JP4013646B2 - Anion exchange resin, method for producing the same, and method for producing purified hydrogen peroxide water using the same - Google Patents

Anion exchange resin, method for producing the same, and method for producing purified hydrogen peroxide water using the same Download PDF

Info

Publication number
JP4013646B2
JP4013646B2 JP2002143503A JP2002143503A JP4013646B2 JP 4013646 B2 JP4013646 B2 JP 4013646B2 JP 2002143503 A JP2002143503 A JP 2002143503A JP 2002143503 A JP2002143503 A JP 2002143503A JP 4013646 B2 JP4013646 B2 JP 4013646B2
Authority
JP
Japan
Prior art keywords
exchange resin
hydrogen peroxide
anion exchange
peroxide solution
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002143503A
Other languages
Japanese (ja)
Other versions
JP2003334458A (en
Inventor
公則 西迫
範之 斉藤
誠 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002143503A priority Critical patent/JP4013646B2/en
Publication of JP2003334458A publication Critical patent/JP2003334458A/en
Application granted granted Critical
Publication of JP4013646B2 publication Critical patent/JP4013646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はアニオン交換樹脂及びその製造方法、並びにこれを用いた過酸化水素水の製造方法に関する。詳しくは、不純物含有量が極めて少ないアニオン交換樹脂、及びその製造方法、並びにこのアニオン交換樹脂を用いた高純度の過酸化水素水(精製過酸化水素水)の製造方法に関する。
【0002】
【従来の技術】
過酸化水素の製造はいくつか知られているが、現在では殆どがアントラキノン自動酸化法により製造されている。この製造方法としては例えば、先ず2−アルキルアントラキノンを水に不溶性の溶媒に溶解して作動液とし、これを触媒の存在下、水素添加して2−アルキルアントラヒドロキノンとする。次いで触媒を分離した後、空気によって元の2−アルキルアントラキノンに酸化するとともに、生成した過酸化水素を水で抽出する。そして得られた粗な過酸化水素水を、蒸留等により精製度や濃度(通常は5〜70重量%)を調製して、所望純度・濃度の過酸化水素水を得る方法が一般的である。
【0003】
この様な方法によって得られた過酸化水素水中には、アントラキノン類や作動液由来の有機不純物、そして過酸化水素水の製造設備の金属製配管等に由来する各種の金属不純物(Fe、Cr、Ni、Al、Na、Si等)等の不純物が含まれており、更には安定剤として燐酸等の酸や、錫酸ナトリウム等をなどを含有している場合もある。一般的にこの様な不純物等の含有量は、金属不純物として数〜10数重量ppm、有機不純物は全有機炭素量(TOC)として20〜数百重量ppmである。
【0004】
この様な過酸化水素水は、使用目的・用途の品質要求に応じて精製されてから用いられる。使用目的・用途としては、例えば紙、パルプ、繊維等の漂白や化学研磨液等への使用に加え、近年ではシリコンウエハやこのウエハ上へのデバイス製造工程、いわゆる半導体装置製造工程での洗浄剤等、電子工業用分野への高純度の精製過酸化水素水の使用が盛んである。
【0005】
この様に電子工業用分野で使用される精製過酸化水素水は、デバイスの高集積化に伴って、過酸化水素水中の全不純物(金属不純物成分、有機不純物、微粒子等)を極力低減した、極めて高純度の製品品質が要求されている。
この様な精製過酸化水素水を得る方法には様々な方法が提案されており、例えばイオン交換法(カチオン交換樹脂、アニオン交換樹脂、キレート樹脂等)、吸着法(合成吸着剤、活性炭等)、蒸留法、膜法(精密濾過膜、限外濾過膜、逆浸透膜等)、晶析・融解法、泡沫分離法などが提案されている。そしてこれらのうち、単独の方法で、又は組み合わせて用いることで種々の不純物を除去することが提案されている。(特開平7−33408号、特開平8−231208号、特開平8−245204号の各号公報;米国特許4,999,179号、米国特許第4,985,228号;WO92/069818号公報等)。
【0006】
そして近年では、より高純度に、具体的には不純物含有量を10数重量pptレベルにまで低減した過酸化水素水の製造方法が提案されている。例えば特開平10−259008号公報や特開平10−259009号公報、特開平9−205205号公報には不純物含有量が10〜10数重量pptの精製過酸化水素水が記載されている。
【0007】
しかしこれらに記載の精製方法では、得られる精製過酸化水素水における鉄等の不純物含有量が1重量pptを切ることが出来ていない。これは精製過程で用いるイオン交換樹脂母材中に含まれる鉄が溶出していることが考えられる。つまり、イオン交換樹脂をその使用前に高純度の塩酸等で洗浄しても、イオン交換樹脂を重炭酸塩型化する際に鉄がイオン交換樹脂に付着してしまうことが考えられる。
【0008】
また特開平10−259009号公報に記載のように、過酸化水素水とイオン交換樹脂との接触時間を短くすることで過酸化水素水への鉄の溶出を抑えようとしても、投入原料中の鉄含量が多い場合はイオン吸着帯が長くなり、鉄がリークしてしまうので、過酸化水素水の精製度合いが頭打ちとなってしまうことが考えられる。
【0009】
そこで最近では、例えば特開平11−171508号、特開2002−80207号、特開2002−80208号、特開2002−80209号各号公報等にあるような、不純物含有量が1重量ppt以下の精製過酸化水素水の製造方法が提案されている。
【0010】
【発明が解決しようとする課題】
しかしこれらの方法においても、精製過酸化水素水の不純物含有量は低減される一方で、精製工程に用いるイオン交換樹脂の前処理に過大な負荷がかかるという問題があった。また過酸化水素水の精製工程においては、多段に渡る複雑な精製工程を必要とするという問題もあり、工業的に有利に過酸化水素水中に存在する不純物、特に金属不純物濃度を効率良く、且つ極めて低くする方法としては、必ずしも十分とは言えなかった。
【0011】
この様な現状に鑑みて、本発明者等は過酸化水素水中に存在する不純物、特に鉄等の金属不純物の含有量を、簡便な方法で1重量ppt程度にまで低減させ、極めて高度に精製された過酸化水素水を得る方法について鋭意検討を行った。
【0012】
【課題を解決するための手段】
本発明者等は鋭意検討を重ねた結果、主としてアニオン交換樹脂が過酸化水素水中の鉄等の金属不純物を除去すること、またイオン交換樹脂による精製工程に於いて、カチオン交換樹脂塔を最終段とする精製構成の場合には、この最終段からの鉄等の金属不純物の溶出を抑える為に、イオン交換樹脂を極めて高純度化する必要があることを見出した。
【0013】
そしてこの様な高純度のアニオン交換樹脂は、鉄等の金属不純物の析出を生じさせない、特定のpH−酸化還元電位に調整された炭酸塩水溶液及び/又は重炭酸塩水溶液を用いて、OH型のそれを炭酸塩型又は重炭酸塩型とすることで得られることを見出した。
またこの様な高純度の、鉄等の金属不純物の除去に寄与するアニオン交換樹脂を含むアニオン交換樹脂層を用いることによって、好ましくはカチオン交換樹脂とアニオン交換樹脂との混床層として用い、アニオン交換樹脂層全体の鉄等の金属不純物が特定量以下に低減されている際に、好ましくはこれに通液する過酸化水素水の空間速度を一定以下とすることによって、得られる精製過酸化水素水中の鉄等の金属不純物含有量を極めて低い値とすることが出来ることを見出し、本発明を完成させた。
【0014】
この際、少なくともアニオン交換樹脂が高純度化されているので、混床として併用するH型カチオン交換樹脂が市販のカチオン交換樹脂(例えば金属不純物含有量が100〜200重量ppb程度のもの)であっても、この混床を用いることによって複雑な多段構成のイオン交換樹脂による精製工程を経ること無く、1重量ppb以上の鉄等の金属不純物を含む過酸化水素水を、金属不純物鉄含有量が1重量ppt以下の、極めて高純度な精製過酸化水素水とすることが出来ることを見出し、本発明を完成させた。
【0015】
すなわち本発明の要旨は、鉄の含有量が500pg/ml-resin(DRY)以下の、不純物含有量の極めて低い、高純度の炭酸塩型又は重炭酸塩型アニオン交換樹脂に存する。
また本発明の他の要旨は、OH型強塩基性アニオン交換樹脂を、pHが8未満で且つ酸化還元電位が250mV以下である、炭酸塩水溶液及び/又は重炭酸塩水溶液で処理することを特徴とする、鉄の含有量が500pg/ml-resin(DRY)以下のアニオン交換樹脂の製造方法に存する。
【0016】
更に本発明の今ひとつの要旨は、過酸化水素水を、上述の高純度アニオン交換樹脂を含むアニオン交換樹脂層と接触させることを特徴とする精製過酸化水素水の製造方法に存する。
【0017】
【発明実施の形態】
以下、本発明を詳細に説明する。
(1)アニオン交換樹脂及びその製造方法
本発明の炭酸塩型又は重炭酸塩型アニオン交換樹脂(以下、単に「アニオン交換樹脂」ということがある。)は、鉄の含有量が、湿潤していない状態のイオン交換樹脂層体積1mlあたり、500ピコ(10―12)グラム以下、つまり「500pg/ml-resin(DRY)」以下である、不純物含有量の極めて低い、高純度のアニオン交換樹脂である。
【0018】
この様に高純度化されたアニオン交換樹脂を用いることで、不純物含有量が1ppt以下の、精製過酸化水素水を得ることが出来る。本発明のアニオン交換樹脂における鉄の含有量は、500pg/ml-resin(DRY)以下であれば低いほど好ましく、中でも450pg/ml-resin(DRY)以下、であることが好ましい。
本発明のアニオン交換樹脂の製造方法は任意だが、例えば炭酸塩型や重炭酸塩型のアニオン交換樹脂を製造する際には、一旦OH型としたアニオン交換樹脂を炭酸塩型化又は重炭酸塩型化する際にpHが8未満で且つ酸化還元電位が250mV以下である炭酸塩水溶液及び/又は重炭酸塩水溶液で処理することによって、金属不純物を極めて低減したアニオン交換樹脂を得ることが出来るので好ましい。
【0019】
アニオン交換樹脂を炭酸塩型化、又は重炭酸塩型化する際に用いる炭酸塩水溶液又は重炭酸塩水溶液のpHは当然7を超えるものであるが、pHが高すぎると水酸化鉄が析出する場合がある。よってpHは中性(pH=7)に近いほど好ましく、中でも7.8以下、特に7.5以下であることが好ましい。
酸化還元電位は250mV以下であれば任意の値を選択すればよい。この値が高すぎると、例えば水酸化鉄を析出させることなどによるアニオン交換樹脂における鉄等の金属不純物含有量が増加するので好ましくない。
【0020】
但し、鉄の性状として、酸化還元電位が0mV以下まで下がった水溶液中ではイオン化し難くなくなる為、使用する重炭酸塩水溶液の酸化還元電位は、0を超えて250mV以下、更には20〜220mVであることが好ましい。
炭酸塩水溶液や重炭酸塩水溶液は、それ自体で、このような酸化還元電位を示すことが多く、よって本発明のアニオン交換樹脂の製造方法において炭酸塩水溶液又は重炭酸塩水溶液を用いる際には、水溶液の酸化還元電位が250mV以下であればそのまま用いてもよいし、これらの水溶液に塩酸や二酸化炭素ガス等を溶解させて、酸化還元電位を低減せしめたものを用いてもよい。
【0021】
炭酸塩又は重炭酸塩としては、ナトリウム、カリウム等のアルカリ金属塩やカルシウム、マグネシウム塩等のアルカリ土類金属塩、アンモニウム塩等が挙げられる。
一般的に、酸化還元電位を低減する方法としては例えば、pHが7以下とならない程度に炭酸塩水溶液又は重炭酸塩水溶液に塩酸等を添加する方法がある。
【0022】
しかしこの水溶液でアニオン交換樹脂を処理すると、塩素の存在によって重炭酸塩型化が阻害され、塩素がアニオン交換樹脂中に捕捉される場合がある。そしてこの様なアニオン交換樹脂を用いて過酸化水素水の精製を行うと、塩素イオンが精製過酸化水素水中に混入するので、これを除去する工程が必要になる等、工業的に煩雑なプロセスとなる場合がある。
【0023】
よって、アニオン交換樹脂の炭酸塩化や重炭酸塩化において用いる水溶液を、pH=8以下、酸化還元電位=220mV以下とするためには、
▲1▼:塩種を選択する(水溶液にするだけで、この条件を満たす炭酸塩・重炭酸塩を選ぶ)。
▲2▼:水溶液調製後に、炭酸塩型化又は重炭酸塩型化を阻害しない物質を添加して水溶液を調整した後、pHや酸化還元電位を調整する。
等の2つの方法が考えられる。
【0024】
▲1▼ではアンモニウム塩を用いることが好ましく、▲2▼では炭酸塩又は重炭酸塩水溶液に炭酸ガスの吹き込み、もしくはドライアイスの投入を行い、水溶液に強制的に二酸化炭素ガス等を溶解させてpHを下げ、且つ酸化還元電位を低減せしめる方法がある。
析出した鉄等の金属不純物等がアニオン交換樹脂へ付着することを防止する目的からは、▲1▼、▲2▼のどちらも好ましいが、金属不純物混入防止の観点からなるべく金属塩を用いたくないので、▲1▼の様にアンモニウム塩を用いる方法が、より好ましい。
【0025】
上述したようなpH及び酸化還元電位の条件を満たせば、炭酸塩水溶液又は重炭酸塩水溶液の濃度や、鉄等の金属不純物含有量は任意である。
なお、鉄等の金属不純物含有量は少ない程好ましいが、本発明に用いる炭酸塩水溶液又は重炭酸塩水溶液においては、上述の条件を満たす限り、50ppb程度の金属不純物を含有していても許容しうる。よって、負荷の掛かる高純度化精製を行わなくても、市販の一般工業グレード試薬をそのまま使用することが可能であるので、工業上、非常に好ましい。
【0026】
(2)精製過酸化水素水の製造方法
本発明の精製過酸化水素水の製造方法は、過酸化水素水を、前述の、鉄の含有量が500pg/ml-resin(DRY)以下のアニオン交換樹脂を含むアニオン交換樹脂層と接触させることを特徴とする。中でも、鉄の含有量が300pg/ml-resin(DRY)以下のイオン交換樹脂層と接触させることが好ましく、特に空間時間(SV)が10[/hr]以下の通液条件で接触させるのが好ましい。
本発明に用いるイオン交換樹脂層は、鉄の含有量が、湿潤していない状態のイオン交換樹脂層体積1mlあたり、300ピコ(10-12)グラム以下、つまり「300pg/ml-resin(DRY)」以下であることが好ましい。この際、鉄の含有量が多すぎるとイオン交換除去能力よりも溶出量が勝るということがあり、好ましくない。
【0027】
本発明においては、用いるイオン交換樹脂層における鉄の含有量が低いほど、高純度の精製過酸化水素水が得られるので好ましい。しかしあまりに高純度のイオン交換樹脂層を得ようとすると、イオン交換樹脂層の調製に負荷が掛かりすぎるので、一般的には1〜300pg/ml-resin(DRY)、中でも10〜290pg/ml-resin(DRY)、特に50〜280pg/ml-resin(DRY)とするのが好ましい。
【0028】
本発明に於いてSVとは、イオン交換樹脂容量1に対して1時間通液した液量を示し、例えば樹脂100mlに1時間で1000ml通液したときの空間速度(SV)は、10[/hr]である。
本発明に於いてはSVは10[/hr]以下であることが好ましい。SVが低すぎると過酸化水素の分解を増加させる為、、運転条件(系内圧・温度)等に応じて適宜選択すればよい。一般的には0.1〜10[/hr]、中でも0.3〜8[/hr]、特に0.5〜5[/hr]とするのが好ましい。
【0029】
本発明に用いる原料過酸化水素水としては、任意の過酸化水素濃度、及び任意の不純物含有量(金属不純物量、TOC)のものを使用できるが、通常は、定法に従ってある程度精製された過酸化水素水を用いる。
本発明に用いる過酸化水素水における過酸化水素濃度は、一般的に5〜70重量%であるが、電子工業用途としては20〜50重量%、中でも25〜40重量%のものが好ましい。
【0030】
TOCは数十重量ppm存在してもよいが、イオン性の有機不純物が多い場合はイオン交換時の競争反応に影響を与える場合があるので、10重量ppm以下とすることが好ましい。
本発明に於いては、特定の高純度アニオン交換樹脂を含む高純度アニオン交換樹脂層を用いて、好ましくは低SV条件で通液することによって、精製前の原料過酸化水素水における鉄等の金属不純物含有量が、1重量ppb以上である場合においても、顕著にその効果を発揮する。一般的にはこのような金属、およびこれらがイオン化した金属不純物の含有量は少ない方が好ましく、例えば鉄の含有量は1〜50重量ppb、特に1〜40重量ppbであることが好ましい。
【0031】
本発明に用いるアニオン交換樹脂層は、先述の通り、鉄の含有量が300pg/ml-resin(DRY)以下であることが好ましい。このアニオン交換樹脂層はアニオン交換樹脂のみからなっていても、またカチオン交換樹脂と混合した、例えばの混床とした形態であってもよい。中でもカチオン交換樹脂との混床とすると、カチオン交換樹脂から溶出する鉄を層内で除去出来るので好ましい。
【0032】
併用するカチオン交換樹脂としては、強酸性カチオン交換樹脂、弱酸性カチオン交換樹脂等、任意のものを使用できるが、中でも中性塩除去の理由から、強酸性カチオン交換樹脂との混床が好ましい。
本発明に用いるアニオン交換樹脂層を、カチオン交換樹脂とアニオン交換樹脂との混床とする際に、用いるカチオン交換樹脂における金属不純物の含有量は少ないほど好ましい。但し本発明に於いては、好ましくはアニオン交換樹脂層全体に於ける鉄の含有量が300pg/ml-resin(DRY)以下となればよいので、前述のような極めて高純度なアニオン交換樹脂との混床の際には、カチオン交換樹脂における鉄等の金属不純物含有量が100pg/ml-resin(DRY)以上含有するものであってもよい。この様なカチオン交換樹脂は例えば市販の、いわゆる未精製のカチオン交換樹脂を、純水で洗浄すれば得ることが出来る。
【0033】
本発明の精製過酸化水素水の製造方法に用いるアニオン交換樹脂としては、OH型、炭酸塩型、重炭酸塩型(炭酸水素塩型)、アンモニウム塩型等、任意のものを使用できるが、中でも鉄等の金属不純物を極めて低減でき、且つ接触する過酸化水素水の分解量低減等の点から、炭酸塩型や重炭酸塩型が好ましい。
また上述した以外の、本発明の精製過酸化水素水の製造方法における条件は従来技術から適宜選択、決定すればよい。例えば、アニオン交換樹脂層を有するアニオン交換樹脂塔の操作条件としては、この塔内で発生する炭酸ガスや酸素を過酸化水素水中に溶存させて安定的に精製過酸化水素水を製造するために、塔内における過酸化水素水を10℃以下、好ましくは7℃以下に冷却し、0.5〜5kgf/cm2の背圧で原料となる過酸化水素水を供給することが好ましい。
【0034】
【実施例】
次に実施例を示し、本発明を具体的に説明する。本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
尚、実施例に於いては過酸化水素水中の鉄含有量を、ICP質量分析計を用いて測定した。
pHについては、HORIBA製のpHメーター「D−24」とpH電極「形式S005」を用いて測定した。また酸化還元電位は、先述のpHメーターと電極「9300−10D」とを用いて測定した。
【0035】
[実施例1]
塩化物型アニオン交換樹脂(三菱化学社製、ダイヤイオンPA316L:「ダイヤイオン」は三菱化学の登録商標)を、内壁がフッ素樹脂製のカラムに充填し、2N-NaOH水溶液をSV=2.5で2時間ダウンフロー通液した後、水洗した。
【0036】
次いで、鉄の含有量が40重量ppb、pHが7.5、酸化還元電位が100mVである 1N-重炭酸アンモニウム水溶液(7.9重量%、鉄含有量40重量ppb)1.27kgを、SV=2でダウンフローによって接触させて重炭酸塩型化した(これは湿潤樹脂1リットルあたり1000g相当の重炭酸アンモニウムを接触させた事に相当する)。次いで重炭酸塩型アニオン交換樹脂を、その50倍量以上の純水を用いて水洗を行った。
得られた重炭酸塩型アニオン交換樹脂中の鉄含有量は440pg/ml-resin(DRY)であった。結果を表1に示す。
【0037】
[比較例1]
市販の試薬特級重炭酸ナトリウムを超純水に希釈して調製し、濃度6重量%の重炭酸ナトリウム水溶液を得た。これを用いて実施例2と同様にイオン交換樹脂を重炭酸塩化した。結果を表1に示す。用いた重炭酸ナトリウム水溶液中の鉄含量は5重量ppb未満であったが得られた重炭酸塩型アニオン交換樹脂中の鉄含量は990pg/ml-resin(DRY)であった。
【0038】
【表1】

Figure 0004013646
【0039】
表1から明らかなとおり、比較例1では用いた重炭酸塩水溶液中の鉄の含有量は、実施例1のそれよりも低いが、実施例1で用いた水溶液の方が、イオン交換樹脂中への鉄の取り込まれ量が少なく、高純度化が可能であることを示している。
この理由は定かで無いが、pH−酸化還元電位図より、比較例1で用いた水溶液中の鉄は水酸化物として存在し、実施例1で用いた水溶液中の鉄は酸化物(陽イオン)として存在し、水酸化物の鉄は析出してアニオン交換樹脂表面に物理付着して取り込まれてしまうことが考えられる。
一方、実施例1の水溶液では、鉄としては陽イオンとして存在するものが多く、アニオン交換樹脂には捕捉され難く、大半がそのまま洗い流されるので、樹脂の高純度化がはかれると考えられる。
【0040】
[実施例2]
H型に調製されたカチオン交換樹脂(三菱化学社製、ダイヤイオンSKT20L)と、実施例1と同様に調製した重炭酸塩型アニオン交換樹脂とを容量比1:1で混合し、イオン交換樹脂層(混床)に用いるイオン交換樹脂を調製した。この混床用イオン交換樹脂中の鉄の含有量は270pg/ml-resin(DRY)であった。
【0041】
この混床用イオン交換樹脂を内壁がフッ素樹脂製のイオン交換樹脂塔に1000ml充填し、イオン交換樹脂層とした。次いで金属不純物として鉄を25重量ppb含有する、35重量%濃度の過酸化水素水を5℃に冷却し、SV=1[/hr]で3.5kgf/cm2の条件にて先述のイオン交換樹脂層に通液した。
得られた精製過酸化水素水は、鉄の含量が0.5重量pptで、その他の元素についても以下の表2に示す通り、極めて高純度な精製過酸化水素水であった。尚、検出できなかった(検出下限以下)元素については、「ND」と記した。
【0042】
【表2】
Figure 0004013646
【0043】
[比較例2]
H型に調製されたカチオン交換樹脂(三菱化学社製、ダイヤイオンPK228)と、較例例1と同様に調製した重炭酸塩型アニオン交換樹脂を容量比1:1で混合した混床樹脂を用いた以外は、実施例2と同様に行った。混床樹脂中の鉄は800pg/ml-resin(DRY)であり、高純度化されていなかった。また得られた精製過酸化水素水は鉄の含有量が3重量pptと高いものであった。
【0044】
[実施例3]
アニオン交換樹脂の重炭酸型化において、接触する重炭酸アンモニウム量を膨潤樹脂1リットル当たり3000gに増量した以外は、実施例1と同様に行った。
得られた重炭酸塩型アニオン交換樹脂中の鉄含有量は500pg/ml-resin(DRY)であった。実施例1での結果を参照すると明らかなとおり、本発明に於いては、多量の重炭酸アンモニウム水溶液とアニオン交換樹脂とを接触させても、金属不純物(鉄)の含有量は殆ど変化せず、金属不純物含有量の増加が抑えられていることが判る。
【0045】
この様に、本発明のアニオン交換樹脂の製造方法によって得られた高純度のアニオン交換樹脂を、好ましくは従来技術の高純度カチオン交換樹脂との混床とすることで、高度に精製された精製過酸化水素水を得ることが出来る。
【0046】
[実施例4]
6重量%重炭酸ナトリウム水溶液10容量に対し、1容量のドライアイスを投入し、完全に固体がなくなるまで室温にて放置した。得られた水溶液のpHは7.4、酸化還元電位は200mVであった。この水溶液を用いた以外は実施例2と同様に重炭酸塩型アニオン交換樹脂を調整した。これをH型に調製された市販のカチオン交換樹脂(三菱化学社製、ダイヤイオンSKT20L)と1:1の容量比で混合し、混床を調製した。得られた混床樹脂層中の鉄含有量は300pg/ml-resin(DRY)と、低いものであった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anion exchange resin, a method for producing the same, and a method for producing hydrogen peroxide using the same. Specifically, the present invention relates to an anion exchange resin having a very small impurity content, a method for producing the same, and a method for producing a high-purity hydrogen peroxide solution (purified hydrogen peroxide solution) using the anion exchange resin.
[0002]
[Prior art]
Several productions of hydrogen peroxide are known, but most are currently produced by the anthraquinone auto-oxidation method. In this production method, for example, first, 2-alkylanthraquinone is dissolved in a solvent insoluble in water to obtain a working liquid, and this is hydrogenated in the presence of a catalyst to obtain 2-alkylanthrahydroquinone. Next, after separating the catalyst, it is oxidized to the original 2-alkylanthraquinone by air and the generated hydrogen peroxide is extracted with water. Then, a method of obtaining a hydrogen peroxide solution having a desired purity and concentration by adjusting the degree of purification and concentration (usually 5 to 70% by weight) of the obtained crude hydrogen peroxide solution by distillation or the like is common. .
[0003]
In the hydrogen peroxide solution obtained by such a method, anthraquinones, organic impurities derived from hydraulic fluid, and various metal impurities (Fe, Cr, Ni, Al, Na, Si, etc.) are contained, and there are also cases where an acid such as phosphoric acid, sodium stannate or the like is contained as a stabilizer. In general, the content of such impurities and the like is several to several tens of ppm by weight as metal impurities, and the organic impurities are 20 to several hundred ppm by weight as the total organic carbon content (TOC).
[0004]
Such hydrogen peroxide solution is used after being purified according to the quality requirements of the intended purpose and application. In addition to the use of paper, pulp, fibers, etc. for bleaching and chemical polishing liquids, etc., in recent years, silicon wafers and cleaning agents used in device manufacturing processes on these wafers, so-called semiconductor device manufacturing processes The use of high-purity purified hydrogen peroxide solution in the field of electronic industry is popular.
[0005]
In this way, the purified hydrogen peroxide solution used in the field of electronics industry has reduced all impurities (metal impurity components, organic impurities, fine particles, etc.) in the hydrogen peroxide solution as much as possible with the high integration of devices. Extremely high-purity product quality is required.
Various methods for obtaining such purified hydrogen peroxide solution have been proposed. For example, ion exchange methods (cation exchange resins, anion exchange resins, chelate resins, etc.), adsorption methods (synthetic adsorbents, activated carbon, etc.) Distillation methods, membrane methods (microfiltration membranes, ultrafiltration membranes, reverse osmosis membranes, etc.), crystallization / melting methods, foam separation methods, and the like have been proposed. Of these, it has been proposed to remove various impurities by using a single method or a combination thereof. (JP-A-7-33408, JP-A-8-231208, and JP-A-8-245204; US Pat. No. 4,999,179, US Pat. No. 4,985,228; WO92 / 069818 etc).
[0006]
In recent years, there has been proposed a method for producing hydrogen peroxide water with a higher purity, specifically, the impurity content reduced to a level of a few ten weight ppt. For example, Japanese Patent Application Laid-Open No. 10-259008, Japanese Patent Application Laid-Open No. 10-259090, and Japanese Patent Application Laid-Open No. 9-205205 describe purified hydrogen peroxide solution having an impurity content of 10 to several tens weight ppt.
[0007]
However, in the purification methods described in these documents, the content of impurities such as iron in the purified hydrogen peroxide solution obtained cannot be less than 1 wt ppt. This may be because iron contained in the ion exchange resin base material used in the purification process is eluted. That is, even if the ion exchange resin is washed with high-purity hydrochloric acid or the like before use, it is considered that iron is attached to the ion exchange resin when the ion exchange resin is converted into a bicarbonate type.
[0008]
Further, as described in JP-A-10-259009, even if it is attempted to suppress elution of iron into the hydrogen peroxide solution by shortening the contact time between the hydrogen peroxide solution and the ion exchange resin, When the iron content is high, the ion adsorption zone becomes long and iron leaks, so it is conceivable that the degree of purification of the hydrogen peroxide solution will reach its peak.
[0009]
Therefore, recently, for example, as described in JP-A-11-171508, JP-A-2002-80207, JP-A-2002-80208, JP-A-2002-80209, and the like, the impurity content is 1 wt ppt or less. A method for producing purified hydrogen peroxide water has been proposed.
[0010]
[Problems to be solved by the invention]
However, even in these methods, the impurity content of the purified hydrogen peroxide solution is reduced, but there is a problem that an excessive load is applied to the pretreatment of the ion exchange resin used in the purification process. In addition, there is a problem that the purification process of the hydrogen peroxide solution requires a multi-stage complicated purification process, and the impurities present in the hydrogen peroxide solution, particularly the metal impurity concentration, are efficiently industrially advantageous. It was not always sufficient as a very low method.
[0011]
In view of such a current situation, the present inventors reduced the content of impurities present in hydrogen peroxide water, particularly metal impurities such as iron, to about 1 wt ppt by a simple method, and highly refined it. The method for obtaining the hydrogen peroxide solution was intensively studied.
[0012]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the anion exchange resin mainly removes metal impurities such as iron in the hydrogen peroxide solution, and the cation exchange resin tower is the final stage in the purification process using the ion exchange resin. It was found that the ion exchange resin must be highly purified to suppress elution of metal impurities such as iron from the final stage.
[0013]
And such a high purity anion exchange resin does not cause precipitation of metal impurities such as iron, and uses an aqueous carbonate solution and / or an aqueous bicarbonate solution adjusted to a specific pH-oxidation-reduction potential. It was found that it can be obtained by making it a carbonate type or a bicarbonate type.
In addition, by using such an anion exchange resin layer containing an anion exchange resin that contributes to removal of metal impurities such as iron, it is preferably used as a mixed bed layer of a cation exchange resin and an anion exchange resin. When metal impurities such as iron in the entire exchange resin layer are reduced to a specific amount or less, it is preferable that the purified hydrogen peroxide obtained by making the space velocity of the hydrogen peroxide solution flowing through the exchange resin layer constant or less. It has been found that the content of metal impurities such as iron in water can be made extremely low, and the present invention has been completed.
[0014]
At this time, since at least the anion exchange resin is highly purified, the H-type cation exchange resin used in combination as a mixed bed is a commercially available cation exchange resin (for example, a metal impurity content of about 100 to 200 weight ppb). However, by using this mixed bed, a hydrogen peroxide solution containing metal impurities such as iron of 1 weight ppb or more can be obtained without passing through a purification process using a complicated multi-stage ion exchange resin. The inventors have found that an extremely high purity purified hydrogen peroxide solution having a weight of 1 ppt or less can be obtained, and the present invention has been completed.
[0015]
That is, the gist of the present invention resides in a highly pure carbonate-type or bicarbonate-type anion exchange resin having an iron content of 500 pg / ml-resin (DRY) or less and a very low impurity content.
In another aspect of the present invention, the OH type strongly basic anion exchange resin is treated with an aqueous carbonate solution and / or an aqueous bicarbonate solution having a pH of less than 8 and an oxidation-reduction potential of 250 mV or less. And an anion exchange resin having an iron content of 500 pg / ml-resin (DRY) or less.
[0016]
Furthermore, another aspect of the present invention resides in a method for producing purified hydrogen peroxide solution, characterized in that hydrogen peroxide solution is brought into contact with the above-described anion exchange resin layer containing the high-purity anion exchange resin.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
(1) Anion exchange resin and production method thereof The carbonate type or bicarbonate type anion exchange resin of the present invention (hereinafter sometimes simply referred to as “anion exchange resin”) has a wet iron content. ion exchange resin layer volume 1ml per absence, 500 pico (10 12) grams or less, or "500pg / ml-resin (DRY)" or less, an extremely low impurity content, a high purity of anion exchange resin is there.
[0018]
By using the highly purified anion exchange resin in this way, a purified hydrogen peroxide solution having an impurity content of 1 ppt or less can be obtained. The iron content in the anion exchange resin of the present invention is preferably as low as 500 pg / ml-resin (DRY) or less, more preferably 450 pg / ml-resin (DRY) or less.
The method for producing the anion exchange resin of the present invention is arbitrary. For example, when producing an anion exchange resin of carbonate type or bicarbonate type, the anion exchange resin once converted to OH type is converted into a carbonate type or bicarbonate. An anion exchange resin with extremely reduced metal impurities can be obtained by treatment with an aqueous carbonate solution and / or bicarbonate aqueous solution having a pH of less than 8 and an oxidation-reduction potential of 250 mV or less when molding. preferable.
[0019]
The pH of the aqueous carbonate solution or bicarbonate aqueous solution used when the anion exchange resin is converted to carbonate type or bicarbonate type is naturally higher than 7, but if the pH is too high, iron hydroxide precipitates. There is a case. Therefore, the pH is preferably closer to neutrality (pH = 7), and is preferably 7.8 or less, particularly 7.5 or less.
An arbitrary value may be selected as long as the redox potential is 250 mV or less. If this value is too high, for example, the content of metal impurities such as iron in the anion exchange resin due to precipitation of iron hydroxide increases, such being undesirable.
[0020]
However, as the properties of iron, since it becomes difficult to ionize in an aqueous solution whose oxidation-reduction potential has dropped to 0 mV or less, the oxidation-reduction potential of the bicarbonate aqueous solution used exceeds 0 to 250 mV, and further 20 to 220 mV. Preferably there is.
An aqueous carbonate solution or an aqueous bicarbonate solution itself often exhibits such a redox potential. Therefore, when using an aqueous carbonate solution or an aqueous bicarbonate solution in the method for producing an anion exchange resin of the present invention, If the redox potential of the aqueous solution is 250 mV or less, it may be used as it is, or a solution obtained by dissolving hydrochloric acid, carbon dioxide gas or the like in these aqueous solutions to reduce the redox potential may be used.
[0021]
Examples of the carbonate or bicarbonate include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as calcium and magnesium salts, ammonium salts, and the like.
In general, as a method of reducing the oxidation-reduction potential, for example, there is a method of adding hydrochloric acid or the like to an aqueous carbonate solution or an aqueous bicarbonate solution to such an extent that the pH does not become 7 or less.
[0022]
However, when the anion exchange resin is treated with this aqueous solution, bicarbonate formation is inhibited by the presence of chlorine, and chlorine may be trapped in the anion exchange resin. And when hydrogen peroxide water is purified using such anion exchange resin, chlorine ions are mixed in the purified hydrogen peroxide water, so a process for removing this is necessary, which is an industrially complicated process. It may become.
[0023]
Therefore, in order to set the aqueous solution used in the carbonated or bicarbonated salt of the anion exchange resin to pH = 8 or less and the oxidation-reduction potential = 220 mV or less,
{Circle around (1)} Select a salt type (select a carbonate / bicarbonate satisfying this condition simply by making an aqueous solution).
{Circle around (2)} After preparation of the aqueous solution, a substance that does not inhibit carbonate formation or bicarbonate formation is added to adjust the aqueous solution, and then the pH and oxidation-reduction potential are adjusted.
Two methods are conceivable.
[0024]
In (1), it is preferable to use an ammonium salt. In (2), carbon dioxide gas is blown into a carbonate or bicarbonate aqueous solution or dry ice is added to forcibly dissolve carbon dioxide gas or the like in the aqueous solution. There is a method of lowering the pH and reducing the redox potential.
From the viewpoint of preventing deposited metal impurities such as iron from adhering to the anion exchange resin, both (1) and (2) are preferred, but metal salts should not be used as much as possible from the viewpoint of preventing metal impurity contamination. Therefore, a method using an ammonium salt as in (1) is more preferable.
[0025]
If the conditions of pH and oxidation-reduction potential as described above are satisfied, the concentration of the carbonate aqueous solution or bicarbonate aqueous solution and the content of metal impurities such as iron are arbitrary.
It should be noted that the content of metal impurities such as iron is preferably as low as possible, but the carbonate aqueous solution or bicarbonate aqueous solution used in the present invention is acceptable even if it contains metal impurities of about 50 ppb as long as the above conditions are satisfied. sell. Therefore, since it is possible to use a commercially available general industrial grade reagent as it is without performing high-purification purification that requires a load, it is very preferable industrially.
[0026]
(2) Method for producing purified hydrogen peroxide solution The method for producing purified hydrogen peroxide solution according to the present invention comprises replacing the hydrogen peroxide solution with an anion exchange having an iron content of 500 pg / ml-resin (DRY) or less. It is made to contact with the anion exchange resin layer containing resin. Among them, it is preferable to make contact with an ion exchange resin layer having an iron content of 300 pg / ml-resin (DRY) or less, and it is particularly preferable to make contact with liquid passage conditions having a space time (SV) of 10 [/ hr] or less. preferable.
The ion exchange resin layer used in the present invention has an iron content of not more than 300 pico (10 −12 ) grams per 1 ml of the ion exchange resin layer in a wet state, that is, “300 pg / ml-resin (DRY) It is preferable that At this time, if the iron content is too large, the elution amount may be superior to the ion exchange removal ability, which is not preferable.
[0027]
In the present invention, the lower the iron content in the ion exchange resin layer to be used, the higher the purity of the purified hydrogen peroxide solution. However, if an attempt is made to obtain an ion exchange resin layer having a very high purity, the preparation of the ion exchange resin layer is too burdensome, and generally 1 to 300 pg / ml-resin (DRY), especially 10 to 290 pg / ml- It is preferable to use resin (DRY), particularly 50 to 280 pg / ml-resin (DRY).
[0028]
In the present invention, SV indicates the amount of liquid passed through the ion exchange resin capacity 1 for 1 hour. For example, the space velocity (SV) when 100 ml of resin is passed through 100 ml of resin in 1 hour is 10 [/ hr].
In the present invention, SV is preferably 10 [/ hr] or less. If the SV is too low, the decomposition of hydrogen peroxide is increased. Therefore, the SV may be appropriately selected according to operating conditions (system pressure / temperature). Generally, it is preferably 0.1 to 10 [/ hr], more preferably 0.3 to 8 [/ hr], and particularly preferably 0.5 to 5 [/ hr].
[0029]
As the raw material hydrogen peroxide solution used in the present invention, one having an arbitrary hydrogen peroxide concentration and an arbitrary impurity content (metal impurity amount, TOC) can be used. Use hydrogen water.
The concentration of hydrogen peroxide in the hydrogen peroxide solution used in the present invention is generally 5 to 70% by weight, but 20 to 50% by weight, particularly 25 to 40% by weight is preferred for use in the electronic industry.
[0030]
TOC may be present in several tens of ppm by weight, but when there are many ionic organic impurities, it may affect the competitive reaction during ion exchange, and therefore it is preferably 10 ppm by weight or less.
In the present invention, by using a high-purity anion exchange resin layer containing a specific high-purity anion exchange resin, preferably by passing under a low SV condition, the raw material hydrogen peroxide before purification, such as iron Even when the metal impurity content is 1 weight ppb or more, the effect is remarkably exhibited. Generally, it is preferable that the content of such metals and the metal impurities in which they are ionized is small. For example, the content of iron is preferably 1 to 50 weight ppb, particularly preferably 1 to 40 weight ppb.
[0031]
As described above, the anion exchange resin layer used in the present invention preferably has an iron content of 300 pg / ml-resin (DRY) or less. This anion exchange resin layer may be made of only an anion exchange resin, or may be a mixed bed mixed with a cation exchange resin, for example. Among them, a mixed bed with a cation exchange resin is preferable because iron eluted from the cation exchange resin can be removed in the layer.
[0032]
As the cation exchange resin to be used in combination, an arbitrary one such as a strong acid cation exchange resin and a weak acid cation exchange resin can be used. Among them, a mixed bed with a strong acid cation exchange resin is preferable for the purpose of removing neutral salts.
When the anion exchange resin layer used in the present invention is a mixed bed of a cation exchange resin and an anion exchange resin, the content of metal impurities in the cation exchange resin used is preferably as small as possible. However, in the present invention, it is preferable that the iron content in the entire anion exchange resin layer is preferably 300 pg / ml-resin (DRY) or less. In the mixed bed, the content of metal impurities such as iron in the cation exchange resin may be 100 pg / ml-resin (DRY) or more. Such a cation exchange resin can be obtained, for example, by washing a commercially available so-called unpurified cation exchange resin with pure water.
[0033]
As the anion exchange resin used in the method for producing purified hydrogen peroxide solution of the present invention, OH type, carbonate type, bicarbonate type (bicarbonate type), ammonium salt type and the like can be used, Among them, the carbonate type and the bicarbonate type are preferable from the viewpoints of extremely reducing metal impurities such as iron and reducing the amount of decomposition of the hydrogen peroxide solution in contact therewith.
Moreover, the conditions in the production method of the purified hydrogen peroxide solution of the present invention other than those described above may be appropriately selected and determined from the prior art. For example, as an operating condition of an anion exchange resin tower having an anion exchange resin layer, carbon dioxide gas and oxygen generated in the tower are dissolved in hydrogen peroxide water to stably produce purified hydrogen peroxide water. It is preferable to cool the hydrogen peroxide solution in the tower to 10 ° C. or less, preferably 7 ° C. or less, and supply the hydrogen peroxide solution as a raw material with a back pressure of 0.5 to 5 kgf / cm 2 .
[0034]
【Example】
Next, an Example is shown and this invention is demonstrated concretely. The present invention is not limited to the following examples as long as the gist thereof is not exceeded.
In the examples, the iron content in hydrogen peroxide water was measured using an ICP mass spectrometer.
The pH was measured using a pH meter “D-24” manufactured by HORIBA and a pH electrode “Type S005”. The oxidation-reduction potential was measured using the above-mentioned pH meter and electrode “9300-10D”.
[0035]
[Example 1]
Chloride-type anion exchange resin (Mitsubishi Chemical Corporation, Diaion PA316L: "Diaion" is a registered trademark of Mitsubishi Chemical) is packed in a column whose inner wall is made of fluororesin, and 2N-NaOH aqueous solution is SV = 2.5. The solution was washed with water after passing downflow for 2 hours.
[0036]
Next, 1.27 kg of 1N ammonium bicarbonate aqueous solution (7.9 wt%, iron content 40 wt ppb) having an iron content of 40 wt ppb, a pH of 7.5, and a redox potential of 100 mV = 2 to form a bicarbonate form by contact by downflow (this corresponds to contacting 1000 grams of ammonium bicarbonate per liter of wet resin). Subsequently, the bicarbonate type anion exchange resin was washed with 50 times or more of pure water.
The iron content in the obtained bicarbonate type anion exchange resin was 440 pg / ml-resin (DRY). The results are shown in Table 1.
[0037]
[Comparative Example 1]
A commercially available reagent-grade sodium bicarbonate was prepared by diluting in ultrapure water to obtain an aqueous sodium bicarbonate solution having a concentration of 6% by weight. Using this, the ion exchange resin was bicarbonated as in Example 2. The results are shown in Table 1. The iron content in the aqueous sodium bicarbonate solution used was less than 5 ppb, but the iron content in the resulting bicarbonate type anion exchange resin was 990 pg / ml-resin (DRY).
[0038]
[Table 1]
Figure 0004013646
[0039]
As is clear from Table 1, the iron content in the aqueous bicarbonate solution used in Comparative Example 1 is lower than that in Example 1, but the aqueous solution used in Example 1 is more in the ion exchange resin. This indicates that the amount of iron taken in is small and high purity is possible.
The reason for this is not clear, but from the pH-redox potential diagram, iron in the aqueous solution used in Comparative Example 1 exists as a hydroxide, and iron in the aqueous solution used in Example 1 is an oxide (cation). It is considered that the iron hydroxide is deposited and physically attached to the anion exchange resin surface.
On the other hand, in the aqueous solution of Example 1, many irons exist as cations and are hardly trapped by the anion exchange resin, and most of them are washed away as it is, so that it is considered that the resin is highly purified.
[0040]
[Example 2]
Cation exchange resin (Diaion SKT20L, manufactured by Mitsubishi Chemical Corporation) prepared in the H type and a bicarbonate type anion exchange resin prepared in the same manner as in Example 1 were mixed at a volume ratio of 1: 1 to obtain an ion exchange resin. An ion exchange resin used for a layer (mixed bed) was prepared. The iron content in the mixed-bed ion exchange resin was 270 pg / ml-resin (DRY).
[0041]
1000 ml of this ion-exchange resin for mixed bed was packed in an ion-exchange resin tower whose inner wall is made of a fluororesin, to form an ion-exchange resin layer. Next, a 35 wt% hydrogen peroxide solution containing 25 wt ppb of iron as a metal impurity is cooled to 5 ° C., and the above ion exchange is performed under the condition of SV = 1 [/ hr] and 3.5 kgf / cm 2. Liquid was passed through the resin layer.
The obtained purified hydrogen peroxide solution had an iron content of 0.5 wt ppt, and other elements were extremely purified hydrogen peroxide solution as shown in Table 2 below. Note that elements that could not be detected (below the lower limit of detection) were described as “ND”.
[0042]
[Table 2]
Figure 0004013646
[0043]
[Comparative Example 2]
A mixed bed resin prepared by mixing a cation exchange resin (Made by Mitsubishi Chemical, Diaion PK228) prepared in the H-type and a bicarbonate type anion exchange resin prepared in the same manner as in Comparative Example 1 at a volume ratio of 1: 1. The same procedure as in Example 2 was performed except that it was used. Iron in the mixed bed resin was 800 pg / ml-resin (DRY) and was not highly purified. Moreover, the obtained purified hydrogen peroxide solution had a high iron content of 3 wt ppt.
[0044]
[Example 3]
The anion exchange resin was converted to bicarbonate type in the same manner as in Example 1 except that the amount of ammonium bicarbonate in contact with the anion exchange resin was increased to 3000 g per liter of swelling resin.
The iron content in the obtained bicarbonate type anion exchange resin was 500 pg / ml-resin (DRY). As is apparent from the results in Example 1, in the present invention, even when a large amount of aqueous ammonium bicarbonate solution and an anion exchange resin are brought into contact with each other, the content of metal impurities (iron) hardly changes. It can be seen that the increase in the metal impurity content is suppressed.
[0045]
Thus, the highly purified anion exchange resin obtained by the method for producing an anion exchange resin of the present invention is preferably a highly purified purification by using a mixed bed with a high purity cation exchange resin of the prior art. Hydrogen peroxide water can be obtained.
[0046]
[Example 4]
One volume of dry ice was added to 10 volumes of a 6% by weight sodium bicarbonate aqueous solution and left at room temperature until the solids disappeared completely. The obtained aqueous solution had a pH of 7.4 and an oxidation-reduction potential of 200 mV. A bicarbonate type anion exchange resin was prepared in the same manner as in Example 2 except that this aqueous solution was used. This was mixed with a commercially available cation exchange resin (Mitsubishi Chemical Corporation, Diaion SKT20L) prepared in the H shape at a volume ratio of 1: 1 to prepare a mixed bed. The iron content in the obtained mixed bed resin layer was as low as 300 pg / ml-resin (DRY).

Claims (7)

OH型強塩基性アニオン交換樹脂を、pHが8未満で且つ酸化還元電位が250mV以下である、炭酸塩水溶液及び/又は重炭酸塩水溶液で処理することにより得られる、鉄の含有量が500pg/ml-resin(DRY)以下の炭酸塩型又は重炭酸塩型アニオン交換樹脂。  The iron content obtained by treating the OH type strongly basic anion exchange resin with an aqueous carbonate solution and / or an aqueous bicarbonate solution having a pH of less than 8 and an oxidation-reduction potential of 250 mV or less is 500 pg / Carbonate-type or bicarbonate-type anion exchange resin below ml-resin (DRY). 過酸化水素水を、請求項1に記載のアニオン交換樹脂を含むアニオン交換樹脂層と接触させることを特徴とする精製過酸化水素水の製造方法。  A method for producing a purified hydrogen peroxide solution, comprising bringing the hydrogen peroxide solution into contact with an anion exchange resin layer containing the anion exchange resin according to claim 1. アニオン交換樹脂層の鉄の含有量が300pg/ml-resin(DRY)以下であることを特徴とする請求項2に記載の精製過酸化水素水の製造方法。  The method for producing purified hydrogen peroxide solution according to claim 2, wherein the content of iron in the anion exchange resin layer is 300 pg / ml-resin (DRY) or less. 過酸化水素水を、空間時間(SV)が10[/hr]以下の通液条件でアニオン交換樹脂層と接触させることを特徴とする請求項2又は3に記載の精製過酸化水素水の製造方法。The purified hydrogen peroxide solution according to claim 2 or 3 , wherein the hydrogen peroxide solution is brought into contact with the anion exchange resin layer under a liquid passage condition in which a space time (SV) is 10 [/ hr] or less. Method. 鉄含有量が1重量ppb以上の過酸化水素水を、アニオン交換樹脂層と接触させることを特徴とする請求項2乃至のいずれかに記載の精製過酸化水素水の製造方法。The method for producing purified hydrogen peroxide solution according to any one of claims 2 to 4 , wherein a hydrogen peroxide solution having an iron content of 1 wt ppb or more is brought into contact with the anion exchange resin layer. 精製過酸化水素水における鉄の含有量が1重量ppt以下であることを特徴とする請求項2乃至5のいずれかに記載の精製過酸化水素水の製造方法。Method for producing a purified aqueous hydrogen peroxide solution according to any one of claims 2 to 5 the content of iron in the purified aqueous hydrogen peroxide is equal to or less than 1 wt ppt. アニオン交換樹脂層が炭酸塩型又は重炭酸塩型アニオン交換樹脂と強酸性カチオン交換樹脂からなる混床であることを特徴とする請求項2乃至のいずれかに記載の精製過酸化水素水の製造方法。Anion exchange resin layer is purified aqueous hydrogen peroxide according to any one of claims 2 to 6, characterized in that a mixed bed consisting of carbonate or bicarbonate type anion exchange resin and a strongly acidic cation exchange resin Production method.
JP2002143503A 2002-05-17 2002-05-17 Anion exchange resin, method for producing the same, and method for producing purified hydrogen peroxide water using the same Expired - Fee Related JP4013646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002143503A JP4013646B2 (en) 2002-05-17 2002-05-17 Anion exchange resin, method for producing the same, and method for producing purified hydrogen peroxide water using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143503A JP4013646B2 (en) 2002-05-17 2002-05-17 Anion exchange resin, method for producing the same, and method for producing purified hydrogen peroxide water using the same

Publications (2)

Publication Number Publication Date
JP2003334458A JP2003334458A (en) 2003-11-25
JP4013646B2 true JP4013646B2 (en) 2007-11-28

Family

ID=29703494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143503A Expired - Fee Related JP4013646B2 (en) 2002-05-17 2002-05-17 Anion exchange resin, method for producing the same, and method for producing purified hydrogen peroxide water using the same

Country Status (1)

Country Link
JP (1) JP4013646B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130301A (en) * 2009-06-01 2013-06-05 奥加诺株式会社 Water treatment device for fuel cell

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499433B2 (en) * 2007-11-06 2014-05-21 栗田工業株式会社 Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
KR101814304B1 (en) * 2013-12-26 2018-01-04 오르가노 코포레이션 Anion exchanger, mixture of anion exchanger and cation exchanger, mixed bed comprising anion exchanger and cation exchanger, production processes therefor, and method for purifying aqueous hydrogen peroxide solution
JP6885922B2 (en) * 2015-04-06 2021-06-16 ラシルク,インコーポレイテッドRasirc, Inc. Methods and systems for purification of hydrogen peroxide solution
KR102068477B1 (en) * 2017-12-28 2020-01-21 주식회사 삼양사 Method for purifying hydrogen peroxide solution using anion exchange resin and cation exchange resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130301A (en) * 2009-06-01 2013-06-05 奥加诺株式会社 Water treatment device for fuel cell

Also Published As

Publication number Publication date
JP2003334458A (en) 2003-11-25

Similar Documents

Publication Publication Date Title
EP1167290B1 (en) Process for producing purified aqueous hydrogen peroxide solution
US3725530A (en) Method of removing mercury vapor from gases
US5733521A (en) Process for producing a purified aqueous hydrogen peroxide solution
US5232680A (en) Method for purifying hydrogen peroxide for microelectronics uses
KR100426435B1 (en) Process for producing a purified aqueous hydrogen peroxide solution
CA1214621A (en) Process for removing aluminum and silica from alkali metal halide brine solutions
US6649139B2 (en) Process for producing a purified aqueous hydrogen peroxide solution
JP4013646B2 (en) Anion exchange resin, method for producing the same, and method for producing purified hydrogen peroxide water using the same
JP3334142B2 (en) Treatment method for fluorine-containing water
JP3171058B2 (en) Hydrogen peroxide water purification method
JP3849724B2 (en) Production method of high purity hydrogen peroxide water
JP4051507B2 (en) Manufacturing method of high purity hydrogen peroxide solution
JPH09278417A (en) Production of high purity hydrogen peroxide solution
JPH09278416A (en) Production of high purity hydrogen peroxide solution
US5976487A (en) Process for purifying an aqueous solution of hydrogen peroxide
JP3861932B2 (en) Method for producing purified hydrogen peroxide
JPH0118006B2 (en)
JPH0920505A (en) Purification of hydrogen peroxide aqueous solution
SE512074C2 (en) Method of Removing Calcium Ions and Silicon Compounds from Liquid in an Alkali Metal Chlorate Process
JP2002263507A (en) Method for preparing ion exchange resin
JP2608825B2 (en) Purification method of aqueous hydrogen peroxide solution
JPS6345116A (en) Purification of saline water for ion exchange membrane electrolysis
JPH0912306A (en) Method for refining aqueous hydrogen peroxide
JPH0975605A (en) Removal of organic impurity in aqueous solution of hydrogen peroxide
JPH08168784A (en) Production of pure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees