JPH09278416A - Production of high purity hydrogen peroxide solution - Google Patents

Production of high purity hydrogen peroxide solution

Info

Publication number
JPH09278416A
JPH09278416A JP9255396A JP9255396A JPH09278416A JP H09278416 A JPH09278416 A JP H09278416A JP 9255396 A JP9255396 A JP 9255396A JP 9255396 A JP9255396 A JP 9255396A JP H09278416 A JPH09278416 A JP H09278416A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
exchange resin
solid phase
peroxide solution
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9255396A
Other languages
Japanese (ja)
Inventor
Toshinori Matsumoto
年視 松本
Manabu Yamada
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP9255396A priority Critical patent/JPH09278416A/en
Publication of JPH09278416A publication Critical patent/JPH09278416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase purity by bringing a hydrogen peroxide soln. into contact with a specified ion exchange resin layer, cooling to precipitate a solid phase and then fusing the separated solid phase. SOLUTION: A hydrogen peroxide soln. containing 10 to 70wt.% hydrogen peroxide is brought into contact with at least two kinds of resin layers at <=30 deg.C. There resin layers are prepared by selecting from a cation exchange resin having a SO3 H group as an ion exchange group, an anion exchange resin having carbonate or bicarbonate of quaternary ammonium groups, and a mixture of a cation exchange resin and an anion exchange resin with 3:97 to 97:3 mixing ratio. Then the hydrogen peroxide soln. is concentrated or diluted to control the concn. of hydrogen peroxide to 45.2 to 61.2wt.%. Then, if necessary, a seed crystal is added by 0.5 to 1g per 1L hydrogen peroxide soln., and the obtd. soln. is cooled to -0.5 to -56.1 deg.C to precipitate a solid phase. The solid phase is separated from the liquid phase and then fused.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はカチオン性不純物、
アニオン性不純物、有機不純物を含む過酸化水素水溶液
を精製し、極めて高純度な過酸化水素水溶液を得る方法
に関する。本発明により精製された高純度の過酸化水素
水溶液は半導体分野で使用される。
TECHNICAL FIELD The present invention relates to a cationic impurity,
The present invention relates to a method for purifying an aqueous hydrogen peroxide solution containing anionic impurities and organic impurities to obtain an extremely high-purity aqueous hydrogen peroxide solution. The highly pure aqueous hydrogen peroxide solution purified according to the present invention is used in the semiconductor field.

【0002】[0002]

【従来の技術】現在、過酸化水素水溶液は主にアントラ
キノンの自動酸化法により製造されている(以下、アン
トラキノン法と記すことがある)。この方法は一般に、
2−アルキルアントラキノンを有機溶媒中で水素化触媒
の存在下で水素化して、対応するアントラヒドロキノン
とし、触媒を濾別後、酸素または空気により酸化してア
ントラヒドロキノンを2−アルキルアントラキノンに再
生するとともに過酸化水素を生成させ、生成した過酸化
水素を水で抽出することによって粗過酸化水素水溶液を
得る。得られた過酸化水素水溶液は減圧蒸留、精留する
ことによって精製および濃縮される。その後、場合によ
っては水で所定濃度に希釈され、一般には約20〜70
重量%の過酸化水素を含む水溶液とされる。
2. Description of the Related Art At present, an aqueous solution of hydrogen peroxide is mainly produced by an anthraquinone auto-oxidation method (hereinafter sometimes referred to as an anthraquinone method). This method is generally
2-Alkylanthraquinone is hydrogenated in the presence of a hydrogenation catalyst in an organic solvent to give the corresponding anthrahydroquinone, and the catalyst is filtered off and then oxidized with oxygen or air to regenerate the anthrahydroquinone to a 2-alkylanthraquinone. A crude hydrogen peroxide aqueous solution is obtained by producing hydrogen peroxide and extracting the produced hydrogen peroxide with water. The obtained aqueous hydrogen peroxide solution is purified and concentrated by distillation under reduced pressure and rectification. Then, it is diluted with water to a predetermined concentration in some cases, and generally about 20-70.
An aqueous solution containing hydrogen peroxide in weight% is used.

【0003】このような方法により製造された過酸化水
素水溶液には、製造装置や貯蔵装置からの溶出、安定剤
の添加などによって約5ppb〜約10ppm程度の種
々のカチオン、および約10ppb〜約10ppm程度
の種々のアニオン、さらにはアントラキノン法で使用さ
れる有機物質、またはそれらの変質物の混入などにより
全有機炭素量として10ppm〜数100ppm程度の
有機不純物が含まれている。
The aqueous hydrogen peroxide solution produced by such a method contains various cations of about 5 ppb to about 10 ppm and about 10 ppb to about 10 ppm due to elution from a production apparatus or storage apparatus and addition of a stabilizer. Various anions, further, organic substances used in the anthraquinone method, or contaminants thereof are mixed, and organic impurities of about 10 ppm to several 100 ppm are contained as the total amount of organic carbon.

【0004】一方、過酸化水素水溶液は従来から反応試
剤、漂白、化学研磨などの分野で広く利用されてきた。
近年、半導体製造の分野でウェハーの洗浄、エッチング
などの分野への過酸化水素水溶液の利用が増大し、これ
に伴って極めて高純度の過酸化水素水溶液が要求されて
いる。
On the other hand, the aqueous hydrogen peroxide solution has hitherto been widely used in the fields of reaction reagents, bleaching, chemical polishing and the like.
In recent years, in the field of semiconductor manufacturing, the use of hydrogen peroxide aqueous solution has increased in the fields of wafer cleaning, etching, and the like, and accordingly, an extremely high-purity hydrogen peroxide aqueous solution is required.

【0005】過酸化水素水溶液の精製法としては、一般
にカチオン交換樹脂を用いてカチオン性不純物を除去す
る方法やアニオン交換樹脂を用いてアニオン性不純物を
除去する方法、吸着剤を用いて有機不純物を除去する方
法、またこれらの方法を組み合わせてカチオン性不純
物、アニオン性不純物、有機不純物を除去する方法が知
られている。
As a method for purifying an aqueous hydrogen peroxide solution, generally, a method for removing cationic impurities by using a cation exchange resin, a method for removing anionic impurities by using an anion exchange resin, and a method for removing organic impurities by using an adsorbent are used. A method of removing, and a method of removing cationic impurities, anionic impurities, and organic impurities by combining these methods are known.

【0006】例えば特開平1−17105号公報には重
炭酸塩型または炭酸塩型アニオン交換樹脂を用い、水中
の解離指数pKaが5以下の酸またはその塩を、連続的
または反連続的に添加しつつアニオン性不純物を除去す
ることが記載されている。
For example, in JP-A-1-17105, a bicarbonate type or carbonate type anion exchange resin is used, and an acid having a dissociation index pKa in water of 5 or less or a salt thereof is continuously or anti-continuously added. However, it is described that anionic impurities are removed.

【0007】米国特許第5268160号明細書には過
酸化水素水溶液をスチレン重合体のような吸着樹脂と接
触させて有機不純物を除去する方法が記されている。特
開昭63−156004には過酸化水素水溶液をハロゲ
ン含有多孔性樹脂と接触させることにより有機不純物を
除去する方法が記されている。
US Pat. No. 5,268,160 describes a method of contacting an aqueous hydrogen peroxide solution with an adsorbing resin such as a styrene polymer to remove organic impurities. Japanese Patent Laid-Open No. 63-156004 describes a method of removing organic impurities by bringing an aqueous hydrogen peroxide solution into contact with a halogen-containing porous resin.

【0008】また、米国特許第4999179号明細書
には、カチオン交換樹脂層、ハロゲン含有多孔性樹脂
層、アニオン交換樹脂層の順、または、ハロゲン含有多
孔性樹脂層、カチオン交換樹脂層、アニオン交換樹脂層
の順、または、ハロゲン含有多孔性樹脂層、カチオン交
換樹脂/アニオン交換樹脂の混合層の順で過酸化水素を
接触処理し、カチオン性不純物、アニオン性不純物、有
機不純物を除去することが記されている。
In US Pat. No. 4,999,179, a cation exchange resin layer, a halogen-containing porous resin layer and an anion exchange resin layer are provided in this order, or a halogen-containing porous resin layer, a cation exchange resin layer and an anion exchange resin layer. It is possible to remove cationic impurities, anionic impurities, and organic impurities by contacting hydrogen peroxide in the order of the resin layer, or in the order of the halogen-containing porous resin layer and the mixed layer of the cation exchange resin / anion exchange resin. It is written.

【0009】しかしながら、前記したような従来方法に
よる精製では、カチオン性不純物、あるいはアニオン性
不純物は所望される不純物濃度を達成することはできる
が、カチオン性不純物、アニオン性不純物および有機不
純物のすべてを所望される濃度、すなわちカチオン性不
純物が0.5ppb以下、アニオン不純物が10ppb
以下で、かつ有機不純物は全有機炭素量として3ppm
以下を満足する高純度の過酸化水素水溶液を得ることは
極めて困難であった。
However, in the purification by the conventional method as described above, the cationic impurities or the anionic impurities can achieve the desired impurity concentration, but the cationic impurities, the anionic impurities and the organic impurities are all removed. Desired concentration, ie, 0.5 ppb or less of cationic impurities and 10 ppb of anionic impurities
Below, and organic impurities are 3ppm as the total amount of organic carbon
It was extremely difficult to obtain a highly pure aqueous hydrogen peroxide solution satisfying the following conditions.

【0010】[0010]

【発明が解決しようとする課題】本発明は過酸化水素水
溶液中の不純物を高い除去効率で、かつ安全に除去し、
高純度の過酸化水素水溶液を提供することにある。
DISCLOSURE OF THE INVENTION The present invention removes impurities in an aqueous hydrogen peroxide solution with high efficiency and safely,
It is to provide a highly pure aqueous hydrogen peroxide solution.

【0011】[0011]

【課題を解決するための手段】本発明は、10〜70重
量%の過酸化水素を含有する過酸化水素水溶液を、カチ
オン交換樹脂層、アニオン交換樹脂層、およびカチオン
交換樹脂/アニオン交換樹脂混合層からなる群から選ば
れた少なくとも2種の互いに異なる層と接触せしめた
後、過酸化水素濃度を少なくとも45.2重量%の濃度
に調整し、これを−0.5℃〜−56.1℃の温度で冷
却して固相を析出せしめ、得られた固相を融解すること
を特徴とする高純度過酸化水素水溶液の製造法である。
According to the present invention, an aqueous solution of hydrogen peroxide containing 10 to 70% by weight of hydrogen peroxide is mixed with a cation exchange resin layer, an anion exchange resin layer, and a cation exchange resin / anion exchange resin mixture. After contact with at least two different layers selected from the group consisting of layers, the hydrogen peroxide concentration is adjusted to a concentration of at least 45.2% by weight, which is from -0.5 ° C to -56.1. It is a method for producing a high-purity hydrogen peroxide aqueous solution, which comprises cooling at a temperature of ° C to precipitate a solid phase, and melting the obtained solid phase.

【0012】[0012]

【発明の実施の態様】本発明の方法において、原料過酸
化水素水溶液は少なくとも10〜70重量%の過酸化水
素を含有する過酸化水素水溶液が用いられる。特に好ま
しくは20〜60重量%の過酸化水素を含有する過酸化
水素水溶液である。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, an aqueous hydrogen peroxide solution containing at least 10 to 70% by weight of hydrogen peroxide is used as the starting aqueous hydrogen peroxide solution. Particularly preferred is an aqueous hydrogen peroxide solution containing 20 to 60% by weight of hydrogen peroxide.

【0013】本発明において、原料過酸化水素水溶液
は、カチオン交換樹脂層、アニオン交換樹脂層、および
カチオン交換樹脂/アニオン交換樹脂混合層からなる群
から選ばれた少なくとも2種の互いに異なる層と接触し
精製される。これら樹脂層の配列順序に特に制限はない
が、最終的にアニオン交換樹脂、またはカチオン交換樹
脂/アニオン交換樹脂混合層と接触させることが好まし
い。
In the present invention, the raw hydrogen peroxide solution is contacted with at least two different layers selected from the group consisting of a cation exchange resin layer, an anion exchange resin layer, and a cation exchange resin / anion exchange resin mixed layer. And then refined. The arrangement order of these resin layers is not particularly limited, but it is preferable to finally contact the resin layers with the anion exchange resin or the cation exchange resin / anion exchange resin mixed layer.

【0014】本発明において使用されるカチオン交換樹
脂としては、イオン交換基としてSO3 H基を有するも
のが使用されるが、強酸性でかつ架橋性の高い樹脂が好
ましい。このようなカチオン交換樹脂は例えば、オルガ
ノ(株)製、商品名;アンバーライト200C、アンバ
ーライト200CT、アンバーライト252や三菱化学
(株)製、商品名;ダイヤイオンのPKシリーズ(例え
ばPK224、PK228)などが挙げられる。
As the cation exchange resin used in the present invention, one having an SO 3 H group as an ion exchange group is used, but a resin having a strong acidity and a high crosslinking property is preferable. Such a cation exchange resin is, for example, manufactured by Organo Co., Ltd., trade name; Amberlite 200C, Amberlite 200CT, Amberlite 252 or Mitsubishi Chemical Co., Ltd., trade name; Diaion PK series (eg PK224, PK228. ) And the like.

【0015】カチオン交換樹脂層に過酸化水素水溶液を
接触せしめる温度は、約30℃以下、好ましくは−10
〜20℃の範囲が好ましい。30℃を超えるとイオン交
換基(SO3 H基)が溶出する割合が増えるので好まし
くない。
The temperature at which the hydrogen peroxide solution is brought into contact with the cation exchange resin layer is about 30 ° C. or lower, preferably -10.
The range of -20 ° C is preferred. If it exceeds 30 ° C., the ratio of ion exchange groups (SO 3 H groups) to be eluted increases, which is not preferable.

【0016】また本発明において使用されるアニオン交
換樹脂としては、強塩基性であり、かつ架橋性の高い樹
脂であることが好ましい。このようなアニオン交換樹脂
は、第4級アンモニウム基を有する強塩基性樹脂、第3
級アンモニウム基を有する弱塩基性樹脂またはビニルピ
リジン系樹脂であることができるが、好ましくは第4級
アンモニウム基を有する強塩基性樹脂であり、特に好ま
しくは第4級アンモニウム基の炭酸塩または重炭酸塩を
有する樹脂である。
The anion exchange resin used in the present invention is preferably a resin that is strongly basic and highly crosslinkable. Such anion exchange resin is a strongly basic resin having a quaternary ammonium group,
It may be a weakly basic resin having a quaternary ammonium group or a vinylpyridine resin, but is preferably a strongly basic resin having a quaternary ammonium group, and particularly preferably a carbonate or a heavy salt of a quaternary ammonium group. It is a resin containing carbonate.

【0017】このようなアニオン交換樹脂は、例えば、
オルガノ(株)製、商品名;アンバーライトのIRAシ
リーズ(例えば、IRA−900、IRA−904)、
三菱化学(株)製、商品名;ダイヤイオンのPAシリー
ズ(例えば、PA316、PA318)などが挙げられ
る。
Such anion exchange resin is, for example,
Organo Co., Ltd., trade name; Amberlite IRA series (for example, IRA-900, IRA-904),
Mitsubishi Kagaku Co., Ltd. product name; PA series (for example, PA316, PA318) of Diaion, etc. are mentioned.

【0018】アニオン交換樹脂層に過酸化水素水溶液を
接触せしめる温度は、約10℃以下、好ましくは−10
℃から5℃の範囲が適当である。10℃を超えると過酸
化水素が分解し易くなるので好ましくない。
The temperature at which the aqueous hydrogen peroxide solution is brought into contact with the anion exchange resin layer is about 10 ° C. or lower, preferably -10.
A range of 5 ° C to 5 ° C is suitable. If it exceeds 10 ° C, hydrogen peroxide is likely to be decomposed, which is not preferable.

【0019】たまカチオン交換樹脂とアニオン交換樹脂
の混合層を用いる場合は両者の容積比を3:97〜9
7:3となるように混合して使用することが好ましい。
When a mixed layer of cation exchange resin and anion exchange resin is used, the volume ratio of both is 3: 97-9.
It is preferable to mix and use it so that it may become 7: 3.

【0020】本発明において、カチオン交換樹脂層、ア
ニオン交換樹脂層およびカチオン交換樹脂/アニオン交
換樹脂混合層と接触処理後の過酸化水素水溶液は、その
まま、または必要に応じて、濃縮、希釈して少なくとも
45.2重量%の濃度に調製して固相の析出操作を行
う。
In the present invention, the aqueous solution of hydrogen peroxide after the contact treatment with the cation exchange resin layer, the anion exchange resin layer and the cation exchange resin / anion exchange resin mixed layer is directly or, if necessary, concentrated or diluted. The solid phase is prepared by adjusting the concentration to at least 45.2% by weight.

【0021】固相の析出操作は少なくとも45.2重量
%の過酸化水素を含む過酸化水素水溶液として使用され
る。61.2重量%を超える濃度の過酸化水素を含む過
酸化水素水溶液を用いると、過酸化水素水溶液の精製に
は効果があるが、過酸化水素の結晶、すなわち100重
量%の過酸化水素が結晶として析出するため、取り扱い
が困難となる。45.2〜61.2重量%の過酸化水素
を含む過酸化水素水溶液を使用すると、過酸化水素の水
和物が結晶として析出するため、取り扱い上安全で好ま
しい。
The solid phase precipitation operation is used as an aqueous hydrogen peroxide solution containing at least 45.2% by weight hydrogen peroxide. Although the use of an aqueous hydrogen peroxide solution containing hydrogen peroxide at a concentration of over 61.2% by weight is effective for purification of the aqueous hydrogen peroxide solution, hydrogen peroxide crystals, that is, 100% by weight of hydrogen peroxide Since it precipitates as crystals, handling becomes difficult. The use of an aqueous hydrogen peroxide solution containing 45.2 to 61.2% by weight of hydrogen peroxide is preferable in terms of handling, since a hydrate of hydrogen peroxide is deposited as crystals.

【0022】一方、45.2重量%未満の濃度の過酸化
水素を含む過酸化水素水溶液の場合には固相として水の
結晶が析出するので、固相の析出操作においては過酸化
水素水溶液の精製には効果はない。
On the other hand, in the case of an aqueous solution of hydrogen peroxide containing hydrogen peroxide at a concentration of less than 45.2% by weight, water crystals are precipitated as a solid phase. It has no effect on purification.

【0023】固相の析出に当たっては、析出する固相と
同じ過酸化水素濃度を有する固相を種結晶として添加す
ることが好ましい。種結晶の添加はごく少量でよく、1
リットルの原料過酸化水素水溶液に対して0.5〜1g
程度でよい。種結晶を添加する際の温度は、原料過酸化
水素水溶液濃度における凝固点温度よりも低い温度で、
かつその温度差は小さいことが好ましい。不純物をより
効果的に除去するには、その温度差を5℃以内とするの
がより好ましい。
In depositing the solid phase, it is preferable to add a solid phase having the same hydrogen peroxide concentration as the deposited solid phase as a seed crystal. Seed crystals can be added in very small amounts, 1
0.5 to 1 g per liter of raw material hydrogen peroxide solution
Degree is fine. The temperature at which the seed crystal is added is lower than the freezing point temperature in the raw material hydrogen peroxide aqueous solution concentration,
And it is preferable that the temperature difference is small. In order to remove impurities more effectively, it is more preferable that the temperature difference be within 5 ° C.

【0024】固相を析出させる際の固相の生成速度は小
さくすることが好ましい。固相の生成速度が小さいほ
ど、固相に含まれる不純物の量が少なくなり、精製効果
は高くなる。しかし、固相の生成速度がある一定以下に
なると、Fe、Crなどの金属不純物が固相に含まれ易
くなり、その濃度が増加する傾向が見られる。また、製
造設備の容量が同じである場合、固相の生成速度を小さ
くすると単位時間当たりの生産量が少なくなり、工業的
観点から好ましくない。
It is preferable to reduce the rate of solid phase formation when the solid phase is deposited. The smaller the solid phase generation rate, the smaller the amount of impurities contained in the solid phase, and the higher the purification effect. However, when the generation rate of the solid phase is below a certain level, metal impurities such as Fe and Cr are likely to be contained in the solid phase, and the concentration thereof tends to increase. Further, if the production facilities have the same capacity, if the solid phase production rate is reduced, the production amount per unit time decreases, which is not preferable from an industrial viewpoint.

【0025】他方、固相の生成速度が大きくなると単位
時間当たりの生産量は上がるが、不純物の除去効率が低
下し好ましくない。これらのことから、固相の生成速度
は18〜150g/リットル−原料過酸化水素水溶液・
hrとすることが好ましく、より好ましくは60〜15
0g/リットル−原料過酸化水素水溶液である。
On the other hand, when the solid phase production rate increases, the production amount per unit time increases, but the efficiency of removing impurities decreases, which is not preferable. From these facts, the solid phase generation rate is 18 to 150 g / liter-raw material hydrogen peroxide aqueous solution.
It is preferable to set it as hr, More preferably, it is 60-15.
0 g / liter-a raw material hydrogen peroxide aqueous solution.

【0026】生成した固相は液相と分離される。生成し
た固相を液相から分離する方法はいかなる方法を用いて
も構わないが、液相には不純物が濃縮されているので、
これが固相に付着するような方法は好ましくない。一般
的には遠心脱水機による分離方法が好適である。
The solid phase produced is separated from the liquid phase. Any method may be used for separating the produced solid phase from the liquid phase, but since impurities are concentrated in the liquid phase,
A method in which it adheres to the solid phase is not preferred. Generally, a separation method using a centrifugal dehydrator is suitable.

【0027】また、液相から分離して得られる生成した
固相を、高純度の過酸化水素水溶液で洗浄することによ
り、固相に付着した母液を除去することも効果的であ
る。
It is also effective to remove the mother liquor adhering to the solid phase by washing the generated solid phase obtained by separation from the liquid phase with a highly pure aqueous hydrogen peroxide solution.

【0028】本発明において原料として使用する過酸化
水素水溶液は、アントラキノン法により製造されたもの
が好適であるが、アントラキノン法による過酸化水素水
溶液に限らず、その他の方法で製造されたものでもよ
い。
The aqueous solution of hydrogen peroxide used as a raw material in the present invention is preferably one prepared by the anthraquinone method, but is not limited to the aqueous solution of hydrogen peroxide prepared by the anthraquinone method and may be one prepared by another method. .

【0029】[0029]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れらの実施例により限定されるものではない。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples.

【0030】金属不純物の測定は、Caはフレームレス
原子吸光法、それ以外は、ICP−MS(Induct
icvely coupled plazma Mas
sspectrometry)法による。
For measuring metallic impurities, Ca was used for flameless atomic absorption spectrometry, and otherwise, ICP-MS (Induct) was used.
icvely coupled plasma Mas
According to the ssspectrometry method.

【0031】アニオン性不純物はイオンクロマト法によ
って測定した。原料と有機不純物は全有機体炭素計を用
いて全有機炭素量として測定した。なお、原料として使
用した過酸化水素水溶液中の不純物は、精製水で31重
量%に希釈して測定した。
The anionic impurities were measured by the ion chromatography method. Raw materials and organic impurities were measured as total organic carbon content using a total organic carbon meter. The impurities in the hydrogen peroxide aqueous solution used as the raw material were measured by diluting with purified water to 31% by weight.

【0032】実施例1 原料過酸化水素水溶液を精製水で31重量%に希釈した
後、、1000ml/hrで、カチオン交換樹脂充填カ
ラム、アニオン交換樹脂充填カラム、カチオン交換樹脂
とアニオン交換樹脂の混合物が充填されたカラムに、こ
の順序で通液した。各充填カラムは、それぞれ内径20
mmφのフッ素樹脂製カラム管に20mlずつイオン交
換樹脂を充填して作成した。ここで使用したカチオン交
換樹脂は商品名;ダイヤイオンPK228LH(三菱化
学(株)製)、アニオン交換樹脂は商品名;ダイヤイオ
ンPA318HCO3 (三菱化学(株)製)であり、カ
チオン交換樹脂とアニオン交換樹脂との混合層にはダイ
ヤイオンPK228LHとダイヤイオンPA318HC
3 を容積比1:1で充分混合した樹脂混合物を使用し
た。
Example 1 A raw material hydrogen peroxide aqueous solution was diluted with purified water to 31% by weight and then, at 1000 ml / hr, a cation exchange resin packed column, an anion exchange resin packed column, a mixture of a cation exchange resin and an anion exchange resin. The solution was passed through the column filled with the resin in this order. Each packed column has an inner diameter of 20
A column tube made of fluororesin having a diameter of mmφ was filled with 20 ml of ion exchange resin. The cation exchange resin used here is a trade name; Diaion PK228LH (manufactured by Mitsubishi Chemical Co., Ltd.), and the anion exchange resin is a trade name; Diaion PA318HCO 3 (manufactured by Mitsubishi Chemical Co., Ltd.). DIAION PK228LH and DIAION PA318HC are used in the mixed layer with the exchange resin.
A resin mixture was used in which O 3 was thoroughly mixed at a volume ratio of 1: 1.

【0033】次いで、得られた過酸化水素水溶液を、5
5重量%まで濃縮し内容積2Lのステンレス製容器の中
に2200gを原料として入れ、撹拌しながら水溶液を
−53℃まで冷却した後、過酸化水素水和物結晶を種結
晶として約0.5g添加し、当該過酸化水素水溶液中に
過酸化水素水和物結晶を少量析出せしめた。さらに固相
の生成速度を60g/リットル−原料過酸化水素水溶液
・hrに調節し、水溶液の温度が−54.5℃になるま
で冷却を続けた。次いで固相と液相の混在する過酸化水
素水溶液をバスケット型の遠心脱水機にいれて一部の結
晶を融解させながら固相と液相を分離する操作を行っ
た。得られた固相を融解し、48.8重量%の過酸化水
素を含む過酸化水素水溶液550gを得た。
Then, the obtained aqueous hydrogen peroxide solution is added to 5
After concentrating to 5% by weight and putting 2200 g as a raw material in a stainless steel container having an internal volume of 2 L and cooling the aqueous solution to −53 ° C. while stirring, about 0.5 g of hydrogen peroxide hydrate crystal was used as a seed crystal. Then, a small amount of hydrogen peroxide hydrate crystals was precipitated in the hydrogen peroxide aqueous solution. Furthermore, the production rate of the solid phase was adjusted to 60 g / liter-raw material hydrogen peroxide aqueous solution · hr, and cooling was continued until the temperature of the aqueous solution reached −54.5 ° C. Next, an operation of separating the solid phase and the liquid phase by putting an aqueous hydrogen peroxide solution in which the solid phase and the liquid phase coexist into a basket type centrifugal dehydrator while melting some crystals. The obtained solid phase was melted to obtain 550 g of an aqueous hydrogen peroxide solution containing 48.8% by weight of hydrogen peroxide.

【0034】精製後の不純物含有量は第1表に示した如
くであり、カチオン性不純物0.5ppb以下、アニオ
ン性不純物10ppb以下、有機不純物は全有機炭素量
として3ppm以下が達成された。
The content of impurities after purification is as shown in Table 1. Cationic impurities of 0.5 ppb or less, anionic impurities of 10 ppb or less, and organic impurities of 3 ppm or less were achieved.

【0035】実施例2 原料過酸化水素水溶液を精製水で31重量%に希釈した
後、1000ml/hrで、カチオン交換樹脂充填カラ
ム、アニオン交換樹脂充填カラムに、この順序で通液し
た。各充填カラムは、それぞれ内径20mmφのフッ素
樹脂製カラム管に20mlずつイオン交換樹脂を充填し
て作成した。ここで使用したカチオン交換樹脂は商品
名;ダイヤイオンPK228LH(三菱化学(株)
製)、アニオン交換樹脂は商品名;ダイヤイオンPA3
18HCO3 (三菱化学(株)製)である。
Example 2 The raw material hydrogen peroxide aqueous solution was diluted with purified water to 31% by weight and then passed through a cation exchange resin packed column and an anion exchange resin packed column in this order at 1000 ml / hr. Each packed column was prepared by packing 20 ml of ion exchange resin into a fluororesin column tube having an inner diameter of 20 mmφ. The cation exchange resin used here is a trade name; Diaion PK228LH (Mitsubishi Chemical Corporation)
Made), anion exchange resin is a trade name; Diaion PA3
18HCO 3 (manufactured by Mitsubishi Chemical Corporation).

【0036】次いで、得られた過酸化水素水溶液を、5
5重量%まで濃縮し内容積2Lのステンレス製容器の中
に2200gを原料として入れ、撹拌しながら水溶液を
−53℃まで冷却した後、過酸化水素水和物結晶を種結
晶として約0.5g添加し、当該過酸化水素水溶液中に
過酸化水素水和物結晶を少量析出せしめた。さらに固相
の生成速度を60g/リットル−原料過酸化水素水溶液
・hrに調節し、水溶液の温度が−54.5℃になるま
で冷却を続けた。続いて固相と液相の混在する過酸化水
素水溶液をバスケット型の遠心脱水機にいれて一部の結
晶を融解させながら固相と液相を分離する操作を行っ
た。得られた固相を融解し、48.8重量%の過酸化水
素を含む過酸化水素水溶液550gを得た。
Next, the obtained hydrogen peroxide aqueous solution is added to 5
After concentrating to 5% by weight and putting 2200 g as a raw material in a stainless steel container having an internal volume of 2 L and cooling the aqueous solution to −53 ° C. while stirring, about 0.5 g of hydrogen peroxide hydrate crystal was used as a seed crystal. Then, a small amount of hydrogen peroxide hydrate crystals was precipitated in the hydrogen peroxide aqueous solution. Furthermore, the production rate of the solid phase was adjusted to 60 g / liter-raw material hydrogen peroxide aqueous solution · hr, and cooling was continued until the temperature of the aqueous solution reached −54.5 ° C. Subsequently, an operation of separating the solid phase and the liquid phase by putting a hydrogen peroxide aqueous solution in which the solid phase and the liquid phase coexist in a basket type centrifugal dehydrator to melt some crystals. The obtained solid phase was melted to obtain 550 g of an aqueous hydrogen peroxide solution containing 48.8% by weight of hydrogen peroxide.

【0037】精製後の不純物含有量は第1表に示した如
くであり、カチオン性不純物0.5ppb以下、アニオ
ン性不純物10ppb以下、有機不純物は全有機炭素量
として3ppm以下が達成された。
The content of impurities after purification is as shown in Table 1. Cationic impurities of 0.5 ppb or less, anionic impurities of 10 ppb or less, and organic impurities of 3 ppm or less were achieved.

【0038】実施例3 固相の生成速度を18g/リットル−原料過酸化水素水
溶液・hrとした他は実施例1と同様の操作で精製を行
った。精製後の不純物含有量は第1表に示した如くであ
り、カチオン不純物0.5ppb以下、アニオン不純物
10ppb以下、有機不純物は全有機炭素量として3p
pm以下が達成された。
Example 3 Purification was carried out in the same manner as in Example 1 except that the solid phase production rate was 18 g / liter-raw material hydrogen peroxide solution / hr. The content of impurities after purification is as shown in Table 1. Cationic impurities are 0.5 ppb or less, anion impurities are 10 ppb or less, and organic impurities are 3 p as total organic carbon amount.
pm or less was achieved.

【0039】比較例1 実施例1で使用したと同様の原料過酸化水素水溶液を精
製水で31重量%に希釈した後、1000ml/hr
で、カチオン交換樹脂充填カラム、アニオン交換樹脂充
填カラム、カチオン交換樹脂とアニオン交換樹脂の混合
物が充填されたカラムに、この順序で通液した。イオン
交換充填カラムは実施例1と同じものを用いた。
Comparative Example 1 The same raw material hydrogen peroxide aqueous solution as that used in Example 1 was diluted with purified water to 31% by weight, and then 1000 ml / hr.
Then, the solution was passed through the cation exchange resin packed column, the anion exchange resin packed column, and the column packed with the mixture of the cation exchange resin and the anion exchange resin in this order. The same ion exchange packed column as in Example 1 was used.

【0040】精製後の不純物含有量は第1表に示した如
くであり、カチオン性不純物0.5ppb以下、アニオ
ン性不純物10ppb以下は達成されたが、有機不純物
は全有機炭素量として3ppm以下を達成できなかっ
た。
The content of impurities after purification is as shown in Table 1. Cationic impurities of 0.5 ppb or less and anionic impurities of 10 ppb or less were achieved, but organic impurities were 3 ppm or less in total organic carbon content. I couldn't achieve it.

【0041】比較例2 実施例1で使用したと同様の原料過酸化水素水溶液を精
製水で31重量%に希釈した後、1000ml/hr
で、カチオン交換樹脂充填カラム、アニオン交換樹脂充
填カラム、カチオン交換樹脂とアニオン交換樹脂の混合
物が充填されたカラムに、この順序で通液した。イオン
交換充填カラムは実施例1と同じものを用いた。その
後、得られた過酸化水素水溶液を吸着樹脂充填カラムに
通液せしめることにより有機物を吸着除去する操作を行
った。吸着樹脂充填カラムは内径10mmφのフッ素樹
脂性カラム管に吸着剤としてブロム化スチレン−ジビニ
ルベンゼン共重合体の多孔性樹脂で商品名;セパビーズ
SP207(三菱化学(株))を10ml充填して作成
した。
Comparative Example 2 The same raw material hydrogen peroxide aqueous solution as that used in Example 1 was diluted with purified water to 31% by weight, and then 1000 ml / hr.
Then, the solution was passed through the cation exchange resin packed column, the anion exchange resin packed column, and the column packed with the mixture of the cation exchange resin and the anion exchange resin in this order. The same ion exchange packed column as in Example 1 was used. Then, an operation of adsorbing and removing the organic matter was carried out by passing the obtained hydrogen peroxide aqueous solution through a column filled with an adsorption resin. The adsorption resin packed column was prepared by filling 10 ml of a fluororesin column tube having an inner diameter of 10 mm with a porous resin of brominated styrene-divinylbenzene copolymer as an adsorbent and trade name: SepaBeads SP207 (Mitsubishi Chemical Co., Ltd.). .

【0042】精製後の不純物含有量は第1表に示した如
くであり、カチオン性不純物0.5ppb以下、アニオ
ン性不純物10ppb以下は達成されたが、有機不純物
は全有機炭素量として3ppm以下を達成できなかっ
た。
The content of impurities after purification is as shown in Table 1. Cationic impurities of 0.5 ppb or less and anionic impurities of 10 ppb or less were achieved, but organic impurities were 3 ppm or less as the total organic carbon content. I couldn't achieve it.

【0043】比較例3 固相の生成速度を300g/リットル−原料過酸化水素
水溶液・hrとした他は実施例1と同様の操作で精製を
行った。精製後の不純物含有量は第1表に示した如くで
あり、カチオン不純物0.5ppb以下、アニオン不純
物10ppb以下は達成されたが、有機不純物は全有機
炭素量として3ppm以下を達成できなかった。
Comparative Example 3 Purification was carried out in the same manner as in Example 1 except that the solid phase production rate was 300 g / liter-raw material hydrogen peroxide solution / hr. The content of impurities after purification is as shown in Table 1. Cationic impurities of 0.5 ppb or less and anionic impurities of 10 ppb or less were achieved, but organic impurities could not reach 3 ppm or less as the total amount of organic carbon.

【0044】[0044]

【表1】 第1表 過酸化水素水溶液中の不純物(単位:ppb) Al Fe Ni Cr Cl SO4 TOC(*) 原料 79 6 0.6 1.5 8 8 20 実施例1 0.1 0.09 0.08 0.04 3 5 0.6 実施例2 0.4 0.2 0.09 0.08 5 5 0.6 実施例3 0.09 0.1 0.07 0.05 4 6 0.8 比較例1 0.08 0.09 0.07 0.04 8 2 8 比較例2 0.08 0.1 0.07 0.05 8 2 5 比較例3 0.09 0.08 0.1 0.05 8 7 4 (*)TOCの単位はppm[Table 1] Table 1 Impurities in aqueous hydrogen peroxide solution (unit: ppb) Al Fe Ni Cr Cr SO4 TOC (*) Raw material 79 6 0.6 1.5 8 8 20 Example 1 0.1 0.09 0.08 0.04 3 5 0.6 Example 2 0.4 0.2 0.09 0.08 5 5 0.6 Example 3 0.09 0.1 0.07 0.05 4 6 0.8 Comparative example 1 0.08 0.09 0.07 0.04 8 2 8 Comparative example 2 0.08 0.1 0.07 0.05 8 2 5 Comparative example 3 0.09 0.08 0.1 0.05 8 7 4 (*) Unit of TOC is ppm

【0045】[0045]

【発明の効果】以上のように、本発明の方法によれば過
酸化水素水溶液中のカチオン性およびアニオン性金属不
純物、ならびに有機不純物を十分に低濃度にまで除去す
ることができ、高純度の過酸化水素水溶液を提供するこ
とができる。
As described above, according to the method of the present invention, it is possible to remove the cationic and anionic metal impurities and the organic impurities in the hydrogen peroxide aqueous solution to a sufficiently low concentration, and to obtain a high purity. A hydrogen peroxide aqueous solution can be provided.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】10〜70重量%の過酸化水素を含有する
過酸化水素水溶液を、カチオン交換樹脂層、アニオン交
換樹脂層、およびカチオン交換樹脂/アニオン交換樹脂
混合層からなる群から選ばれた少なくとも2種の互いに
異なる層と接触せしめた後、過酸化水素濃度を少なくと
も45.2重量%の濃度に調整し、これを−0.5℃〜
−56.1℃の温度で冷却して固相を析出せしめ、得ら
れた固相を融解することを特徴とする過酸化水素水溶液
の製造法。
1. An aqueous hydrogen peroxide solution containing 10 to 70% by weight of hydrogen peroxide is selected from the group consisting of a cation exchange resin layer, an anion exchange resin layer, and a cation exchange resin / anion exchange resin mixed layer. After contacting with at least two different layers, the hydrogen peroxide concentration is adjusted to a concentration of at least 45.2 wt.
A method for producing an aqueous hydrogen peroxide solution, which comprises cooling at a temperature of -56.1 ° C to precipitate a solid phase, and melting the obtained solid phase.
【請求項2】カチオン交換樹脂は交換基としてSO3
基を有するカチオン交換樹脂である請求項1記載の過酸
化水素水溶液の製造法。
2. A cation exchange resin has SO 3 H as an exchange group.
The method for producing an aqueous hydrogen peroxide solution according to claim 1, which is a cation exchange resin having a group.
【請求項3】アニオン交換樹脂は交換基として第4級ア
ンモニウム基を有するアニオン交換樹脂であって、かつ
該基は炭酸塩または重炭酸塩の形である請求項1記載の
過酸化水素水溶液の製造法。
3. The aqueous hydrogen peroxide solution according to claim 1, wherein the anion exchange resin is an anion exchange resin having a quaternary ammonium group as an exchange group, and the group is in the form of carbonate or bicarbonate. Manufacturing method.
【請求項4】冷却して固相を析出せしめる際の過酸化水
素水溶液は、45.2〜61.2重量%の過酸化水素を
含有する過酸化水素水溶液である請求項1記載の過酸化
水素水溶液の製造法。
4. The peroxide according to claim 1, wherein the aqueous hydrogen peroxide solution used for cooling to precipitate the solid phase is an aqueous hydrogen peroxide solution containing 45.2 to 61.2% by weight of hydrogen peroxide. Method for producing hydrogen solution.
【請求項5】過酸化水素水溶液を冷却して固相を析出せ
しめる際の固相の生成速度が18〜150g/リットル
−原料過酸化水素水溶液・hrである請求項1記載の過
酸化水素水溶液の製造法。
5. The aqueous hydrogen peroxide solution according to claim 1, wherein the rate of solid phase formation when the aqueous hydrogen peroxide solution is cooled to precipitate the solid phase is 18 to 150 g / liter-raw material aqueous hydrogen peroxide solution · hr. Manufacturing method.
JP9255396A 1996-04-15 1996-04-15 Production of high purity hydrogen peroxide solution Pending JPH09278416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9255396A JPH09278416A (en) 1996-04-15 1996-04-15 Production of high purity hydrogen peroxide solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9255396A JPH09278416A (en) 1996-04-15 1996-04-15 Production of high purity hydrogen peroxide solution

Publications (1)

Publication Number Publication Date
JPH09278416A true JPH09278416A (en) 1997-10-28

Family

ID=14057603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9255396A Pending JPH09278416A (en) 1996-04-15 1996-04-15 Production of high purity hydrogen peroxide solution

Country Status (1)

Country Link
JP (1) JPH09278416A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772740A1 (en) * 1997-12-19 1999-06-25 Ube Industries Production of high-purity hydrogen peroxide solution for use in electronics industry
US6592840B1 (en) 1998-04-21 2003-07-15 Basf Aktiengesellschaft Highly pure aqueous hydrogen peroxide solutions, method for producing same and their use
US6896867B2 (en) 2000-06-21 2005-05-24 Santoku Chemical Industries Co., Ltd. Process for producing a purified aqueous hydrogen peroxide solution
JP2012121784A (en) * 2010-12-08 2012-06-28 Shanghai Huayi Microelectric Material Co Ltd Method and device for refining aqueous hydrogen peroxide solution
CN109775665A (en) * 2019-03-30 2019-05-21 王晓华 Hydrogen peroxide purifies production system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772740A1 (en) * 1997-12-19 1999-06-25 Ube Industries Production of high-purity hydrogen peroxide solution for use in electronics industry
US6592840B1 (en) 1998-04-21 2003-07-15 Basf Aktiengesellschaft Highly pure aqueous hydrogen peroxide solutions, method for producing same and their use
US6896867B2 (en) 2000-06-21 2005-05-24 Santoku Chemical Industries Co., Ltd. Process for producing a purified aqueous hydrogen peroxide solution
SG115371A1 (en) * 2000-06-21 2005-10-28 Santoku Chemical Ind Co Ltd Process for producing a purified aqueous hydrogen peroxide solution
JP2012121784A (en) * 2010-12-08 2012-06-28 Shanghai Huayi Microelectric Material Co Ltd Method and device for refining aqueous hydrogen peroxide solution
CN109775665A (en) * 2019-03-30 2019-05-21 王晓华 Hydrogen peroxide purifies production system

Similar Documents

Publication Publication Date Title
KR950014206B1 (en) Method for purifying impure aqueous hydrogen peroxide solution
JP3797390B2 (en) Method for producing purified hydrogen peroxide
KR100426435B1 (en) Process for producing a purified aqueous hydrogen peroxide solution
US5232680A (en) Method for purifying hydrogen peroxide for microelectronics uses
JPH09278416A (en) Production of high purity hydrogen peroxide solution
JPH09278417A (en) Production of high purity hydrogen peroxide solution
JP3171058B2 (en) Hydrogen peroxide water purification method
KR20010013064A (en) Method for preparing an ultrapure hydrogen peroxide solution by ion exchange in the presence of ion acetate
EP0533166B1 (en) Process for purifying hydrogen peroxide aqueous solution
JP4013646B2 (en) Anion exchange resin, method for producing the same, and method for producing purified hydrogen peroxide water using the same
US5614165A (en) Process for purification of hydrogen peroxide
JP3835488B2 (en) Method for removing organic impurities in aqueous hydrogen peroxide solution
JP2800043B2 (en) Purification of impure aqueous hydrogen peroxide solution
JPH08245204A (en) Refining method of hydrogen peroxide aqueous solution
JP3680867B2 (en) Method for purifying hydrogen peroxide water
JPH09221305A (en) Production of high purity hydrogen peroxide solution
KR0151325B1 (en) Production of pure hydrogen iodide
EP0626342B1 (en) Process for purification of hydrogen peroxide
JP4051507B2 (en) Manufacturing method of high purity hydrogen peroxide solution
JP3861932B2 (en) Method for producing purified hydrogen peroxide
JP3818323B2 (en) Method for producing purified hydrogen peroxide
JP3900211B2 (en) Manufacturing method of high purity hydrogen peroxide solution
JPH10259009A (en) Purification of hydrogen peroxide solution
JPH0920505A (en) Purification of hydrogen peroxide aqueous solution
JP3512285B2 (en) Method for producing purified hydrogen iodide