resin alone or a mixed bed of strongly acidic cation exchange resin and strongly basic anion exchange resin. Can be mentioned. In this case, the space velocity (hr −1 ) is not particularly limited, but is preferably 1 to 1000, more preferably 10 to 600, with respect to the strongly acidic cation exchange resin or the strongly acidic cation exchange resin in the resin mixed bed. It is good.
[0024]
According to the method of the present invention, Al, Fe, and Cr are in contact with a hydrogen peroxide solution to which an acid is added to an H-type strongly acidic cation exchange resin or a resin mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin. By processing, it is easily removed to a very low concentration. That is, in the conventional method in which no acid is added, a weak cation form or a weak anion form that cannot be sufficiently removed is formed, or metal components such as Al, Fe, and Cr that are not completely dissolved are almost completely dissolved. It can be thoroughly removed to the state.
[0025]
This is because hydrogen peroxide purified by contact with a strong acid cation exchange resin alone has almost no metal impurities except for a very small amount of strong anionic metal impurities, and strongly acidic cation exchange resins and When it is brought into contact with a resin mixed bed of a strongly basic anion exchange resin, it means that even a strong anionic metal-based impurity is hardly present.
[0026]
After contacting the hydrogen peroxide solution with the strongly acidic cation exchange resin alone in the present invention, the mixture is subsequently brought into contact with the strongly basic anion exchange resin alone or the mixed bed of the strongly basic anion exchange resin and the strongly acidic cation exchange resin. The anion derived from the added acid and other anionic impurities can be removed.
[0027]
Further, the method of the present invention has the following advantages.
Compared with the hydrogen peroxide solution obtained by the conventional purification method, ie, the method of purifying by contacting with a strongly acidic cation exchange resin without adding an acid, it was obtained by adding an acid and contacting with a strongly acidic cation exchange resin. Since there are fewer metal impurities in the hydrogen peroxide solution that promote the decomposition of the hydrogen peroxide solution, hydrogen peroxide can be decomposed even when it is subsequently brought into contact with the anion exchange resin alone or a mixed bed of anion exchange resin and cation exchange resin. Is sufficiently suppressed. As a result, it is possible to safely carry out purification using an anion exchange resin alone or a mixed bed of a cation exchange resin and an anion exchange resin.
[0028]
Similarly, after bringing hydrogen peroxide solution into contact with the mixed bed of the strongly acidic cation exchange resin and the strongly basic anion exchange resin in the present invention, if necessary, the strongly acidic cation exchange resin alone or the strongly basic anion exchange resin is used. You may make it contact independently.
Compared with the conventional purification method, the metal impurities can be removed thoroughly and safely by the above series of operations.
[0029]
【Example】
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. The metal impurities were measured by ICP-MS (Inductive coupling-mass spectrometry), and the anionic impurities were measured by ion chromatography.
[0030]
Example 1
100 ml of a 2.6 cm diameter fluororesin column was packed with a strongly acidic cation exchange resin (Amberlite 201B H type) manufactured by Organo. Sulfuric acid was added at 0.4 meq / liter-H 2 O 2 , and 31% hydrogen peroxide solution left at 15 to 20 ° C. for 24 hours was passed through a strongly acidic cation exchange resin column at a space velocity (hr −1 ) of 500. Liquid hydrogen peroxide solution was obtained. The metal impurity content before purification was Al: 150 ppb, Fe: 5 ppb, Cr: 10 ppb. Table 1 shows the metal impurity content after purification.
[0031]
Example 2
Purified hydrogen peroxide solution was obtained in the same manner as in Example 1 except that 0.4 meq / liter-H 2 O 2 was added and 31% hydrogen peroxide solution left for 30 hours was used. Table 1 shows the metal impurity content after purification.
[0032]
Example 3
Purified hydrogen peroxide was obtained in the same manner as in Example 1 except that 0.4 milliequivalent / liter-H 2 O 2 was added and 31% hydrogen peroxide was allowed to stand for 24 hours. Table 1 shows the metal impurity content after purification.
[0033]
Example 4
Nitric acid was added at 0.4 meq / liter-H 2 O 2 , 31% hydrogen peroxide solution left for 36 hours was used, and the solution was passed at a space velocity (hr −1 ) of 600, as in Example 1. To obtain a purified hydrogen peroxide solution. Table 1 shows the metal impurity content after purification.
[0034]
Example 5
A purified hydrogen peroxide solution was obtained by purification in the same manner as in Example 1 except that 31% hydrogen peroxide solution to which sulfuric acid was added was used within 1 hour. Table 1 shows the metal impurity content after purification.
[0035]
Example 6
Nitric acid was refined in the same manner as in Example 1 except that 0.4 meq / liter-H 2 O 2 was added and 31% hydrogen peroxide solution left for 6 hours was used to obtain purified hydrogen peroxide solution. Table 1 shows the metal impurity content after purification.
[0036]
[Table 1]
Figure 0003680867
[0037]
Example 7
A resin mixed bed in which a strong acid cation exchange resin (Amberlite 201B H type) manufactured by Organo Co., Ltd. and a strong basic anion exchange resin (Amberlite IRA-900 bicarbonate type) manufactured by Organo Co., Ltd. are sufficiently mixed at a volume ratio of 1: 1. A 2.6 cm fluororesin column was packed with 100 ml.
Sulfuric acid was added at 0.4 meq / liter-H 2 O 2 , and 31% hydrogen peroxide solution left at 15 to 20 ° C. for 24 hours was mixed with resin at a space velocity (hr −1 ) of 250 with respect to the column. The solution was passed through the floor to obtain purified hydrogen peroxide solution. The amount of impurities before purification was Al: 150 ppb, Fe: 5 ppb, Cr: 10 ppb, SO 4 : 20,000 ppb, PO 4 : 200 ppb. Table 2 shows the impurity content after purification.
[0038]
Example 8
Purification was performed in the same manner as in Example 7 except that 0.4 milliequivalent / liter-H 2 O 2 was added and 31% hydrogen peroxide solution left for 24 hours was used to obtain purified hydrogen peroxide solution. The amounts of impurities before purification were Al: 150 ppb, Fe: 5 ppb, Cr: 10 ppb, NO 3 : 25,000 ppb, PO 4 : 200 ppb. Table 2 shows the impurity content after purification.
[0039]
Example 9
Purified in the same manner as in Example 8, except that the mixing ratio of the strongly acidic cation exchange resin and the strongly basic anion exchange resin in the resin mixed bed was 1: 9 and the space velocity (hr -1 ) was 50. Hydrogen water was obtained. Table 2 shows the impurity content after purification.
[0040]
Example 10
Purification was performed in the same manner as in Example 8 except that a strongly basic anion exchange resin (Amberlite IRA-900 hydroxide type) manufactured by Organo Co., Ltd. was used as a strongly basic anion exchange resin to obtain purified hydrogen peroxide solution. Table 2 shows the impurity content after purification.
[0041]
(The following margin)
[Table 2]
Figure 0003680867
[0042]
Example 11
100 ml of a 2.6 cm diameter fluororesin column was packed with a strongly basic anion exchange resin (IRA-900 bicarbonate type) manufactured by Organo. A generated gas quantifier was installed on the outflow side of the column so that the amount of gas generated in the column could be quantified. The purified hydrogen peroxide solution obtained in Example 1 was passed through a strongly basic anion exchange resin column at a space velocity (hr −1 ) of 500 to obtain purified hydrogen peroxide solution.
The content of anionic impurities in the purified hydrogen peroxide solution obtained in Example 1 was SO 4 : 20,000 ppb and PO 4 : 200 ppb. Impurity content after purification and amount of decomposition gas generated by contact of anion exchange resin and hydrogen peroxide solution during purification (capacity per 1 ml of anion exchange resin generated in 1 hour after 1 hour from the start of liquid flow) Table 3 shows.
[0043]
Example 12
The purified hydrogen peroxide solution obtained in Example 2 was used for purification in the same manner as in Example 11 to obtain purified hydrogen peroxide.
The content of anionic impurities in the purified hydrogen peroxide solution obtained in Example 2 was NO 3 : 25,000 ppb, SO 4 : 50 ppb, PO 4 : 200 ppb. Table 3 shows the impurity content after purification and the amount of decomposition gas generated by contact between the strongly basic anion exchange resin and hydrogen peroxide water during purification.
[0044]
Example 13
A mixed bed in which a strongly acidic cation exchange resin (201B H type) manufactured by Organo Co., Ltd. and a strong basic anion exchange resin (IRA-900 bicarbonate type) manufactured by the company are mixed at a volume ratio of 1: 1 is fluorinated with a diameter of 2.6 cm. A resin column was filled with 100 ml. A gas generation quantifier was attached to the outflow side of the mixed bed column in the same manner as in Example 11 so that the amount of gas generated in the column could be measured. The purified hydrogen peroxide solution obtained in Example 3 was passed through the mixed bed column at a space velocity (hr −1 ) of 250 to obtain purified hydrogen peroxide solution.
The content of anionic impurities in the purified hydrogen peroxide solution obtained in Example 3 was NO 3 : 25,000 ppb, SO 4 : 10 ppb, PO 4 : 200 ppb. Table 3 shows the impurity content after purification and the amount of decomposition gas generated by contact of the anion exchange resin and hydrogen peroxide in the resin mixed bed at the time of purification.
[0045]
Example 14
As the anion exchange resin, a strongly basic anion exchange resin (Amberlite IRA-900 hydroxide type) manufactured by Organo was used, and the purified hydrogen peroxide solution obtained in Example 4 was passed through. Purification was carried out in the same manner to obtain purified hydrogen peroxide solution.
The content of anionic impurities in the purified hydrogen peroxide solution obtained in Example 4 was NO 3 : 25,000 ppb, SO 4 : 10 ppb, PO 4 : 200 ppb. Table 3 shows the impurity content after purification and the amount of decomposition gas generated by contact between the anion exchange resin and hydrogen peroxide water during purification.
[0046]
Example 15
Except for using the purified hydrogen peroxide solution obtained in Example 5, the solution was passed through a strongly basic anion exchange resin column in the same manner as in Example 11 to obtain purified hydrogen peroxide solution. The content of anionic impurities in the purified hydrogen peroxide solution obtained in Example 5 was SO 4 : 20,000 ppb and PO 4 : 200 ppb. Table 3 shows the impurity content after purification and the amount of decomposition gas generated by contact between the anion exchange resin and hydrogen peroxide water during purification.
[0047]
[Table 3]
Figure 0003680867
[0048]
Example 16
A resin mixed bed in which a strongly acidic cation exchange resin (Amberlite 201B H type) manufactured by Organo Co., Ltd. and a strong basic anion exchange resin (Amberlite IRA-900 bicarbonate type) manufactured by Organo are sufficiently mixed at a volume ratio of 1: 1, and 100 ml each of strongly basic anion exchange resin (same bicarbonate type) was packed in a 2.6 cm diameter fluororesin column. To this was added nitric acid 0.4 meq / liter-H 2 O 2 , and 31% hydrogen peroxide solution left for 36 hours was added to the resin mixed bed and then the strongly basic anion exchange resin in order of space velocity for each column. (hr −1 ) 250 and 500 were passed through to obtain purified hydrogen peroxide solution. The amounts of impurities before purification were Al: 150 ppb, Fe: 5 ppb, Cr: 10 ppb, NO 3 : 25,000 ppb, PO 4 : 200 ppb. Table 4 shows the impurity content after purification.
[0049]
Example 17
A resin mixed bed in which a strongly acidic cation exchange resin (Amberlite 201B H type) manufactured by Organo Co., Ltd. and a strong basic anion exchange resin (Amberlite IRA-900 bicarbonate type) manufactured by Organo are sufficiently mixed at a volume ratio of 1: 1, and 100 ml each of the strongly acidic cation exchange resin was packed in a 2.6 cm diameter fluororesin column. Nitric acid was added at 0.4 meq / liter-H 2 O 2 , and 31% hydrogen peroxide solution left for 24 hours was added to each column in the order of resin mixed bed and strong acid cation exchange resin. hr −1 ) 250 and 500, and purified hydrogen peroxide solution was obtained.
The amounts of impurities before purification were Al: 150 ppb, Fe: 5 ppb, Cr: 10 ppb, NO 3 : 25,000 ppb, PO 4 : 200 ppb. Table 4 shows the impurity content after purification.
[0050]
Comparative Example 1
The purified hydrogen peroxide solution was obtained in the same manner as in Example 1 except that the hydrogen peroxide solution to which no acid was added was used. Table 5 shows the metal impurity content after purification.
[0051]
Comparative Example 2
The purified hydrogen peroxide solution was obtained in the same manner as in Example 4 except that the hydrogen peroxide solution to which no acid was added was used. Table 5 shows the metal impurity content after purification.
[0052]
(The following margin)
[Table 4]
Figure 0003680867
[0053]
[Table 5]
Figure 0003680867
[0054]
Comparative Example 3
Purification was carried out in the same manner as in Example 7 except that hydrogen peroxide water to which no acid was added was used, and purified hydrogen peroxide water was obtained. The amount of impurities before purification was Al: 150 ppb, Fe: 5 ppb, Cr: 10 ppb, PO 4 : 200 ppb. Table 6 shows the impurity content after purification.
[0055]
Comparative Example 4
Purified in the same manner as in Example 9 except that the mixing ratio of the strongly acidic cation exchange resin and the strongly basic anion exchange resin in the resin mixed bed was 1:19 and the space velocity (hr −1 ) was 25, and purified peroxidation. Hydrogen water was obtained. Table 6 shows the impurity content after purification.
[0056]
Comparative Example 5
Purification was performed in the same manner as in Example 1 except that a weakly acidic cation exchange resin (Amberlite IRC-50 H type) manufactured by Organo Corporation was used as the cation exchange resin to obtain a purified hydrogen peroxide solution. Table 6 shows the metal impurity content after purification.
[0057]
Comparative Example 6
A purified hydrogen peroxide solution was obtained in the same manner as in Example 1 except that a strongly basic anion exchange resin (IRA-900 hydroxide type) manufactured by Organo was used instead of the strongly acidic cation exchange resin. Table 6 shows the metal impurity content after purification.
[0058]
Comparative Example 7
Purification was carried out in the same manner as in Example 7 except that a column consisting only of a strongly basic anion exchange resin (bicarbonate type) was used and the space velocity (hr −1 ) was set to 500, and a purified hydrogen peroxide solution was obtained. . Table 6 shows the content of inorganic impurities after purification.
[0059]
[Table 6]
Figure 0003680867
[0060]
Comparative Example 8
The purified hydrogen peroxide solution was obtained in the same manner as in Example 11 except that the purified hydrogen peroxide solution obtained in Comparative Example 1 was used.
The anion impurity content of the purified hydrogen peroxide solution obtained in Comparative Example 1 was SO 4 : 10 ppb and PO 4 : 200 ppb. Table 7 shows the impurity content after purification and the amount of decomposition gas generated by contact between the anion exchange resin and hydrogen peroxide water during purification.
[0061]
Comparative Example 9
The purified hydrogen peroxide solution was obtained in the same manner as in Example 13 except that the purified hydrogen peroxide solution obtained in Comparative Example 1 was used.
Table 7 shows the impurity content after purification and the amount of decomposition gas generated by contact between the anion exchange resin and the hydrogen peroxide solution in the resin mixed bed at the time of purification.
[0062]
Comparative Example 10
Purified in the same manner as in Example 11, except that 0.4 milliequivalent / liter-H 2 O 2 of sulfuric acid was added to the purified hydrogen peroxide solution obtained in Comparative Example 1 and passed through a strongly basic anion exchange resin column. Thus, a purified hydrogen peroxide solution was obtained.
The content of anionic impurities after adding sulfuric acid to the purified hydrogen peroxide solution obtained in Comparative Example 1 was SO 4 : 20,000 ppb and PO 4 : 200 ppb. Table 7 shows the impurity content after purification and the amount of decomposition gas generated by contact between the anion exchange resin and hydrogen peroxide water during purification.
[0063]
Comparative Example 11
The purified hydrogen peroxide solution was obtained in the same manner as in Example 14 except that the purified hydrogen peroxide solution obtained in Comparative Example 2 was used.
The content of anionic impurities in the purified hydrogen peroxide solution obtained in Comparative Example 2 was SO 4 : 10 ppb and PO 4 : 200 ppb. Table 7 shows the impurity content after purification and the amount of decomposition gas generated by contact between the anion exchange resin and hydrogen peroxide water during purification.
[0064]
Comparative Example 12
The purified hydrogen peroxide solution was obtained in the same manner as in Example 11 except that the purified hydrogen peroxide solution obtained in Comparative Example 5 was used.
The content of anionic impurities in the purified hydrogen peroxide solution obtained in Comparative Example 5 was SO 4 : 20,000 ppb and PO 4 : 200 ppb. Table 7 shows the impurity content after purification and the amount of decomposition gas generated by contact between the anion exchange resin and hydrogen peroxide water during purification.
[0065]
[Table 7]
Figure 0003680867
[0066]
Comparative Example 13
The purified hydrogen peroxide solution was obtained in the same manner as in Example 16 except that hydrogen peroxide solution to which no acid was added was used. Table 8 shows the impurity content after purification.
[0067]
Comparative Example 14
The purified hydrogen peroxide solution was obtained in the same manner as in Example 17 except that the hydrogen peroxide solution to which no acid was added was used. Table 8 shows the impurity content after purification.
[0068]
[Table 8]
Figure 0003680867
[0069]
【The invention's effect】
According to the present invention, high-purity hydrogen peroxide in which metal impurities such as Al, Fe, and Cr in hydrogen peroxide that are difficult to remove by conventional methods are removed to a low concentration of 2 ppb or less, or 1 ppb or less. Water can be produced safely and efficiently with sufficient suppression of hydrogen peroxide decomposition.

Claims (5)

過酸化水素水を精製するに際し、過酸化水素水に水中25℃における酸解離指数pKaが5以下の酸を過酸化水素水1リットルに対し0.005〜5ミリ当量添加した後、スルホン酸基を有するH型の強酸性カチオン交換樹脂に接触させることを特徴とする過酸化水素水の精製方法。When purifying the hydrogen peroxide solution, an acid having an acid dissociation index pKa of 5 or less at 25 ° C. in water is added to the hydrogen peroxide solution in an amount of 0.005 to 5 milliequivalents per liter of the hydrogen peroxide solution. A method for purifying hydrogen peroxide solution, comprising contacting with an H-type strongly acidic cation exchange resin having a water content. 過酸化水素水を精製するに際し、過酸化水素水に水中25℃における酸解離指数pKaが5以下の酸を過酸化水素水1リットルに対し0.005〜5ミリ当量添加した後、スルホン酸基を有するH型の強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂の混合床に接触させることを特徴とする過酸化水素水の精製方法。When purifying the hydrogen peroxide solution, an acid having an acid dissociation index pKa of 5 or less at 25 ° C. in water is added to the hydrogen peroxide solution in an amount of 0.005 to 5 milliequivalents per liter of the hydrogen peroxide solution. A method for purifying hydrogen peroxide, comprising contacting a mixed bed of an H-type strongly acidic cation exchange resin and a strongly basic anion exchange resin having a water content. 強塩基性アニオン交換樹脂が、水酸化物イオン、炭酸イオンおよび重炭酸イオンからなる群から選ばれて少なくとも1種のイオンを構造内に有することを特徴とする請求項記載の過酸化水素水の精製方法。 3. The hydrogen peroxide solution according to claim 2 , wherein the strongly basic anion exchange resin has at least one ion selected from the group consisting of hydroxide ions, carbonate ions and bicarbonate ions in the structure. Purification method. 混合床においてスルホン酸基を有するH型の強酸性カチオン交換樹脂の割合が純水中での体積比で10%以上であることを特徴とする請求項2記載の過酸化水素水の精製方法。The method for purifying hydrogen peroxide water according to claim 2, wherein the ratio of the H-type strongly acidic cation exchange resin having a sulfonic acid group in the mixed bed is 10% or more by volume ratio in pure water. 過酸化水素水に水中25℃における酸解離指数pKaが5以下の酸を添加した後、6時間以上放置して熟成させた過酸化水素水を、イオン交換樹脂に接触させることを特徴とする請求項1または2記載の過酸化水素水の精製方法。An acid having an acid dissociation index pKa of 5 or less at 25 ° C. in water at 5 ° C. is added to the hydrogen peroxide solution, and then the hydrogen peroxide solution left to age for 6 hours or longer is brought into contact with the ion exchange resin. Item 3. The method for purifying hydrogen peroxide water according to Item 1 or 2.
JP15030795A 1994-06-28 1995-06-16 Method for purifying hydrogen peroxide water Expired - Fee Related JP3680867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15030795A JP3680867B2 (en) 1994-06-28 1995-06-16 Method for purifying hydrogen peroxide water

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP6-146526 1994-06-28
JP6-146527 1994-06-28
JP14652694 1994-06-28
JP14652794 1994-06-28
JP15030795A JP3680867B2 (en) 1994-06-28 1995-06-16 Method for purifying hydrogen peroxide water

Publications (2)

Publication Number Publication Date
JPH0873205A JPH0873205A (en) 1996-03-19
JP3680867B2 true JP3680867B2 (en) 2005-08-10

Family

ID=27319201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15030795A Expired - Fee Related JP3680867B2 (en) 1994-06-28 1995-06-16 Method for purifying hydrogen peroxide water

Country Status (1)

Country Link
JP (1) JP3680867B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874036B2 (en) * 1996-10-09 2007-01-31 三菱瓦斯化学株式会社 Method for producing purified aqueous hydrogen peroxide solution
JP4056695B2 (en) 2000-06-21 2008-03-05 三徳化学工業株式会社 Method for producing purified hydrogen peroxide water
KR102351913B1 (en) * 2013-10-02 2022-01-17 솔베이(소시에떼아노님) Process for manufacturing a purified aqueous hydrogen peroxide solution
CN116002626B (en) * 2022-11-30 2023-07-25 湖北兴福电子材料股份有限公司 Purification method for efficiently and safely removing anions in hydrogen peroxide

Also Published As

Publication number Publication date
JPH0873205A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
US5055286A (en) Process for preparing high purity hydrogen peroxide
CA2062435C (en) Method for purifying hydrogen peroxide for microelectronics uses
JP2629507B2 (en) Purification method of hydrogen peroxide solution
JP3680867B2 (en) Method for purifying hydrogen peroxide water
CA2296699C (en) Purification of hydroxylamine
TW557292B (en) Purification of alkanesulphonic acids
JP3171058B2 (en) Hydrogen peroxide water purification method
US5614165A (en) Process for purification of hydrogen peroxide
JP3849724B2 (en) Production method of high purity hydrogen peroxide water
CA1170670A (en) Removal of iron compounds from organic process streams
JPH02233503A (en) Purification of hydrochloric acid
KR0143302B1 (en) Method for the preparation of purified aqueous hydrogen peroxide solution
JP2000319233A (en) Purification of halogenated quaternary ammonium salt solution
JP3901278B2 (en) Method for purifying hydrogen peroxide water
JP3531403B2 (en) Hydrogen peroxide water purification method
JPH0971406A (en) Purification of aqueous solution of hydrogen peroxide
JP3940858B2 (en) Method for producing purified hydrogen peroxide water
US3740436A (en) Low impurity hydrazine
JPS62213893A (en) Method of treating waste water containing hydroxylamine or salt thereof
JP3852981B2 (en) Method for purifying hydrogen peroxide water
JP3900211B2 (en) Manufacturing method of high purity hydrogen peroxide solution
JPH09278416A (en) Production of high purity hydrogen peroxide solution
JP4051507B2 (en) Manufacturing method of high purity hydrogen peroxide solution
JPH09278417A (en) Production of high purity hydrogen peroxide solution
EP0626342A1 (en) Process for purification of hydrogen peroxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050510

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees