JP3605041B2 - 露光方法及び装置、デバイス製造方法、並びに、デバイス - Google Patents

露光方法及び装置、デバイス製造方法、並びに、デバイス Download PDF

Info

Publication number
JP3605041B2
JP3605041B2 JP2001019133A JP2001019133A JP3605041B2 JP 3605041 B2 JP3605041 B2 JP 3605041B2 JP 2001019133 A JP2001019133 A JP 2001019133A JP 2001019133 A JP2001019133 A JP 2001019133A JP 3605041 B2 JP3605041 B2 JP 3605041B2
Authority
JP
Japan
Prior art keywords
transparent substrate
exposure
light
pattern
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001019133A
Other languages
English (en)
Other versions
JP2002222755A (ja
Inventor
謙治 斉藤
耕久 稲生
亮 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001019133A priority Critical patent/JP3605041B2/ja
Priority to US10/051,985 priority patent/US6721040B2/en
Publication of JP2002222755A publication Critical patent/JP2002222755A/ja
Application granted granted Critical
Publication of JP3605041B2 publication Critical patent/JP3605041B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70325Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses

Description

【0001】
【発明の属する技術分野】
本発明は、一般には、露光装置に関し、特に、半導体ウェハ用の単結晶基板、液晶ディスプレイ(LCD)用のガラス基板などの被処理体を露光するのに使用される露光方法及び装置、前記被処理体を使用するデバイスの製造方法、及び、前記被処理体から製造されるデバイスに関する。本発明の露光方法及び露光装置は、例えば、IC、LSI等の半導体チップ、液晶パネル等の表示素子、磁気ヘッド等の検出素子、CCD等の撮像素子といった各種デバイスの製造に用いられる。
【0002】
【従来の技術】
従来より、IC、LSI、液晶パネル等のデバイスをフォトリソグラフィー技術を用いて製造する時には、フォトマスク又はレチクル等(以下、「マスク」と記す。)の回路パターンを投影光学系によってフォトレジスト等が塗布されたシリコンウェハ又はガラスプレート等(以下、「ウェハ」と記す。)の感光基板上に投影し、そこに回路パターンを転写する(回路パターンで露光する)投影露光方法及び投影露光装置が使用されている。
【0003】
上記デバイスの高集積化に対応して、ウェハのチップ領域に転写するパターンの微細化即ち高解像度化とウェハにおける1チップ領域の大面積化とが要求されており、従ってウェハに対する微細加工技術の中心を成す上記投影露光方法及び投影露光装置においても、現在、0.5μm以下の寸法(線幅)の像を広範囲に形成するべく、解像度と露光面積の向上が計られている。
【0004】
従来の投影露光装置の摸式図を図13に示す。図13中、191は遠紫外線露光用光源であるエキシマレーザ、192は照明光学系、193は照明光、194はマスク、195はマスク194から出て光学系196に入射する物体側露光光、196は縮小投影光学系、197は光学系196から出て感光基板であるウェハ198に入射する像側露光光、199は感光基板を保持する基板ステージを示す。
【0005】
エキシマレーザ191から出射したレーザ光は、引き回し光学系によって照明光学系192に導光され、照明光学系192により所定の光強度分布、配光分布、開き角(開口数NA)等を持つ照明光193とされ、この照明光193がマスク194を照明する。マスク194にはウェハ198上に形成する微細パターンを投影光学系196の投影倍率の逆数倍(例えば2倍や4倍や5倍)した寸法のパターンがクロム等によって石英基板上に形成されており、照明光193はマスク194を透過する時に微細パターンによって回折され、物体側露光光195となる。投影光学系196は、物体側露光光195を、マスク194の微細パターンを上記投影倍率で且つ充分小さな収差でウェハ198上に結像する像側露光光197に変換する。像側露光光197は図13の下部の拡大図に示されるように、所定の開口数NA (=sinθ )でウェハ198上に収束し、ウェハ198上に微細パターンの像を結ぶ。基板ステージ199は、ウェハ198の互いに異なる複数の領域(ショット領域:1個又は複数のチップとなる領域)に順次微細パタ−ンを形成するために、投影光学系の像平面に沿ってステップ移動することによりウェハ198の投影光学系196に対する位置を変える。
しかしながら、現在主流の上記のエキシマレーザを光源とする投影露光装置は、0.10μm以下のパターンを形成することが困難である。
投影光学系196は、露光光の波長(以下、「露光波長」と記す。)に依存する光学的な解像度と焦点深度との間のトレードオフによる解像度の限界がある。投影露光装置の解像度Rと焦点深度DOFは、次の数式1と数式2の如きレ−リ−の式によって表される。
【0006】
【数1】
Figure 0003605041
【0007】
【数2】
Figure 0003605041
【0008】
ここで、λは露光波長、NAは投影光学系196の像側の開口数であり、k、kの値は通常0.5〜0.7程度であり、位相シフト等の解像力増強方を用いても0.4程度に止まる。これら両式から、解像度Rを小さい値とする高解像度化には開口数NAを大きくする「高NA化」があるが、実際の露光では投影光学系196の焦点深度DOFをある程度以上の値にする必要があるため、高NA化をある程度以上進めることは不可能であり、従って更なる高解像度化には露光波長λを小さくする「短波長化」が必要となることとが分かる。
【0009】
ところが短波長化を進めていくと重大な問題が発生する。この問題とは投影光学系196のレンズの硝材がなくなってしまうことである。殆どの硝材の透過率は遠紫外線領域では0に近く、特別な製造方法を用いて露光装置用(露光波長約248nm)に製造された硝材として合成石英が現存するが、この合成石英の透過率も波長193nm以下の露光波長に対しては急激に低下するし、0.10μm以下の微細パタ−ンに対応する露光波長150nm以下の領域で透過率が十分に高くて実用的な硝材の開発は非常に困難だと思われる。また遠紫外線領域で使用される硝材は、透過率以外にも、耐久性、屈折率均一性、光学的歪み、加工性等の複数の観点で一定の条件を満たす必要があり、この事からも露光波長150nm以下の領域で実用的な硝材の存在が危ぶまれる。
【0010】
このように従来の投影露光方法及び投影露光装置では、ウェハ198に0.10μm以下のパタ−ンを形成する為には150nm程度以下まで露光波長の短波長化が必要であるのに対し、この波長領域では実用的な硝材が存在しないので、ウェハ198に0.10μm以下のパターンを形成することができなかった。
【0011】
又、最近、光によって0.1μm以下の微細加工を可能にする手段として、近接場光学顕微鏡(以下SNOMと略す)の構成を用いた微細加工装置が提案されている。これは例えば100nm以下の大きさの微小開口から滲み出す近接場光を用いてレジストに光の波長限界を越える局所的な露光を行なう装置である。しかしながらこれらのSNOM構成のリソグラフィ装置ではいずれも1本あるいは数本の加工プローブで一筆書きのように微細加工を行なう構成のため、スループットが向上しないという問題点を有していた。
【0012】
これを解決する方法として公開特許平成8年第179493号公報に見られるように、光マスクに対してプリズムを設けて全反射となる角度で光を入射させ、全反射面から滲み出す近接場光を用いて光マスクのパターンをレジストに一括転写するという提案がなされている。
【0013】
上記公報に記載のプリズムを用いた近接場光による一括露光装置では、プリズム・マスクとレジスト面との間隔を100nm以下に設定することが必須である。しかしながら実際にはプリズム・マスク面全面に亘ってレジスト面との間隔を100nm以下にすることはプリズム・マスクや基板の面精度の限界から困難である。またプリズム・マスクと基板の位置合わせに少しでも傾きがあると、やはりプリズム・マスク面全面にわたってレジスト面との間隔を100nm以下に設定することが困難となる。
【0014】
この様な間隔の不均一性は露光パターンのむらや、プリズム・マスクによレジスト部分的に押しつぶすという問題を生じさせていた。
【0015】
上記課題を解決するため、近接場光を用いた露光方法及び露光装置では表側の面に幅が100nm以下の開口からなる微小開口パターンを有し、且つ弾性体で構成されてマスク面の法線方向に弾性変形可能なマスクを用いることにより、該マスクの表側の面に対向して配置した被露光物に該微小開口パターンの露光・転写を行なう方法も提案されている(公開特許平成11年第145051号公報)。
【0016】
しかしながら、マスクを用いた近接場光による露光では等倍の微細マスクを作成する必要があり、その作成の困難さや近接場マスクとウェハのアライメント等実用化には残された課題が多い。
【0017】
一方、入射光の強度に応じて光透過率が増大する薄膜をレジスト上に塗布し、該薄膜に光スポットを照射して薄膜の光透過率を局所的に増大させ、光スポットとレジストとを相対的に走査することによって薄膜の光透過率増大部を所望のパターンに形成し、薄膜の光透過率増大部を通してレジストを露光するレジストの露光方法が提案されている(公開特許平成9年第7935号公報)。この方式は、前記薄膜として、一定の融点又は昇華点を持つ不透明薄膜を用い、光スポットによって薄膜の温度が局所的にその融点又は昇華点を越えることにより、薄膜の光透過率を増大させた。このような薄膜の上をレーザ走査型露光装置で走査すると、レーザスポットの当たった部分では不透明薄膜の温度が上昇する。レーザスポットの光強度分布は一般にガウス分布をなしているから、薄膜の温度分布もほぼガウス分布をなす。したがってレーザパワーを調節することにより、レーザスポットサイズφよりもはるかに狭い領域wだけの温度を、融点以上とすることができる。この領域wでの薄膜は融点以上となって溶け、溶けた部分は光が通るようになるから、たとえばレーザスポットを直線状に走査した場合、不透明薄膜上にレーザスポットサイズφよりもはるかに細い幅wの直線状の光透過部分を形成することができる。こうして得られる不透明薄膜の光透過部分は、その幅wを細くすることができるだけでなく、一定間隔をおいて複数の直線状の光透過部分を形成した場合、その周期を光学的遮断周波数で決まる回折限界値よりもはるかに小さくすることができる。こうして形成された微小開口を通して近接場光によりレジストを露光する。
【0018】
【発明が解決しようとする課題】
しかし、公開特許平成9年第7935号公報に記載の露光方法は、レジストに光透過率が増大する薄膜を直接塗布するので、安定してその効果を引き出すことはできなかった。レジスト膜上への成膜という制限からレジストの性質に左右され均一に成膜することも困難であった。また、何千枚という被処理体に薄膜を形成しなければならず煩雑である。更に、レジストからこの薄膜を露光後に剥離する必要があり、レジストプロセス上の負荷が多い。このため、同公報の露光方法はスループットが悪いという問題がある。また、レジスト及びその下の基板には細かな凹凸があるために、レジスト上に薄膜を均一に積層又は形成することも困難である。このため、同公報の露光方法は露光の重ね合わせ精度が良くないという問題もある。
【0019】
【課題を解決するための手段】
そこで、新規かつ有用な露光方法及び装置、並びに、デバイス製造方法を提供することを本発明の概括的目的とする。
【0020】
より特定的には、本発明は、スループットが高い露光方法及び装置、並びに、デバイス製造方法を提供することを主目的とし、他にはスループットと重ね合わせ精度が高く、解像度の向上をもたらす露光方法及び装置、並びに、デバイス製造方法を提供することを例示的目的とする。
【0021】
本発明の一側面としての露光方法は、入射光の強度に応じて光透過率が変化する薄膜を有する透明基板と、被処理体とを近接場光が働く範囲内で配置するステップと、前記透明基板の前記薄膜にマスクの第1の線幅を持つ第1のパターンと第1の線幅よりも細い第2の線幅を持つ第2のパターンを投影し前記近接場光を利用して当該第2のパターンを前記被処理体露光するステップとを有することを特徴とする。
【0022】
本発明の別の側面としての露光装置は、被処理体に対して近接場光が働く範囲内で配置され、入射光の強度に応じて光透過率が変化する薄膜を有する透明基板を備え、マスクの第1の線幅を持つ第1のパターンと第1の線幅よりも細い第2の線幅を持つ第2のパターンとを前記透明基板の前記薄膜に投影し、前記近接場光を利用して当該第2のパターンを前記被処理体に露光する投影光学系を有することを特徴とする。
【0024】
本発明の更に別の側面としてのデバイス製造方法は、上述の露光装置を用いて被処理体を投影露光する工程と、前記投影露光された被処理体に所定のプロセスを行う工程とを有する。上述の露光装置の作用と同様の作用を奏するデバイス製造方法の請求項は、中間及び最終結果物であるデバイス自体にもその効力が及ぶ。また、かかるデバイスは、LSIやVLSIなどの半導体チップ、CCD、LCD、磁気センサー、薄膜磁気ヘッドなどを含む。
【0025】
本発明の他の目的及び更なる特徴は、以下添付図面を参照して説明される好ましい実施例によって明らかにされるであろう。
【0026】
【発明の実施の形態】
以下、添付図面を参照して、本発明の例示的な露光装置1について説明する。ここで、図1は、本発明の例示的な露光装置1の概略図を同図の左側に、また、透明基板40とプレート50の概略拡大図を同図の右側に示す。
【0027】
露光装置1は、図1に示すように、光源部10と、レチクル20と、投影光学系30と、透明基板40と、プレート50とを有する。露光装置1は等倍又は縮小一括露光を行ってもよいし、ステップアンドリピート投影方式やステップアンドスキャン投影方式でレチクル20に形成された回路パターンをプレート50に露光してもよい。ここで、「ステップアンドスキャン投影方式」は、レチクル20に対してプレート50を連続的にスキャンさせてレチクル20のパターンをプレート50に露光すると共に、1ショットの露光終了後プレートをステップ移動させて、次のショットの露光領域に移動させる投影露光法をいう。また、ステップアンドリピート投影方式はプレート50のショットの一括露光ごとにプレート50をステップ移動させて次のショットを露光領域に移動させる投影露光方法をいう。
【0028】
光源部10は、転写用の回路パターンが形成されたレチクル20を、必要があれば照明光学系を介して、照明光L1で照明する。光源部10は、例えば、光源として紫外光又は軟X線を出射するレーザーを使用する。レーザーは、波長約193nmのArFエキシマレーザー、波長約248nmのKrFエキシマレーザー、波長約15nmのF2エキシマレーザーなどを使用することができるが、レーザーの種類はエキシマレーザーに限定されず、例えば、He-CdレーザーやYAGレーザーを使用してもよいし、そのレーザーの個数も限定されない。また、光源部10に使用可能な光源はレーザーに限定されるものではなく、一又は複数の水銀ランプやキセノンランプなどのランプも使用可能である。
以上
【0029】
レチクル20は、例えば、石英製で、その上にはプレート50に転写されるべき回路パターン(又は像)が形成される。パタ−ンは投影光学系30の縮小投影倍率の逆数倍した寸法でクロム等によって形成される。光源部10による照明光L1はレチクル20を透過する時にパターンによって回折し、物体側露光光となる。レチクル20から発せられた回折光(露光光)は投影光学系30を通りプレート50上に投影される。プレート50はウェハや液晶基板などの被処理体でありレジスト54が塗布されている。レチクル20と透明基板40とは共役の関係にある。走査型投影露光装置であれば、レチクル20とプレート50を走査することによりレチクル20のパターンをプレート50上に転写する。露光装置1がステッパー(ステップアンドリピート露光方式の露光装置)の場合は、レチクル20とプレート50を静止させた状態で露光が行われる。
【0030】
投影光学系30はマスクパターンを通過した物体側露光光を等倍又は所定の投影倍率でかつ十分小さな収差で透明基板40上に結像する像側露光光に変換する。投影光学系30は、複数のレンズ素子のみからなる光学系、複数のレンズ素子と少なくとも一枚の凹面鏡とを有する光学系(カタディオプトリック光学系)、複数のレンズ素子と少なくとも一枚のBO(バイナリーオプティックス)などの回折光学素子とを有する光学系、全ミラー型の光学系等を使用することができる。色収差の補正が必要な場合には、互いに分散値(アッベ値)の異なるガラス材からなる複数のレンズ素子を使用したり、回折光学素子をレンズ素子と逆方向の分散が生じるように構成したりする。本実施例では投影光学系30を使用するので、レチクル20のパターンを縮小投影倍率でプレート50に転写することができる。このため、レチクル20のパターンの開口幅を近接場光が働く範囲内(例えば、約100nm以内)にしなくてもよいので大面積のレチクル20を現状の技術レベル作成することが可能である。
【0031】
透明基板40は、基体41と、安定化層42及び44と、入射光の強度に応じて光透過率が変化する薄膜43とを有する。図1から理解されるように、薄膜43は安定化層42及び44に挟まれている。基体41は、石英、フッ素ドープ石英、蛍石など、露光波長に対し透過率の良好な部材からなり、薄膜43を(本実施例では安定化層42を介して)支持する。基体は薄膜43の、性能が安定して発揮できる強度を有する厚さ、例えば、100μm乃至1000μmを有する。薄膜43は、光又は熱によって可逆的に微小開口を生じる光学的又は熱的な活性層であって相変化材料又は3次の非線形効果が大きい材料からなるものが好ましい。特に、アンチモン又はそれを主成分とする合金が好適である。安定化層42及び44は、Si等からなり、薄膜43の安定した相変化を可能にすると共に薄膜43を保護している。薄膜43及び安定化層42、44は、光パワーの減少を防ぐため酸素を組成に含まず透明なものが好ましい。本実施例の透明基板40は弾性変形可能な厚さを有し、プレート50と弾性的に密着及び剥離するが透明基板40が弾性変形可能であることは必ずしも必要ではない。
【0032】
透明基板40は、プレート50とは独立して製造される。プレート50の基板52及びレジスト54の表面には微細な凹凸やうねりが存在するため、透明基板40は、プレート50のレジスト52上に薄膜43を直接形成するよりも、薄膜43を高精度に形成することができる。この結果、露光装置1は、重ね合わせ精度を高めることができ、また、透明基板40を複数のプレート50に対して共通に使用することができるのでスループットを高めることができる。
【0033】
透明基板40は、例えば、基体41である石英上に安定化層42及び44としてSiを、薄膜43としてSbを成膜し、成膜されていない側からKOH水溶液で異方性エッチングを行い、安定化層42、44と薄膜43の積層を残すことによって製造されることができる。
【0034】
図2に、透明基板40の光強度と透過率との関係を示すグラフである。同図中、Iで示される(一点鎖線の)グラフは光強度に比例して透過率が増大する薄膜43の特性を示す。図2のIIで示される(実線の)グラフは光強度の所定の値で急激に透過率が増大し、飽和する特性を示す薄膜43の特性を示す。
【0035】
プレート50は、ウェハなどの基板52とそれに塗布されたフォトレジスト54から構成されている。レジスト54の塗布工程は、前処理と、密着性向上剤塗布処理と、レジスト54の塗布処理と、プリベーク処理とを含む。前処理は洗浄、乾燥などを含む。密着性向上剤塗布処理は、レジスト54と基板52との密着性を高めるための表面改質(即ち、界面活性剤塗布による疎水性化)処理であり、HMDS(Hexamethyl−disilazane)などの有機膜をコート又は蒸気処理する。プリベークはベーキング(焼成)工程であるが現像後のそれよりもソフトであり、溶剤を除去する。
【0036】
基板52はSi、GaAs、InP等の半導体基板や、ガラス、石英、BN等の絶縁性基板、又は、これらの基板上に金属、酸化物、窒化物等を成膜したものなど、広い範囲のものを使用することができる。但し、透明基板40と露光領域全域にわたって望ましくは10nm以下、少なくとも100nm以下の間隔になるよう配置されることが必要であるため、基板52にはなるべく平坦なものを選択する必要がある。
【0037】
同様に、レジスト54の形状も表面の凹凸が小さく平坦である必要がある。透明基板40からしみ出した近接場光の強度は透明基板40から遠ざかるにつれ指数関数的に減少するため、レジスト54を100nm以上の深いところまで露光することが困難である。また近接場光はレジスト54の中で散乱されるように広がるため、露光パターン幅が広がることを考慮すると、レジスト54の厚さは少なくとも約100nm以下でできるだけ薄くする必要がある。
【0038】
以上から、レジスト54の材料及びコーティング方法は、膜厚及びレジスト54表面の凹凸が望ましくは約10nm以下、少なくとも約100nm以下となるように選択される必要がある。例えば、汎用光レジスト材料をなるべく粘性が低くなる溶媒に溶かし、スピンコートで薄く、かつ、均一な厚さになるようにコーティングする方法を挙げることができる。他の光レジスト材料及びコーティング法の例として、一分子中に疎水基、親水基、官能基を有する両親媒性光レジスト材料分子を水面上に並べた単分子膜を所定の回数、基板上にすくいとって、基板上に単分子膜の累積膜を形成するラングミュアー・ブロジェット法(LB法)を挙げることもできる。更には、溶媒中や気相中で基板に対して一分子層だけで物理吸着又は化学結合することにより、基板上に光レジスト材料の単分子膜を形成する自己配向単分子膜形成法(SAM法)を用いてもよい。LB法やSAM法は極めて薄いレジスト膜を均一な厚さで平坦性よく形成することができるために好適である。
【0039】
本実施例では透明基板40が弾性変形してプレート50と密着及び剥離するが、透明基板40のプレート50と対向する面にその全面を覆うように吸着防止用の薄膜を厚さ約1乃至10nmとなるように形成し、レジスト54の上部にレジスト54の全面を覆うように別の吸着防止用の薄膜を厚さ約1乃至10nmとなるように形成し、これらの吸着防止薄膜の表面を、親水性及び疎水性の親和性に関して互いに異なる性質のものとなるように構成してもよい。例えば、一方の吸着防止薄膜の表面が親水性を示す場合、他方の吸着防止薄膜の表面は疎水性を示す材料を選択する。一般に表面が疎水性を示す材料としては、分子中に疎水性を示す官能基である一本以上の長鎖アルキル基やトリフルオロ基等を有する材料をそれらの官能基が表面側にくるような状態に分子の配向を制御して成膜すればよい。また、ポリメタクリレート誘導体やポリアクリレート誘導体等の水に不溶性の高分子化合物を成膜しても良い。逆に、一方の吸着防止薄膜の表面が疎水性を示す場合、他方の吸着防止薄膜の表面は親水性を示す材料を選択する。一般に表面が親水性を示す材料としては、分子中に親水性を示す官能基であるカルボキシル基や硫酸基(SO −)、アミノ基を有する材料をそれらの官能基が表面側にくるような状態に分子の配向を制御して成膜すればよい。両層は分子レベルで水素結合などの結合力が発生しないので互いになじむことなく大きな吸着力は発生しない。従って、密着した透明基板40とプレート50を剥離する際に、両吸着防止薄膜の間で容易に剥離させられる。
【0040】
近接場光を使用する露光では露光時、露光領域全面に亘って透明基板40とレジスト54/基板52の間隔を少なくとも約100nm以下に、均一に維持する必要がある。このため基板52はCMPプロセスによる平坦化を行っておくことが好ましい。
【0041】
レジスト54と透明基板40は、露光時には、近接場光が働く距離の範囲内、本実施例では0乃至光源部12から出射される露光光L1の波長以下、に密着される。近接場光は、薄膜43から波長の距離以下の近傍にのみ存在する非伝搬光であり、薄膜43から離れるとその強度が急激に減少する。そこで、近接場光がしみ出す薄膜43とレジスト54とを相対的に波長以下の距離にまで近づける。例えば、光源部12の光源に波長約248nmのKrFエキシマレーザーを使用する場合、透明基板40とプレート50との距離は波長の半分の約124nm以下に設定することが好ましい。同様に、光源部12の光源に波長約193nmのArFエキシマレーザーを使用する場合、透明基板40とプレート50との距離は波長の半分の約100nm以下に設定することが好ましい。
【0042】
透明基板40とプレート50を密着する方法は幾つかある。例えば、不図示の静電力発生手段を使用して透明基板40とプレート50との着脱を制御することができる。静電力発生手段は、例えば、透明基板40とプレート50との間に電圧を印加し、両者の間に静電力を発生させる。静電力が透明基板40とプレート50とを密着させる。透明基板40とプレート50との間の密着力の調節は、印加電圧の値の制御によって行なうことができる。
【0043】
露光の前後には透明基板40とプレート50とは着脱位置において密着及び分離される。本実施例では、透明基板40とプレート50とは着脱位置と露光位置との間で一体的に移動可能である。図7(a)及び(c)は、透明基板40とプレート50が着脱位置にある状態を、図1及び図7(b)は、透明基板40とプレート50が露光位置にある状態を示している。
【0044】
より詳細には、図7においては、透明基板40を露光前にチャック70に固定されたプレート50上にセットし、透明基板40、プレート50及びチャック70が、不図示のステージにより露光位置に搬送する。図7(a)の装着位置において、チャック70に予め固定されたプレート50上に透明基板40をセットする。透明基板40のプレート50に対する着脱は透明基板40の平坦性を維持するために透明基板40を傾斜することによって行われる。この際、透明基板40はプレート50全面を覆いさらに周辺がはみ出すように少し大きめに作成しておくと着脱性がよくなるため好ましい。図7(b)に示す露光位置で全ショット露光が完了してから不図示のステージでチャック70ごと移動し、図7(c)に示す分離位置で透明基板40をプレート50から分離する。図7(a)及び(c)においては、透明基板40の着脱はプレート50に対して傾斜して行われている。これは、透明基板40とプレート50との間に空気が入ることを防止するためである。両者の間に空気が入ると密着部分と非密着部分とが混在することになってしまう。非密着部分では透明基板40とプレート50とは近接場光が働く範囲内に配置されていないため、これでは露光むらが生じる。
【0045】
代替的に、図6に示す与圧容器60を使用して透明基板40とプレート50の密着性を高めてもよい。ここで、図6は、透明基板40とプレート50との密着性を可能にする例を示す概略図である。透明基板40とレジスト54の表面がともに完全に平坦であれば、全面にわたって両者を密着させることが可能である。しかし、実際には、透明基板40の表面やレジスト54/基板52の表面に凹凸やうねりが存在するので、両者を近づけて接触させただけでは、密着部分と非密着部分が混在する状態になってしまう可能性がある。上述したように、非密着部分では透明基板40とプレート50とは近接場光が働く範囲内に配置されていないため、これでは露光むらが生じる。そこで、本実施例は与圧容器60を介して透明基板40の裏面から表面側に圧力を印加し、透明基板40を弾性変形させてレジスト54へ押し付けることにより、両者を全面に亘って密着させている。また、透明基板40をプレート50から剥離する際はこれと逆の圧力印加を行う。
【0046】
与圧容器60は、透明基板40の入射側と射出側の圧力差を制御し、その上面には気体を遮断するガラス等からなる透明基板(又は光透過窓)62があり、下面には透明基板40が配置されている。与圧容器60は調節弁64を通して高圧ガス容器66が接続され、与圧容器60内の圧力を調整することができるように構成されている。上述したように、プレート50はチャック70に固定され、チャック70は不図示のステージ上に取り付けられている。
【0047】
プレート50はレチクル20と不図示のアライメント光学系によりアライメントされる。次に、調整弁64を開口して高圧ガス容器66からガスを与圧容器60内に導入して与圧容器60内部の圧力を高めた状態で調整弁64を閉口する。上述したように、透明基板40は弾性変形可能であるので、透明基板40はプレート50に押し付けられ、透明基板40とプレート50のレジスト54とは全面にわたって均一な圧力で十分に密着される。このような方法で圧力の印加を行うと、パスカルの原理により、透明基板40とレジスト54との間に作用する斥力が均一になり、透明基板40やレジスト54に局所的に大きな力が加わったりすることがなく、透明基板40やプレート50が局所的に破損することがなくなる。
【0048】
透明基板40とレジスト54との密着は、与圧容器60内の圧力を調整することによって調整される。透明基板40のプレート50と対向する面やレジスト54/基板52面の凹凸やうねりがやや大きいときには与圧容器60内の圧力を高めに設定して密着力を増大させ、凹凸やうねりによる透明基板40とプレート50との間隔ばらつきをなくすことができる。
【0049】
代替的に、透明基板40の表面側及びレジスト54/基板52側を減圧容器内に配置してもよい。この場合には、減圧容器内より高い外気圧との圧力差により透明基板40の裏面側から表面側に圧力がかかり、透明基板40とレジスト54との密着性を高めることができる。いずれにしても、透明基板40の表面側よりも裏面側が高い圧力となるように圧力差が設けられる。透明基板40のプレート50と対向する面やレジスト54/基板52面の凹凸やうねりがやや大きいときには、減圧容器内の圧力を低めに設定して密着力を増大させ、両者の間隔ばらつきをなくすことができる。
【0050】
この状態で露光がなされる。露光後、図示しない調整弁を開き、図示しない排気ポンプから与圧容器60内部を排気して与圧容器60の圧力を弱め、透明基板40をプレート50から弾性変形により分離(又は剥離)する。このような方法で減圧を行うと、パスカルの原理により、透明基板40とレジスト54との間に作用する斥力が均一になり、透明基板40やレジスト54に局所的に大きな力が加わったりすることがなく、透明基板40やプレート50が局所的に破損することがなくなる。
【0051】
その後、不図示のステージを移動し、プレート50を回収し、次のプレート50を同様にセットして露光を行なう。図6に示す例では、図7とは異なり、透明基板40は露光位置に固定されたままであり、プレート50のみがチャック70と共に着脱位置と露光位置の間を移動する。
【0052】
更に他の例として、高圧ガス容器66をその内部が光L1に対して透明な液体で満たされた容器に置換して、シリンダーを用いて容器内部の液体の圧力を調整するようにしてもよい。
【0053】
図8は、プレート50のフォーカス位置を検出するオートフォーカス(AF)光学系80を示す。AF光学系80は、図示しない制御部81と、スポット状又はシート状の計測ビーム(レジスト54を感光させない非露光光)を透明基板40に投射する投射系(又は発光部)82と、透明基板40の表面で反射した光を検出する検出系84と、チャック70を支持する図示しないステージ傾斜及び上下移動する移動機構86とを有する。
【0054】
制御部81(又は制御部81に接続された図示しないメモリ)には投影光学系30のベストフォーカス位置に関する情報を予め格納している。投射系82は、透明基板40の面の傾きをチェックするために複数個の光束を投光する。検出系84には各光束に対応して複数個の位置検出用の受光素子が配置されており、各位置検出用の受光素子の受光面と透明基板40上での各光束の反射点が投影光学系30によりほぼ共役となるように構成されている。透明基板40の光軸方向のずれは、検出系84の位置検出用の受光素子上での入射光束の位置ずれとして計測される。この結果、制御部81は、検出系84により計測された透明基板40のフォーカス基準位置からのフォーカス方向(即ち、光軸方向)のずれを算出することができる。制御部81は、検出系84からの検出信号に基づいてフォーカスとティルト補正を行なう。より具体的には、制御部81はチャック70を傾斜及び上下移動する移動機構86の駆動を制御することによってフォーカス補正とティルト補正を行う。なお、オートフォーカス補正は、検出系84上の光束の集光位置を直接調整するようなものや投影光学系30の焦点距離を変えるものでもよい。また焦点位置検出手段は光学式のほかに、空気圧を測定する方法や、静電容量センサーを用いてもよい。
【0055】
図9は、透明な平行平板である透明基板40の導入によって生じた球面収差を、投影光学系30のレンズ間隔を調整することによって補正する機構32を示す。その他各収差補正も補正光学部材の挿入や、補正光学素子の駆動などにより調整する。
【0056】
図10は、プレート50上に形成されたアライメントマーク16を利用して、プレート50のTTLアライメントを行なうアライメント光学系90を示す。アライメント光学系90は投影光学系30を介し、レンズ93、94及び検出器95から構成される。この際、透明基板40の挿入によって生じた収差をレンズ93及び/又は94を駆動する駆動機構96によって補正している。
【0057】
露光において、光源部10から発せられた光束はレチクル20を照明し、その後、投影光学系30によってレチクル20上のパターンが透明基板40に縮小投影される。投影光学系30によってレチクル20上のパターン像L2は透明基板40の薄膜43に結像され、その強度分布に応じて薄膜43の相変化をもたらし、薄膜43の内部に微細な光強度分布L3を生成する。光強度分布L3は、近接場光L4となり、薄膜43からしみだして安定化層44及びレジスト54へ到達し、透過率分布に応じた光強度分布でレジスト54を露光する。後述するように、レジスト54の閾値を適当に設定することにより、微細なレジストパターンをプレート50上に形成することができる。以下、近接場光がプレート50にレチクル20の微細なパターンを転写する仕組みを図3を参照して説明する。
【0058】
図3(a)は、投影基板40を有しない露光装置が、その解像度よりも細い線幅を有するレチクル20上のパターンをプレート50に投影した場合のプレート50上にできる光強度分布を示すグラフである。図3(a)から理解されるように、光強度分布はボケて、広がった分布となる。
【0059】
一方、透明基板40が使用される場合の薄膜43を透過した直後の光強度分布L3(図1参照)を図3(b)に示す。ここで、図3(b)の点線は、透過率が一定の場合の薄膜43を透過した光の光強度分布に対応しており、この場合は薄膜43を設けない場合と同様である。図3(b)の一点鎖線は、図2のI(一点鎖線)で示される透過率特性を有する薄膜43を透過した光の光強度分布に対応している。図3(b)の実線は、図2のII(実線)で示される透過率特性を有する薄膜43を透過した光の光強度分布に対応している。図3(b)の実線及び一点鎖線に示す薄膜43透過直後の光強度分布は図3(b)の点線で示す薄膜43がない状態と比較して急峻なものとなる。
【0060】
図3(b)の点線、一点鎖線及び実線のそれぞれの光強度分布にレジスト54を晒すと、レジスト54は図3(b)に示す閾値以上で感光するとすれば、レジスト54の閾値以上の部分のみがその後の現像工程により残り、図3(c)の点線、一点鎖線及び実線にそれぞれ示す線幅のパターンを得ることができる。
【0061】
この結果、このようにして形成されるレジスト54の線幅を予め所望の解像度となるように薄膜43の透過率特性と露光量及び、レジスト54の閾値を設定すればよいことが理解されるであろう。図3は光が照射された部分のみレジストが残るネガ型のレジストを用いた場合を示しているが、ポジ型のレジストを用いれば、レジストが残る所と、除去される所が反転したパターンを得ることができる。
【0062】
図4(a)は、透明基板40を有しない露光装置1の解像度よりも細いマスクパターン(左側)と太いマスクパターン(右側)とを同時に露光する場合を示している。左側の微細なマスクパターンは投影光学系の解像度R=k(λ/NA)よりも細いパターンである為、図3と同様にボケて広がり、ピーク強度も低い分布となる。一方、右側の太いマスクパターンは投影光学系の解像度より大きなパターンである為ボケずにほぼ一定の光強度分布を有し、光強度も高い。従って、透明基板40が存在しなければ、従来技術と同様の光転写が行われ、細いマスクパターンの転写ができなくなる。そこで、本実施例は光強度に対応して透過率が変化する薄膜43を設けて薄膜43を透過した直後の両者の透過光強度分布を最大値においてほぼ同一に設定している。この結果、レジスト閾値レベルに設定することにより、大きいパターンは所望の大きさのパターンを露光することができる。
【0063】
図5は、太いパターンと微細なパターンを含むデュアルゲートパターンの一例である。図5(a)は従来のパターンでゲート部は投影光学系の解像限界に留まっているが、本発明の露光方法及び装置によれば、図5(a)及び(b)の両方のゲート部を形成することができる。ゲート部の線幅が素子のスピードを決定するので、動作スピードの速い素子を作成することができる。このように、近接場光がレジスト54へのパターン転写を高精度に行うので、本発明の露光方法及び装置は高品位なデバイス(半導体素子、LCD素子、撮像素子(CCDなど)、薄膜磁気ヘッドなど)を提供することができる。
【0064】
次に、図11及び図12を参照して、上述の露光装置1を利用したデバイスの製造方法の実施例を説明する。図11は、デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。ここでは、半導体チップの製造を例に説明する。ステップ1(回路設計)ではデバイスの回路設計を行う。ステップ2(マスク製作)では、設計した回路パターンを形成したマスクを製作する。ステップ3(ウェハ製造)ではシリコンなどの材料を用いてウェハを製造する。ステップ4(ウェハプロセス)は前工程と呼ばれ、マスクとウェハを用いてリソグラフィ技術によってウェハ上に実際の回路を形成する。ステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作成されたウェハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ6(検査)では、ステップ5で作成された半導体デバイスの動作確認テスト、耐久性テストなどの検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ7)される。
【0065】
図12は、ステップ4のウェハプロセスの詳細なフローチャートである。ステップ11(酸化)ではウェハの表面を酸化させる。ステップ12(CVD)では、ウェハの表面に絶縁膜を形成する。ステップ13(電極形成)では、ウェハ上に電極を蒸着などによって形成する。ステップ14(イオン打ち込み)ではウェハにイオンを打ち込む。ステップ15(レジスト処理)ではウェハに感光剤を塗布する。ステップ16(露光)では、露光装置1によってマスクの回路パターンをウェハに露光する。ステップ17(現像)では、露光したウェハを現像する。ステップ18(エッチング)では、現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)では、エッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによってウェハ上に多重に回路パターンが形成される。本実施例の製造方法によれば従来よりも高品位のデバイスを製造することができる。
【0066】
以上、本発明の好ましい実施例を説明したが、本発明はこれらに限定されずその要旨の範囲内で種々の変形及び変更が可能である。
【0067】
以上説明した露光方法及び装置によれば、近接場光を利用するので被処理体に高い解像度で露光を施すことができる。また、かかる露光方法及び装置は、被処理体とは独立の部材としての透明基板を利用するので、凹凸やうねりが存在する可能性のある被処理体に薄膜を直接形成するよりも、薄膜を高精度に形成することができ、重ね合わせ精度を高めることができる。更に、かかる露光方法及び装置は、近接場光を発生させる透明基板を複数の被処理体に対して共通に使用するのでスループットを高めることができる。また、かかる露光方法及び装置は、投影光学系を使用するのでマスクパターンを薄膜に等倍投影のみならず縮小投影することができ、等倍露光用のマスクパターンよりも開口を大きくすることができ、現状の技術レベルで大面積のマスクが作成可能となった。に行える。露光の解像度及び重ね合わせ精度が高まったデバイス製造方法により、高品位な半導体、LCD、CCD、薄膜磁気ヘッドなどのデバイスを提供することができる。
【0068】
【発明の効果】
以上、本発明は直接場光を利用した露光工程のスループットを高めることができる。
【図面の簡単な説明】
【図1】本発明の例示的な露光装置の概略図である。
【図2】図1に示す露光装置に使用される透明基板の光強度と透過率との関係を示すグラフである。
【図3】図1に示す透明基板を透過した直後の透過光の光強度分布及び当該光強度分布により露光された後のレジスト膜厚分布を示すグラフである。
【図4】図1に示す露光装置を使用して露光される微細なマスクパターンとより太いマスクパターンとが同時に露光される場合を示すグラフである。
【図5】図1に示す露光装置によって露光される被処理体から製造されることが期待される、太いパターンと微細なパターンを含むデュアルゲートパターンの一例である。
【図6】図1に示す透明基板及びプレートとの着脱を説明するための概略図である。
【図7】図1に示す透明基板及びプレートとの着脱を説明するための別の概略図である。
【図8】図1に示す露光装置のプレートのフォーカス位置を検出するオートフォーカス光学系を示す概略図である。
【図9】図1に示す露光装置において、透明基板の導入によって生じた球面収差を、投影光学系のレンズ間隔を調整することによって補正する機構を示す概略図である。
【図10】図1に示す露光装置において、プレート上に形成されたアライメントマークを利用して、プレートのTTLアライメントを行なうアライメント光学系を示す概略図である。
【図11】本発明の露光工程を有するデバイス製造方法を説明するためのフローチャートである。
【図12】図11に示すステップ4の詳細なフローチャートである。
【図13】従来の露光装置を説明するための概略断面図である。
【符号の説明】
1 露光装置
10 光源部
20 レチクル又はマスク
30 投影光学系
40 透明基板
42 安定化層
43 薄膜
44 安定化層
50 プレート
60 与圧容器
70 チャック
80 オートフォーカス光学系
90 アライメント光学系

Claims (3)

  1. 入射光の強度に応じて光透過率が変化する薄膜を有する透明基板と、被処理体とを近接場光が働く範囲内で配置するステップと、
    前記透明基板の前記薄膜にマスクの第1の線幅を持つ第1のパターンと第1の線幅よりも細い第2の線幅を持つ第2のパターンを投影し前記近接場光を利用して当該第2のパターンを前記被処理体露光するステップとを有することを特徴とする露光方法。
  2. 被処理体に対して近接場光が働く範囲内で配置され、入射光の強度に応じて光透過率が変化する薄膜を有する透明基板を備え、
    マスクの第1の線幅を持つ第1のパターンと第1の線幅よりも細い第2の線幅を持つ第2のパターンを前記透明基板の前記薄膜に投影し前記近接場光を利用して当該第2のパターンを前記被処理体に露光する投影光学系を有することを特徴とする露光装置。
  3. 請求項記載の露光装置を用いて被処理体を投影露光する工程と、
    前記投影露光された被処理体に所定のプロセスを行う工程とを有することを特徴とするデバイス製造方法。
JP2001019133A 2001-01-26 2001-01-26 露光方法及び装置、デバイス製造方法、並びに、デバイス Expired - Fee Related JP3605041B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001019133A JP3605041B2 (ja) 2001-01-26 2001-01-26 露光方法及び装置、デバイス製造方法、並びに、デバイス
US10/051,985 US6721040B2 (en) 2001-01-26 2002-01-16 Exposure method and apparatus using near field light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001019133A JP3605041B2 (ja) 2001-01-26 2001-01-26 露光方法及び装置、デバイス製造方法、並びに、デバイス

Publications (2)

Publication Number Publication Date
JP2002222755A JP2002222755A (ja) 2002-08-09
JP3605041B2 true JP3605041B2 (ja) 2004-12-22

Family

ID=18885066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001019133A Expired - Fee Related JP3605041B2 (ja) 2001-01-26 2001-01-26 露光方法及び装置、デバイス製造方法、並びに、デバイス

Country Status (2)

Country Link
US (1) US6721040B2 (ja)
JP (1) JP3605041B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308002A (ja) * 2000-02-15 2001-11-02 Canon Inc フォトマスクを用いたパターン作製方法、及びパターン作製装置
US6847433B2 (en) * 2001-06-01 2005-01-25 Agere Systems, Inc. Holder, system, and process for improving overlay in lithography
DE10332112A1 (de) * 2003-07-09 2005-01-27 Carl Zeiss Smt Ag Projektionsbelichtungsverfahren und Projektionsbelichtungssystem
US20040101785A1 (en) * 2002-11-21 2004-05-27 Brown David R. Process of improved grayscale lithography
EP1576419A4 (en) * 2002-12-09 2006-07-12 Pixelligent Technologies Llc PROGRAMMABLE PHOTOLITHOGRAPHIC MASKS AND REVERSIBLE PHOTO-BLEACHABLE MATERIALS BASED ON NANOGRAPHER SEMICONDUCTOR PARTICLES AND APPLICATIONS THEREFOR
US6864020B1 (en) * 2002-12-24 2005-03-08 Lsi Logic Corporation Chromeless phase shift mask using non-linear optical materials
US20040160653A1 (en) * 2003-01-23 2004-08-19 Falk R. Aaron Systems and methods for correcting for spherical aberration in a scanning imaging system
JP2005070319A (ja) * 2003-08-22 2005-03-17 Canon Inc 近接場露光用フォトレジスト、及びこれを用いた微細パターンの作製方法
JP4389791B2 (ja) * 2004-08-25 2009-12-24 セイコーエプソン株式会社 微細構造体の製造方法および露光装置
KR100675313B1 (ko) * 2004-11-15 2007-01-26 한국기계연구원 근접장 레이저 패터닝 방법
JP4835708B2 (ja) 2009-03-10 2011-12-14 富士ゼロックス株式会社 光記録型表示媒体および記録装置
KR101566263B1 (ko) 2014-02-28 2015-11-05 연세대학교 산학협력단 초해상막 및 이를 이용한 리소그래피 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303436B2 (ja) * 1993-05-14 2002-07-22 キヤノン株式会社 投影露光装置及び半導体素子の製造方法
JPH07220988A (ja) 1994-01-27 1995-08-18 Canon Inc 投影露光方法及び装置及びこれを用いたデバイス製造方法
JPH08179493A (ja) 1994-12-22 1996-07-12 Hitachi Ltd 光露光または転写方法および装置またはそのためのマスク
JPH097935A (ja) 1995-06-23 1997-01-10 Nikon Corp レジストの露光方法
JP3950532B2 (ja) 1997-11-07 2007-08-01 キヤノン株式会社 露光方法及び露光装置
US6171730B1 (en) * 1997-11-07 2001-01-09 Canon Kabushiki Kaisha Exposure method and exposure apparatus

Also Published As

Publication number Publication date
US6721040B2 (en) 2004-04-13
JP2002222755A (ja) 2002-08-09
US20020105628A1 (en) 2002-08-08

Similar Documents

Publication Publication Date Title
KR100592571B1 (ko) 리소그래피 투영장치에서 사용하기 위한 패터닝 디바이스및 그 제조방법
US7173716B2 (en) Alignment apparatus, exposure apparatus using the same, and method of manufacturing devices
EP1549984B1 (en) Optical apparatus, exposure apparatus, and semiconductor device fabrication method
US5864433A (en) Astigmatism-correcting optical system, projection exposure apparatus using the optical system and device manufacturing method
US7001696B2 (en) Near-field light exposure mask with avoidance of overlap of near-field light, method for manufacturing the same, exposure apparatus and method using near-field light exposure mask, and method for manufacturing device
US20060164622A1 (en) Illumination apparatus, projection exposure apparatus, and device fabricating method
JP3605041B2 (ja) 露光方法及び装置、デバイス製造方法、並びに、デバイス
US7295326B2 (en) Apparatus and method for measuring the optical performance of an optical element
KR20080008312A (ko) 마이크로 디바이스에 대한 접촉
US20070188870A1 (en) Multilayer mirror manufacturing method, optical system manufacturing method, exposure apparatus, and device manufacturing method
US20040137338A1 (en) Mask, exposure apparatus, and exposure method
US6542219B2 (en) Optical correction plate, and its application in a lithographic projection apparatus
US20080239271A1 (en) Aberration measurement method, exposure apparatus, and device manufacturing method
US6627468B2 (en) Method for manufacturing optical element, optical element, optical system using optical element, optical apparatus and exposure apparatus using optical system, and method for manufacturing device
JP3919719B2 (ja) アライメントツール、リソグラフィ装置、アライメント方法、デバイス製造方法、およびそれにより製造されたデバイス
JP3958261B2 (ja) 光学系の調整方法
JP2002231614A (ja) 剥離用当て板、剥離装置及び方法
US20010046041A1 (en) Exposure apparatus and device manufacturing apparatus and method
US20040179179A1 (en) Exposure apparatus
EP1022617A2 (en) Optical correction plate, and its application in a lithographic projection apparatus
JP4537087B2 (ja) 露光装置、デバイスの製造方法
JP4393226B2 (ja) 光学系及びそれを用いた露光装置、デバイスの製造方法
JP2002231615A (ja) 露光部材、露光装置及び方法、デバイス製造方法、並びに、デバイス

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees