JP3603069B2 - X線画像装置 - Google Patents

X線画像装置 Download PDF

Info

Publication number
JP3603069B2
JP3603069B2 JP2001397491A JP2001397491A JP3603069B2 JP 3603069 B2 JP3603069 B2 JP 3603069B2 JP 2001397491 A JP2001397491 A JP 2001397491A JP 2001397491 A JP2001397491 A JP 2001397491A JP 3603069 B2 JP3603069 B2 JP 3603069B2
Authority
JP
Japan
Prior art keywords
pixel
image
value
accumulation
pixel number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001397491A
Other languages
English (en)
Other versions
JP2002232784A (ja
Inventor
芳浩 井野
敏義 山本
康以知 大森
康彦 眞梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001397491A priority Critical patent/JP3603069B2/ja
Publication of JP2002232784A publication Critical patent/JP2002232784A/ja
Application granted granted Critical
Publication of JP3603069B2 publication Critical patent/JP3603069B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CCDセンサを用いたX線画像装置に関し、特にX線画像をフィルムを使わずデジタル処理によって画像をCRTなどに表示させるX線画像装置に関するものであり、本発明のX線画像装置は、特に医科用、歯科用の診断装置又は工業用非破壊検査に有用なものである。
【0002】
【従来の技術】
従来のX線画像装置においては、診断若しくは検査等における対象物の内部状態を画像により認識するため、X線フィルムが利用されていた。しかし、近年、現像時間の短縮、データ保存の容易性、劣化防止等を目的として、CCDセンサを利用したX線画像装置が開発されている。このX線画像装置は、CCDセンサにより直接X線を受けて、デジタル化されたデータをCRTに表示させる方法が用いられていた。従来のX線画像装置は、患部を透過してきたX線を光に変換する物質を通してCCDセンサにより受光し、1画素ずつデジタル化された画像データを画像表示装置に表示させるよう構成されていた。
【0003】
このように、CCDセンサを用いた従来のX線画像装置は、これより以前の旧来の装置におけるX線フィルムにX線を当てて画像を形成していた方法に比べて、現像する手間が省け、患部を診断するまでの時間が短縮されていた。
CCDセンサを用いた従来のX線画像装置は、画像データがデジタル化されているため、画像データが劣化することがなく、かつ記憶媒体に一括して格納されているため、データ収納の省スペース化が図れるという利点があった。
【0004】
さらに、このような従来のX線画像装置は、画像表示装置の画面において明るさ、コントラスト、患部の拡大等を自由に調整できるため、診断や検査において有効な補助手段となっている。特に、このようなX線画像装置は、画像データのデジタル化により医科用、歯科用では診断における補助として有用なものとなっている。また、このような従来のX線画像装置は、工業用非破壊検査装置に用いた場合には検査の効率向上につながり、検査精度を高めることのできる装置となっている。
【0005】
従来のX線画像装置に用いられるCCDセンサは、ビデオカメラ等に利用されているのものと同様なものであり、CCDセンサが受けた可視光をリアルタイムでアナログ信号に変換して出力する構成のものである。ただし、X線画像装置に用いられるCCDセンサは、ビデオカメラ等に利用されている通常のCCDセンサと異なり、CCDセンサのCCD表面にX線を可視光に変換する蛍光体(シンチレータ、例えばGdS)が設けられている。また、このような蛍光体の代わりにX線を電荷に変換するカドミウムテラライト検出素子(CdTe検出素子)をCCD表面に各画素ごとに接続するように設けたものも用いられていた。
【0006】
X線画像装置を用いて検査者が見るX線画像は、通常静止画である。そのため、従来のX線画像装置において、CCDセンサからのアナログ信号は、X線が照射される瞬間をとらえてA/D変換器によりデジタル信号に変換されて、一旦メモリに蓄積されていた。さらに、画像表示装置ではデジタル化された画像データを静止画像としてCRTなどに表示するよう構成されていた。
このようにCCDセンサを使った従来のX線画像装置は、X線が照射された瞬間をとらえるために、X線照射装置から、照射開始および照射終了を通知するトリガ信号を受信する必要があった。
【0007】
次に、従来のX線画像装置の一例を添付の図を参照して説明する。図23はCCDセンサを用いた従来のX線画像装置の全体構成示すブロック図であり、図24は従来のX線画像装置における照射開始から画像表示までの処理手順を示すフローである。
【0008】
図23において、X線照射装置210が照射対象である患部を照射し、照射対象を透過したX線211はX線検出部201により受光される。このX線検出部201はCCD素子212、A/D変換器215、CCD駆動回路216を有している。X線検出部201はX線211に応じた画像デジタル信号217を累積部205へ出力する。画像デジタル信号217が入力される累積部205は、累積値算出回路223とフレームメモリ225とを有している。
【0009】
X線照射装置210はX線211を照射すると同時にX線照射開始トリガ信号241を累積開始部204の累積開始回路221に出力する。また、X線照射装置210はX線211を照射終了すると同時にX線照射終了トリガ信号242を累積停止部208の累積停止回路230に出力する。このとき、累積停止回路230は、累積停止指示信号231を累積値算出回路223に出力し、同時に表示指示フラグ232を表示指示部209の表示指示回路233に出力する。また、表示指示回路233は表示指示フラグ232が入力されると表示指示信号234を画像表示部238のCPU235に出力する。CPU235は表示指示信号234が入力されるとフレームメモリ225から表示用デジタル画像データ226を取り込み、CRTなどの画像表示装置237に表示する。また、必要に応じて、CPU235から出力された保存用デジタル画像データ239は、記憶媒体240に画像データとして保存される。
【0010】
図23において、矢印はX線211及び信号の流れを示しており、符号213は画像アナログ信号、符号214はCCD駆動信号、符号222は累積開始指示信号、符号224は累積画像デジタル信号及び符号236は画像表示信号を示す。
図23において、X線照射装置210からX線211が照射されるとCCD素子212は、照射対象の画像に応じた画像アナログ信号213をA/D変換器215に出力する。画像アナログ信号213が入力されたA/D変換器215は、画像デジタル信号217を出力する。
【0011】
X線照射装置210はX線211を照射すると同時にX線照射開始トリガ信号241を累積開始回路221に出力する。累積開始回路221は、X線照射開始トリガ信号241の入力状況を常に監視している。
図24は上記構成の従来のX線画像装置におけるX線照射から画像表示までの処理手順を示すフローである。累積開始回路221は図24に示すフローにおけるSTEP2の処理を行っている。累積開始回路221は、X線照射開始トリガ信号241の入力がなければ、STEP3における画像データの蓄積、累積を行わない。
【0012】
一方、累積開始部204の累積開始回路221へX線照射開始トリガ信号241の入力があった場合には、STEP4において画像データの累積を開始する。このとき、累積開始部204の累積開始回路221は、累積開始指示信号222を累積値算出回路223に出力する。累積値算出回路223は、累積開始指示信号222が入力されると、以後周期的に送られてくる画像デジタル信号217を累積画像デジタル信号224に変換してフレームメモリ225に記憶させる。
【0013】
次に、図25、図26を用いて、CCD素子を有するCCDセンサからの出力信号である画像アナログ信号213とA/D変換器215における画像アナログ信号213のA/D変換の方法について簡単に説明する。
図25はCCDセンサにおける画素構成を概念的に示す図であり、図26はCCDセンサにおける画像アナログ信号213のA/D変換方法について概念的に示した図である。
【0014】
図25に示すように、CCD素子センサは縦方向及び横方向に決められた数の画素を持っている。CCDセンサは図26に示すようにCCDセンサにおける全画素分の画像データを持った画像アナログ信号を一定周期で絶えず出力している。この全ての画素分の画像データは毎周期ごとにA/D変換器215によりA/D変換されて、画像デジタル信号217が形成される。さらに、この画像デジタル信号217は累積され、フレームメモリ225に記憶される。CPU235はフレームメモリ225から記憶された画像デジタル信号である表示用デジタル画像データ226を取り込み、CRTなどの画像表示装置237により画像データが表示される。
【0015】
次に、X線照射装置210はX線211の照射を終了すると同時に、照射終了トリガ信号242を累積停止回路230へ出力する。累積停止回路230は、図24に示すフローのSTEP5の処理を行っており、照射終了トリガ信号242の入力を常に監視している。照射終了トリガ信号242の入力がなければ、STEP6において画像データの累積を続行する。
【0016】
一方、累積停止回路230に照射終了トリガ信号242の入力があった場合には、図24のSTEP7において画像データの累積を停止する。このとき、累積停止回路230は累積停止指示信号231を累積値算出回路223へ出力し、同時に表示指示フラグ232を表示指示回路233に出力する。
【0017】
累積値算出回路223は累積停止指示信号231が入力されると、画像デジタル信号217の累積とフレームメモリ225に対する記憶処理を停止する。また、表示指示回路233は表示指示フラグ232が入力されると表示指示信号234をCPU235へ出力する。CPU235は表示指示信号234が入力されると、図24のSTEP8及びSTEP9において、フレームメモリ225から表示用デジタル画像データ226を取り込み、CRTなどの画像表示装置237に表示する。また必要に応じて記憶媒体240に画像データを保存する。
CCDセンサを用いた従来のX線画像装置は、以上のような方法により画像表示や画像データの保存を行っていた。
【0018】
【発明が解決しようとする課題】
X線の特異な性質として、本来透過すべきではない被照射箇所を低確率ながら透過してしまい、結果的に画面上に白い点として現れてしまう場合がある。このため、CCDセンサからの画像アナログ信号をA/D変換したデジタル信号の画像データを直接画像化すると全体に所々白点となり、このような画像データを用いた場合には、信頼性の高い診断を行うことができないという問題点があった。
【0019】
また、従来のX線画像装置においては、X線照射装置と画像表示装置における入出力操作が煩雑なため、操作性を考慮してX線照射装置とX線画像装置は一体的に形成する必要性があった。このため、現在X線フィルム用として使用されているX線照射装置が使えず、経済的に無駄となるという問題点があった。
また、最適な画質を得るためには、X線照射装置側の出力コントロールに頼らざるを得ず、従来のX線画像装置は画質調整が困難であるという問題も有していた。
【0020】
従来のX線画像装置においては、X線の強さをそのまま明暗の違いによって画像表示していたため、X線画像を検査者が見るための画像としては不十分であり、濃度補正等の処理を加える必要があった。これは、視覚的に最もよく見える画像にするためには、明るい部分より暗い部分の方をよりきめ細かく表示するほうが良く、また表示されている画像の明暗の範囲をできるだけ広げる方が良いためである。しかし、検査者が画像を見ながらこのような濃度調整等を行うことは、熟練技術が必要であり、実用上、短時間で多くの画像処理することは困難であり、X線画像を見るための大きな問題となっていた。
【0021】
また、画像データはデジタル値であるため、その取り得る範囲は有限であり、その範囲を超えてX線照射量が多すぎたり少なすぎたりすると、濃度調整が行えず、診断に十分な画像が得られないという問題があった。
X線画像装置に用いられるCCDセンサは、フィルムに比べ感度の点で優れており、僅かな照射量で十分な画像が得られるという確実性や精度の点で優位性があった。しかし、CCDセンサは、照射時間設定や照射距離設定をそのCCDセンサの感度に調整するための条件設定が非常に難しいという問題があった。例えば、歯科においては、前歯と臼歯、あるいは幼児の歯と成人の歯の違いによりX線の透過率が異なり、照射すべきX線量が異なっている。このため、CCDセンサを用いた従来のX線画像装置は、最適な条件で画像が得られるまでに何度も試験照射が必要となり、無駄な照射を行う必要があった。
【0022】
本発明は、上記問題を解決するものであり、X線照射装置からのトリガ信号の入出力をまったく不要にし、X線照射開始終了を自動的に検出することにより、煩雑な操作をなくし、かつ従来のX線フィルムを取り除くだけで従来のX線照射装置を用いることが可能となり、経済性に優れたX線画像装置を得ることを目的とする。また、本発明は、X線照射装置の出力の微調整をすることなく、X線画像装置内部において最適な画質調整が照射対象に応じて自動的に行われるX線画像装置を得ることを目的とする。
【0023】
【課題を解決するための手段】
以下、本発明において用いる「画素値」の語は、ある画素でのX線の強度に対応するものであり、CCD素子における画素の輝度に対応する電荷、電流などのアナログ値、又はこのようなアナログ値に対応するデジタル値を言う。
【0024】
上記目的を達成するために、本発明に係るX線画像装置は、X線を受けて複数の画素を有する画像データにおける各画素の輝度を示す画素値を画像デジタル信号として出力するX線検出と、
前記X線検出部からの複数回の画像デジタル信号に基づき前記各画素ごとの画素値が画素値基準値を超えているか否かを検出し、前記画素値基準値を超えている画素数に応じて画素数変数を設定する画素値検出部と、
前記画素値検出部からの前記画素数変数が画素数基準値を超えているか否かを検出する画素数検出部と、
前記X線検出からの複数回の画像デジタル信号に基づき前記各画素ごとに画素値を累積し、その累積画素値を算出する累積と、
前記累積部において算出された前記累積画素値が累積画素値基準値を超えているか否かを検出し、前記累積画素値基準値を超えている画素数に応じて累積画素数変数を設定する累積値検出部と、
前記累積値検出部からの前記累積画素数変数が累積画素数基準値を超えているか否かを検出する累積画素数検出と、
を備え、
前記画素数検出部において前記画素数変数が前記画素数基準値を超えていることを検出したとき、前記累積部に累積開始指示信号が入力され、前記累積画素数検出部において前記累積画素数変数が前記累積画素数基準値を超えていることを検出したとき、前記累積部に累積停止指示信号が入力されるよう構成されている。このため、本発明のX線画像装置は、X線照射装置からのコントロールを一切受けずとも、X線画像装置側で最適の画質を得る事ができる。
【0025】
本発明に係るX線画像装置は、累積画素数検出部において累積画素数変数が累積画素数基準値を超えていることを検出したとき、累積停止フラグが入力されて累積部に累積停止指示信号を出力する累積停止を備えている。このため、本発明のX線画像装置は、最適の画質を得ることができるX線照射を得た際に、X線の照射を止めることなく、最適の画質に維持することができるものである。
【0026】
本発明に係るX線画像装置は、累積画素数検出部において累積画素数変数が累積画素数基準値を超えていることを検出したとき、表示指示フラグが入力されて、各画素の累積画素値をもとに画像表示部にX線画像を表示するよう表示指示信号を出力する表示指示を備えている。このため、本発明のX線画像装置は、自動的に最適の画質の画像を表示することができる。
【0027】
本発明に係るX線画像装置は、画素数検出部において画素数変数が画素数基準値を超えていることを検出したとき、累積開始フラグが入力されて累積部に累積開始指示信号を出力する累積開始部を備えている。このため、本発明のX線画像装置は、X線照射が適切なものかどうかを判断し、自動的に累積の開始を行うことができる。
【0037】
【発明の実施の形態】
以下、本発明のいくつかの実施例について、添付の図面を用いて説明する。
《第1の実施例》
図1は本発明の第1の実施例であるX線画像装置の全体構成を示すブロック図である。図1において、X線照射装置110から照射され、照射対象を通過したX線1は、CCDセンサとしてのCCD素子2に入力される。画像データ出力手段であるCCD素子2はX線1をその強度に対応した大きさの画像アナログ信号3に変換して、画像データ取り込み部11のA/D変換器4へ出力する。A/D変換器4へ入力された画像アナログ信号3は、画像デジタル信号に変換されてラインバッファ5に入力される。ラインバッファ5は2ライン分の画像データを一時的に記憶する。ラインバッファ5に入力された画像データは、白点異常データを除去する異常データ除去手段であるフィルタ6を介してフレームメモリ7に入力される。フレームメモリ7は、全画像データを記憶する記録媒体である。また、画像データ取り込み部11はCCD駆動とA/D変換などを制御するCPU10を有し、CCD駆動信号13によりCCD素子2は駆動制御される。
【0038】
上記画像データ取り込み部11に接続された画像表示部12は、外部操作に応じて画像取り込みや画像表示を制御するCPU8と、画像データを表示する画像表示装置9とを有している。また、画像データはCPU8の指令に基づき記憶媒体14に記録されるよう構成されている。
【0039】
画像の明暗と画素データである画素値との関係は、画像が明るいほど画素値が大きくなっており、画素値は画素における実質的な輝度を示している。図2は、画像の明暗と画素データの大小の関係を示す説明図である。
第1の実施例のX線画像装置において、照射対象である患部にX線1が照射された後、CCD素子2から映像アナログ信号3が出力され、A/D変換器4において各画素毎の画素データを1ラインずつのデジタルデータに変換する。
【0040】
A/D変換器4から送られてきたデジタルデータは、ラインバッファ5において2ライン分までの画素を有する画素データが記憶される。図3は、CCD素子2における一部分の画素を概念的に示す図である。ラインバッファ5は、図3に示すように1画素ずつの画素データ(注目画素データ)とその周辺の8個の画素データとを伴って、白点異常データ除去用フィルタ6に伝送する。
【0041】
図4は、白点異常データ除去用フィルタ6における処理手順を示すフローである。白点異常データ除去用フィルタ6は、図4に示す手順により白点異常データ除去処理を行う。
図4に示すフローのSTEP1において、図3に示した注目画素データをXとし、その周辺画素8個の画素データのうち最大値(周辺最大画素データ)をAmaxとして入力する。また、注目画素データが周辺画素データよりどの程度超えたら異常と判断するかを決めるしきい値αを設定する。
【0042】
次に、図4のSTEP2において、注目画素データXが周辺最大画素データAmax以上であり、かつその注目画素データXと周辺最大画素データAmaxとの差がしきい値αより大きいか若しくは等しければ、すなわち注目画素データXが周辺最大画素データAmaxとしきい値αとの和より大きければ、STEP3において注目画素データXを周辺最大画素データAmaxの値に置き換える。
【0043】
このように、注目画素データXが周辺最大画素データAmaxを大きく超えた場合には、その注目画素は白点異常データであると判断して、注目画素データを周辺画素の最大値に置き換えることにより、白点異常データの検出と補正が行われる。
上記のように、白点異常データ除去用フィルタ6は、各画素について処理し、処理された画素データはフレームメモリ7に順次記憶される。
【0044】
第1の実施例においては、CCD素子2が取得した画像データを白点異常データ除去用フィルタ6を通すことにより全画素データ中に異常白点データのない画素データに変換し、その画素データをフレームメモリ7に1ラインずつ記憶させている。このため、白点異常データ除去用フィルタ6はゲートアレイのハードウェア処理を行わせることにより、高速処理が可能となり、全画素データをこの白点異常データ除去用フィルタ6を通しても時間を費やすことなく短時間で処理できる。
【0045】
さらに、第1の実施例のX線画像装置においては、CPU8がフレームメモリ7の画像データを画像表示装置9に表示させ、必要に応じて記憶媒体14に補正された見やすい画像データを保存することができる。
また、必要に応じて、第1の実施例のX線画像装置は、CPU8に対する外部操作により画像表示装置の画像の明暗度、コントラスト、患部拡大などの調整を容易に行うことができ、診断しやすい画面操作を持つ装置となっている。
【0046】
以上のように、第1の実施例のX線画像装置において、ある注目画素データがその周辺の8個の画素データの最大値より所定のしきい値分以上超えている場合、その注目画素データを所定範囲内の値に補正する白点異常データ除去用フィルタ6が設けられている。このため、X線画像において白い点となって表れる異常データを持つ画素を当該画素の周辺画素データから検出して、異常白点画素データを適切な値に補正している。本発明の第1の実施例のX線画像装置処理は、ゲートアレイや高速CPUを使用することにより、待ち時間がほとんどない画像データの補正処理を行うことができる。
【0047】
なお、上記第1の実施例のX線画像装置においては、注目画素データXが所定値を超えた場合にその注目画素データXを周辺最大画素データAmaxに置き換えたが、別の実施例として、注目画素データXを周辺最大画素データAmaxに置き換えるのではなく、周辺画素データ8個の平均値に置き換えても、上記実施例と同様の効果を奏する。
【0048】
《第2の実施例》
以下、本発明のX線画像装置の第2の実施例を添付の図面を参照して説明する。図5は第2の実施例のX線画像装置の全体構成を示すブロック図である。図5において、X線照射装置110から照射され、照射対象である患部を通過したX線51は、CCD素子52に入力される。画像データ出力手段であるCCD素子52はX線51を画像アナログ信号59に変換して、画像データ取り込み部60のA/D変換器53へ出力する。A/D変換器53へ入力された画像アナログ信号59は、画像デジタル信号に変換されてフレームメモリ54に入力され、記録される。フレームメモリ54に入力された画像データは、白点異常データを除去する白点異常データ除去用フィルタ55により補正され、書き換えられる。
【0049】
また、画像データ取り込み部60は、CCD駆動、A/D変換、データ補正などを制御するCPU56を有し、CCD駆動信号62によりCCD素子52は駆動制御される。
上記画像データ取り込み部60に接続された画像表示部61は、外部操作に応じて画像取り込みや画像表示を制御するCPU57と、画像データを表示する画像表示装置58とを有している。また、画像データはCPU57の指令に基づき記憶媒体63に記録されるように構成されている。
【0050】
第2の実施例のX線画像装置において、照射対象である患部に対してX線51が照射された後、CCD素子52から出力された映像アナログ信号59はA/D変換器53において1画素毎にデジタル化されて、フレームメモリ54に順次記憶される。全画素データの記憶が終了すると、白点異常データ除去用フィルタ55は白点異常データの補正が行われる。図6は、白点異常データ除去用フィルタ55における白点異常データの補正処理手順を示すフローである。
【0051】
図6のSTEP1において、まずフレームメモリ54の全画素データの輝度分布状況を認識し、その輝度分布状況から白点異常データの画素番地の全てを取得する。
この白点異常データの画素番地取得方法を図7から図9を用いて説明する。図7は全画素データにおいて白点異常データがないときの輝度分布図であり、図8は白点異常データがあるときの輝度分布図である。
【0052】
図7及び図8に示す、輝度分布とは全画素データにおいて全輝度範囲中に各画素がどのように分布しているかを示すものであり、全画素データ中に白点異常データがなければ、図7に示すように全体的に連続した分布曲線となる。しかし、全画素データ中に白点異常データが存在すると、図8に示すように、輝度の明るいところにおいて、連続的な本体曲線(輝度分布本体部)とは少し離れた位置に分布曲線(不連続部分)が存在する。図8において、符号aは不連続部分が始まる輝度を示す画素値を示し、符号bは輝度分布本体部と不連続部分との間の輝度範囲を示す。
【0053】
図9は白点異常データ除去用フィルタ55における白点異常データの画素番地取得手順を示すフローである。
図9に示すフローのSTEP1において、輝度基準値をaconstとし、不連続範囲基準値をbconstとする。そして、実際の輝度分布における、不連続部分の輝度範囲がbであり、不連続が始まる輝度を示す画素値がaだとする。なお、輝度分布の輝度範囲bと不連続が始まる画素値aは、前述の図8で示した輝度分布における定義と同じである。
【0054】
図9に示すSTEP2において、画素値aが所定の輝度基準値aconstより大きく、しかも不連続部分の輝度範囲bが所定の不連続範囲基準値bconstより大きいとき、輝度分布本体部より明るい輝度を持つ不連続部分の画素番地はすべて白点異常データとして画素番地を取得する。
【0055】
上記のように、白点異常データとして画素番地を取得した後、再び図6のフローに戻り、図6のSTEP2において白色異常データ(注目点)の画素データをXとし、その画素周辺の8個の周辺画素データをA1〜A8とする。
STEP3において周辺画素データA1〜A8がすべて正常データであれば、STEP4においてXの値をA1〜A8の平均値に置き換えてフレームメモリ54に記憶する。このように、全ての白点異常データについて、周辺画素データA1〜A8のすべてが正常データの場合の平均値置き換え処理が行われる。STEP3及びSTEP4の平均値置き換え処理は、全画素が終了するまで、繰り返される。
【0056】
次に、STEP5において、残りの白点異常データにおいて、8個の周辺データのうち正常データである分だけで平均値化を行い、この平均値を注目画素の新しい正常画素データXとしてフレームメモリ54に記憶する。
【0057】
上記白点異常データの補正処理は時間がかかるが、隣り合わせの画素において連続して異常があった場合に有効な補正方式である。
このように、全画素データにおける白点異常データは補正され、白点異常データのない画像データがフレームメモリ54に記憶される。画像表示部61のCPU57は、フレーメメモリ54の画像データを画像表示装置58に表示させ、必要に応じて記憶媒体63に補正された見やすい画像データを保存する。
【0058】
また、第2の実施例のX線画像装置においては、必要に応じて外部操作により画像データの明暗度、コントラスト、患部拡大などの調整を容易に行うことができ、診断しやすい画面操作を持つ装置となっている。
【0059】
第2の実施例のX線画像装置は、白点異常データ除去用フィルタ55を設けることにより、取り込みが完了した全画素データの輝度分布を調べ、輝度分布が連続的でなく所定の値以上離れた輝度分布が存在する場合には、その不連続な輝度分布を有する画素データをその周囲データの平均値に変更し、フレームメモリ内の画素データを書き換えている。このため、第2の実施例のX線画像装置は、白い点となって表れる異常データを持つ画素を全画素データから検出し、異常白点画素データを適切な値に補正することができる。
【0060】
第2の実施例のX線画像装置の補正処理は、ゲートアレイや高速CPUを使用することにより待ち時間のほとんどない、画像データの補正処理が可能となる。
なお、本発明の第2の実施例はプログラムによって実現され、このプログラムをフロッピーディスク(登録商標:以下フロッピーディスクとのみ称す)等の記録媒体に記録して移送することにより、独立した他のコンピュータシステムにおいて容易に実施することが可能である。
【0061】
次に、上記第2の実施例のX線画像装置の補正処理を、フロッピーディスクで実施する場合について説明する。図10は、X線画像装置における補正処理をフロッピーディスクで実施する場合を説明するための説明図である。
図10の(a)は、記録媒体本体であるフロッピーディスク70の物理フォーマットの例を示す図である。図10の(a)に示すように、フロッピーディスク70は同心円上に外周から内周に向かってトラックが形成されており、扇形の16のセクタに分割されている。このように分割された記憶領域に従って、プログラは記録される。
【0062】
図10の(b)は、上記フロッピーディスク70を収納するケースを説明する図である。図10の(b)の左からフロッピーディスクケース71の正面図、および断面図、そしてフロッピーディスク70の正面図をそれぞれ示す。このようにフロッピーディスク70をフロッピーディスクケース71に収納することにより、フロッピーディスク70を埃や外部からの衝撃から守り、安全に移送することができる。
【0063】
図10の(c)は、図10の(b)に示したフロッピーディスク70にプログラムの記録再生を行うためのコンピュータシステム等を示す図である。
図10の(c)に示すように、コンピュータシステム72にフロッピーディスクドライブ73を接続することにより、フロッピーディスク70に対してプログラムの記録再生することが可能となる。フロッピーディスク70はフロッピーディスクドライブ73の挿入口74に脱着されて、フロッピーディスク70に対してプログラムの記録再生が行われる。
【0064】
X線画像装置の補正処理のためのプログラムを記録する場合には、フロッピーディスクドライブ73がフロッピーディスク70からプログラムを読み出し、読み出されたプログラムはコンピュータシステム72に転送される。
【0065】
なお、上記第2の実施例のX線画像装置においては、記録媒体としてフロッピーディスク70を用いて説明を行ったが、光ディスクを用いても同様に行うことができる。また本発明の記録媒体はこれらに限定されるものではなく、ICカード、ROMカセット等、プログラムを記録できるものであれば、上記実施例と同様に実施することが可能である。
【0066】
また、上記第2の実施例では全画素データの輝度分布を取得する構成であるが、ある特定の範囲の画素データの輝度分布を取得する構成であっても上記実施例と同様の効果がある。さらに、第2の実施例では注目画素データXを周辺の画素データの正常データの平均値と置き換えたが、正常データの中の最大値又は最小値と置き換えてもよい。
【0067】
《第3の実施例》
以下、本発明のX線画像装置の第3の実施例を添付の図面を参照して説明する。図11は第3の実施例のX線画像装置の全体構成を示すブロック図である。図12は第3の実施例における照射開始から累積開始までの処理手順を示すフローであり、図13は第3の実施例における累積開始から画像表示までの処理手順を示すフローである。
【0068】
図11において、X線照射装置110から照射され、照射対象である患部を通過したX線111は、X線検出部101のCCD素子112に入力される。X線検出手段であるX線検出部101はCCD素子112、A/D変換器115、CCD駆動回路116を有している。X線検出部101は画像デジタル信号117を出力し、この画像デジタル信号117が入力される累積手段である累積部105は、累積値算出回路123とフレームメモリ125とを有している。
【0069】
画像データ出力手段であるCCD素子112はX線111を画像アナログ信号113に変換して、A/D変換器115へ出力する。A/D変換器115は、画像デジタル信号117を累積手段である累積部105の累積値算出回路123と画素値検出手段である画素値検出部102の画素値検出回路118へ出力する。また、画素値検出回路118の出力は、画素数検出手段である画素数検出部103の画素数検出回路119へ入力され、そして累積開始部104の累積開始回路121を介して、累積値算出回路123へ入力されるように構成されている。
【0070】
累積部105は累積値算出回路123とフレームメモリ125とを有している。フレームメモリ125の出力は、累積値検出部106の累積検出回路127へ入力され、そして累積画素数検出部107の累積画素数検出回路128を介して累積停止部108の累積停止回路130へ入力される。累積画素数検出回路128の出力は、表示指示部109の表示指示回路133へ入力される。表示指示回路133の出力は、画像表示部138のCPU135へ入力される。
【0071】
上記表示指示部109に接続された画像表示部138は、外部操作に応じて画像取り込みや画像表示を制御するCPU135と、画像データを表示する画像表示装置137とを有している。また、画像データはCPU135の指令に基づき記憶媒体140に記録されるように構成されている。
【0072】
図11において、矢印はX線111及び信号の流れを示しており、符号114はCCD駆動信号、符号120は累積開始フラグ、符号122は累積開始指示信号、符号124は累積画像デジタル信号、符号126は表示用デジタル画像データ、符号129は累積停止フラグ、符号131は累積停止指示信号、符号132は表示指示フラグ、符号134は表示指示信号、符号136は画像表示信号、符号139は保存用デジタル画像データを示す。
【0073】
第3の実施例のX線画像装置においては、CCD素子112がCCD表面にX線を可視光に変換する蛍光体(シンチレータ、例えばGdS)が設けられている。または、本発明のX線画像装置は、上記蛍光体の代わりに、各画素に導通させたカドミウムテラライト検出素子(CdTe検出素子)をCCD表面に設けてもよい。なお、カドミウムテラライト検出素子(CdTe検出素子)としては、例えば特表平6−505800号公報に開示された素子を用いる。
【0074】
次に、第3の実施例のX線画像装置における動作について説明する。
まず、X線照射装置110からX線111が照射対象である患部等に対して照射されると、CCD素子112は画像に応じた画像アナログ信号113をA/D変換器115に出力する。画像アナログ信号113が入力されたA/D変換器115は、画像デジタル信号117を画素値検出部102と累積部105へ出力する。
【0075】
図12は、第3の実施例のX線画像装置における照射開始から累積開始までの処理手順を示すフローである。
第3の実施例のX線画像装置は、画素値検出部102の画素値検出回路118において、図12のSTEP1に示すように、初期設定として画素値基準値を所定の値valconstに設定する。この画素値基準値はX線照射されたことを判断する明るさの基準となるものである。また、STEP1において画素数基準値を所定の値numconstに設定する。この画素数基準値はX線照射されたことを判断するCCDセンサにおける画素の個数の基準となるものである。なお、画素数の現在のカウント数を示す画素数変数をnumxとする。
【0076】
STEP2において画像データの入力待機状態となり、STEP3において画像デジタル信号117の最初の画素を取り込むために、画素数変数numxを0にクリアする。
【0077】
次に、STEP4において、現在注目している画素の画素値が画素値基準値valconstより大きいか否かが判断される。もし、注目画素の画素値が画素値基準値valconstより大きければ、STEP5において画素数変数numxを1増加させ、STEP6へ進む。
一方、注目画素の画素値が画素値基準値valconstより大きくなければ、そのままの画素数変数numxでSTEP6に進む。
【0078】
STEP6においては、全画素の画素値のチェックが終了したか否かが判断される。もし、全画素の画素値のチェックが終了していなければ、STEP7において、画像デジタル信号117の次の注目画素が取り込まれ、STEP4へのループが繰り返えされる。
【0079】
一方、STEP6において、全画素の画素値のチェックが終了したと判断されたら、STEP8に移行し、図11に示す画素数検出部103の画素数検出回路119に処理が移る。
画素数検出部103の画素数検出回路119は、図12のSTEP8において、画素数変数numxが画素数基準値numconstより大きいか否かを判断する。
【0080】
STEP8において、画素数変数numxが画素数基準値numconstより大きいと判断されると、STEP9において画像データの累積が開始される。このとき、画素数検出回路119は図11の累積開始回路121に累積開始フラグ120を出力する。
一方、STEP8において、画素数変数numxが画素数基準値numconstより大きくないと判断されれば、STEP2へ戻りそのループが繰り返えされる。
【0081】
累積開始部104の累積開始回路121は、累積開始フラグ120が入力されると、累積値算出回路123に累積開始指示信号122を出力する。累積値算出回路123は、累積開始指示信号122が入力されると、以降周期的に送られる画像デジタル信号117を累積画像デジタル信号124に変換してフレームメモリ125に記憶する。
前述の図25及び図26を用いて、第3の実施例におけるCCD素子を有するCCDセンサの画像アナログ信号の出力とA/D変換の方法について簡単に説明する。
【0082】
図25に示すようにCCDセンサは縦方向及び横方向に決められた数の画素を持っている。CCDセンサは、図26に示すように、CCDセンサの全画素分の画像データを持った画像アナログ信号113を一定周期で絶えず出力する。この全画素分の画像データを毎周期ごとにA/D変換して画像デジタル信号117を得る。この画像デジタル信号117は累積されてフレームメモリ125に記憶され、適度な画質を持った画像データが得られる。
【0083】
上記のように、画像デジタル信号117の累積が開始されると、累積値検出部106の累積値検出回路127は、フレームメモリ125に記憶された累積画像デジタル信号124を取り込み、画像データの累積処理を開始する。
図13は、第3の実施例のX線画像装置における累積開始から画像表示までの処理手順を示すフローである。
【0084】
図13に示すように、STEP10において、初期設定として累積画素値基準値を所定の値sumvalconstに設定する。この累積画素値基準値はX線画像を適度な画質にするための明るさの基準となるものである。また、累積画素数基準値を所定の値sumnumconstに設定する。この累積画素数基準値はX線画像を適度な画質にするためのCCDセンサにおける画素数の基準となるものである。なお、累積された画素数の現在のカウント数を示す累積画素数変数をsumnumxとする。
【0085】
STEP11において、累積画像デジタル信号124の最初の注目画素を取り込むために累積画素数変数sumnumxを0にクリアする。
次に、STEP12において、現在注目している累積された画素値である累積画素値が累積画素値基準値sumvalconstより大きいか否かか判断される。注目画素の累積画素値が累積画素値基準値sumvalconstより大きければ、STEP13において、累積画素数変数sumnumxを1増加させ、STEP14へ進む。
【0086】
一方、注目画素の累積画素値が累積画素値基準値sumvalconstより大きくなければ、そのままSTEP14に進む。
STEP14においては、全ての画素の画素値のチェックが終了したか否かが判断される。もし全ての画素の画素値のチェックが終了していなければ、STEP15において、累積画像デジタル信号124の次の注目画素を取り込むように設定し、STEP12へのループを繰り返す。
【0087】
一方、STEP14において、全ての画素の画素値のチェックが終了したと判断された場合には、累積画素数検出部107の累積画素数検出回路128(図11)に処理が移行する。
【0088】
累積画素数検出部107の累積画素数検出回路128は、STEP16において、累積画素数変数sumnumxが累積画素数基準値sumnumconstより大きいか否かが判断される。STEP16において、累積画素数変数sumnumxが累積画素数基準値sumnumconstより小さければ、STEP17において、画像データの累積を続行して、STEP12へ戻り、上記ループを繰り返す。
【0089】
一方、STEP16において、累積画素数変数sumnumxが画素数基準値sumnumconstより大きければ、STEP18において、画像データの累積を停止する。このとき、累積画素数検出回路128は累積停止フラグ129を累積停止回路130に出力し、同時に表示指示フラグ132を表示指示回路133に出力する。
累積停止回路130は、累積停止フラグ129が入力されると、累積停止指示信号131を累積値算出回路123に出力する。累積値算出回路123は累積停止指示信号131が入力されると、画像デジタル信号117の累積処理とフレームメモリ125に記憶させる処理とを停止する。
【0090】
また、表示指示回路133は累積画素数検出回路128からの表示指示フラグ132が入力されると、表示指示信号134をCPU135に出力する。 CPU135は表示指示信号134が入力されると、図13に示すフローのSTEP19においてフレームメモリ125から表示用デジタル画像データ126を取り込み、STEP20においてCRTなどの画像表示装置137に表示する。また必要に応じて、その画像データは記憶媒体140に保存される。
【0091】
以上の説明から明らかなように、本発明の第3の実施例のX線画像装置は、X線が照射されたときに所定の値より大きい画素値を持つ画素の数が所定の数より多いときに、X線照射が開始されたと判断して画像データの累積を開始する。また、第3の実施例のX線画像装置は、所定の値より大きい累積画素値を持つ画素の数が所定の数より多いときに累積を停止する。このため、第3の実施例のX線画像装置は、X線照射装置と入出力部の接続なしで、照射装置側の出力コントロールとは無関係に最適なX線画像が自動的に得られる。
【0092】
《第4の実施例》
以下、本発明のX線画像装置の第4の実施例を添付の図面を参照して説明する。図14は第4の実施例のX線画像装置の全体構成を示すブロック図である。図15は第4の実施例のX線画像装置における照射開始から累積開始までの処理手順を示すフローである。図16は第4の実施例のX線画像装置における累積開始から累積停止までの処理手順を示すフローである。図17は第4の実施例のX線画像装置における累積停止から画像表示までの処理手順を示すフローである。
【0093】
図14において、X線照射装置150から照射され、照射対象である患部を通過したX線151は、X線検出部141のCCD素子152に入力される。X線検出部141はCCD素子152、A/D変換器155、CCD駆動回路156を有している。X線検出部141は画像デジタル信号157を出力し、この画像デジタル信号157が入力される累積部182は、累積回路181と複数のフレームメモリ165a、165b、165c・・・165nとを有している。
【0094】
画像データ出力手段であるCCD素子152は、X線151を画像アナログ信号153に変換して、A/D変換器155へ出力する。A/D変換器155は、画像デジタル信号157を累積部182の累積回路181と画素値検出部142の画素値検出回路158へ出力する。また、画素値検出回路158の出力は、画素数検出部143の画素数検出回路159へ入力され、累積開始部144の累積開始回路161を介して、累積回路181へ入力される。また、画素数検出回路159は累積停止フラグ169を累積停止部148の累積停止回路170へ出力し、累積停止回路170は累積停止指示信号171を累積回路181へ出力する。また、画素数検出回路159は、表示指示部149の表示指示回路173に表示指示フラグ172を出力する。
【0095】
累積部182の出力は、画像表示部178のCPU175へ入力される。累積部182に接続された画像表示部178は、外部操作に応じて画像取り込みや画像表示を制御するCPU175と、画像データを表示する画像表示装置177とを有している。また、画像データはCPU175の指令に基づき記憶媒体180に記録されるよう構成されている。
【0096】
図14において、矢印はX線151及び信号の流れを示しており、符号154はCCD駆動信号、符号160は累積開始フラグ、符号162は累積開始指示信号、符号164は累積画像デジタル信号、符号166は表示用デジタル画像データ、符号169は累積停止フラグ、符号174は表示指示信号、符号176は画像表示信号、符号179は保存用デジタル画像データを示す。
【0097】
次に、第4の実施例のX線画像装置における動作について説明する。
まず、X線照射装置150からX線151が照射対象である患部等に対して照射されると、CCD素子152が画像に応じた画像アナログ信号153をA/D変換器155に出力する。そして、 A/D変換器155は、画像デジタル信号157を累積部182の累積回路181と画素値検出部142の画素値検出回路158へ出力する。
【0098】
図15は、第4の実施例のX線画像装置における照射開始から累積開始までの処理手順を示すフローである。画素値検出回路158は、図15に示すフローのSTEP1において、初期設定として画素値基準値を所定の値valconstに設定する。この画素値基準値はX線照射されたことを判断するための明るさの基準となるものである。また、画素数基準値を所定の値numconstに設定する。この画素数基準値はX線照射されたことを判断するためのCCDセンサにおける画素の個数の基準となるものである。なお、画素数変数をnumxとする。
【0099】
次に、STEP2において画像データの入力待機状態となり、STEP3において画像デジタル信号157の最初の画素を取り込むために画素数変数numxを0にクリアする。
【0100】
次に、STEP4において、現在注目している画素の画素値が画素値基準値valconstより大きいか否かが判断される。もし注目画素の画素値が画素値基準値valconstより大きければ、STEP5において、画素数変数numxを1増加させて、STEP6へ進む。
一方、STEP4において、注目画素の画素値が画素値基準値valconstより大きくなければ、そのままSTEP6に進む。
【0101】
STEP6では全画素の画素値のチェックが終了したか否かが判断される。もし全画素の画素値のチェックが終了していないと判断されたときは、STEP7において、画像デジタル信号157の次の注目画素を取り込むように設定し、STEP3へ戻り、このループが繰り返される。
一方、STEP6において、全画素の画素値のチェックが終了した判断された場合には、画素値検出回路158(図14)による処理が終わり、画素数検出回路159(図14)による処理へ移行する。
【0102】
画素数検出回路159は、図15のフローにおけるSTEP8において、画素数変数numxが画素数基準値numconstより大きいか否かを判断する。もし画素数変数numxが画素数基準値numconstより大きければ、STEP9において、画像データの累積処理を開始する。このとき、画素数検出回路159は累積開始回路161(図14)に累積開始フラグ160を出力する。
一方、画素数変数numxが画素数基準値numconstより大きくなければ、STEP2へ戻り、このループが繰り返される。
【0103】
累積開始回路161は、累積開始フラグ160が入力されると、累積回路181に累積開始指示信号162を出力する。累積回路181は、累積開始指示信号162が入力されると、以後周期的に送られてくる画像デジタル信号157を蓄積した累積画像デジタル信号164に変換し、その累積画像デジタル信号164を累積した回数によりフレームメモリ165aから165nまで別々に記憶させる。すなわち、画像デジタル信号157が1回だけ入力された場合はフレームメモリ165aに記憶させる。また、画像デジタル信号157が2回累積された時はフレームメモリ165bに記憶させ、3回累積された時はフレームメモリ165cに記憶させて、それぞれ別々のメモリに記憶させ、N回累積の時はフレームメモリ165nに記憶させる。
【0104】
したがって、フレームメモリは最大の累積回数分だけ用意する必要があるが、X線照射時間は長くても1秒程度であり、フレームメモリの1回のデータ取り込み分は約0.1秒なので、用意すべきフレームメモリの個数は10〜20個程度で十分である。また、フレームメモリが足らなくなったときは、最後のメモリの内容を更新するように設定されている。
【0105】
前述の図25及び図26に示したように、第4の実施例におけるCCDセンサは構成されており、CCDセンサは全画素分の画像データを持った画像アナログ信号を一定周期で絶えず出力している。この全画素分の画像データは毎周期ごとにA/D変換されて画像デジタル信号157が得られる。この画像デジタル信号157は累積されて適切なフレームメモリに記憶され、適度な画質を持った画像データが得られる。なお、このCCDセンサの構成等は第3の実施例と同様である。
画像デジタル信号157の蓄積が開始されると、画素値検出回路158と画素数検出回路159は、X線照射が終了したか否かを判断する処理を図16の処理手順に従って行う。
【0106】
図16は第4の実施例のX線画像装置における累積開始から累積停止までの処理手順を示すフローである。
図16に示すフローにおいて、STEP10からSTEP16までの処理は前述の図15のSTEP1からSTEP7までの説明と同じである。
【0107】
画素数検出回路159は、図16のSTEP17において、画素数変数numxが画素数基準値numconstより小さいか否かを判断する。もし画素数変数numxが画素数基準値numconstより小さければ、STEP18において画像データの累積を停止する。このとき、画素数検出回路159は累積停止回路170に累積停止フラグ169を出力し、同時に表示指示回路173に表示指示フラグ172を出力する。
一方、STEP17において、画素数変数numxが画素数基準値numconstより大きければ、そのままSTEP11に進み、次に入力される画像データの入力を待機する。
【0108】
累積停止回路170は累積停止フラグ169が入力されると、累積回路181に累積停止指示信号171を出力する。累積回路181は積停止指示信号171が入力されると累積画像デジタル信号164をフレームメモリ165a〜165nへ記憶させることを停止する。
【0109】
表示指示回路173は表示指示フラグ172が入力されるとCPU175に表示指示信号174を出力する。図17は第4の実施例のX線画像装置における累積停止から画像表示までの処理手順を示すフローである。CPU175は表示指示信号174が入力されると、図17に示すフローにおけるSTEP19において、外部操作または初期設定によって決められた累積回数の指定値が取得される。この数値は操作者の経験的な知識から設定されたり、X線照射装置との関係から初期設置時に設定し、常に適切な値が設定される。
【0110】
次に、図17のSTEP20において、フレームメモリ165a〜165nまでの指定された累積回数分の累積画像データが記憶されているメモリ上から表示用デジタル画像データ166を取り込み、CRTなどの画像表示装置177に表示する。また必要に応じて、その画像データは記憶媒体180に保存される。
【0111】
なお、第4の実施例のX線画像装置は、累積回数の指定値を決定するために、フレームメモリ165a〜165nに記憶されていた全回数分の画像データをいったんCRTなどの画像表示装置に全て並列して表示させ、その中から操作者が一番適切な画像を選んで決めるように構成することも可能である。
また、最適な画質を得るための累積回数をあらかじめ一つに決めておくことができれば、第4の実施例のX線画像装置は1個のフレームメモリにより構成することができ、経済的に優れた装置となる。
【0112】
以上の説明から明らかなように、本発明の第4の実施例のX線画像装置は、X線が照射されたときに所定の値より大きい画素値を持つ画素の数が所定の数より多いときに、X線照射が開始されたと判断して画像データの累積を開始し、累積値を複数回分記憶させ、所定の値より大きい画素値を持つ画素の数が所定の数より少なくなったときに累積を停止するよう構成されている。このため、第4の実施例のX線画像装置は、X線照射装置とを入出力部で接続することなく、X線照射装置側の出力コントロールとは無関係に最適な画質を得ることができる。
【0113】
《第5の実施例》
以下、本発明のX線画像装置における第5の実施例を添付の図面を参照して説明する。図18は本発明の第5の実施例におけるX線画像装置の全体構成を示すブロック図である。図19は第5の実施例のX線画像装置におけるデジタル値変換手段の作業手順を示すフローである。図20は全画素の画像デジタル値における画素分布を示しており、図21は画素範囲を変更した場合の全画素の画像デジタル値の変換後の画素分布を示している。図22は表示目的に応じてまたは視覚的に見やすくするための変換特性を示す図である。
【0114】
図18において、X線照射装置301はX線302により被照射物303を照射し、被照射物303を通過したX線304は信号出力手段305に入力される。信号出力手段305は入力されたX線304の強度に応じた画像アナログ信号308を信号増幅器309に出力する。
【0115】
信号出力手段305は、X線を可視光に変換する蛍光体306(シンチレータ、例えばGdS)と可視光を電荷に変えて転送するCCDセンサ307とを具備しており、CCDセンサ307の各画素が受けた光量に応じて形成された画像アナログ信号308を全画素分について出力する。このように、信号出力手段305は、X線の強度に応じた画像アナログ信号308を信号増幅手段である信号増幅器309へ出力するよう構成されている。
【0116】
なお、本発明のX線画像装置は、蛍光体306の代わりに、CCDセンサの各画素に電気的に接続させたカドミウムテラライト検出素子(CdTe検出素子)をCCD表面に設けた構成でもよい。
信号増幅手段309は、入力された画像アナログ信号308をA/D変換するのに必要なレベルとなるように信号増幅を行い、増幅された画像アナログ信号310はA/D変換手段3であるA/D変換器11へ出力される。
【0117】
A/D変換器311においては、画像アナログ信号310をデジタル値に変換し、画像デジタル値312を記憶手段である記憶部313に出力する。A/D変換器311において、被照射物を通過したX線304の照射量に応じて出力された画像アナログ信号310がデジタル化処理されている。記憶部313においては、画像デジタル値312を記憶する。このとき、A/D変換器311はX線照射中の短時間毎のデータを逐次加算しながら、記憶部313に記憶する。記憶部313はA/D変換器311のもつ分解能よりも数倍大きい容量を有している。このため、記憶部313は階調度の大きい画像データを保持することができる。
【0118】
デジタル値変換手段であるデジタル値変換器316は、記憶された画像デジタル値317を補正して表示用画像デジタル値318に変換し、記憶部313に記憶する。
記憶部313の表示用画像デジタル値318は、表示用デジタル値314として表示手段である表示部315に入力される。表示部315は画像表示信号319をCRT等の表示機器320に出力し、その画像表示信号319を表示する。
【0119】
A/D変換器311のもつ分解能よりも大きい容量をもつ記憶部313により階調度の大きい画像データが保持されているため、第5の実施例のX線画像装置はX線照射時の条件設定が容易な装置である。
【0120】
次に、図18に示したデジタル値変換器316の具体例を図19の作業手順を示すフロー及び図20の全画素の画像デジタル値の画素分布を示すグラフを用いて説明する。また、図20は画像データにおける画像濃度の状況を示している。
図19に示すフローのSTEP1において、デジタル値変換器316は、記憶部313に一旦記憶された全画素の画像デジタル値317を取り出し、その画像デジタル値317における画素数をチェックする。
【0121】
次に、STEP2において、チェックした画像デジタル値317から、図20に示すような画素分布状況(濃度状況)を把握する。この画素分布状況(濃度状況)から、画像デジタル値317の適切な画素分布範囲を決定する。画像デジタル値317の適切な画素分布範囲は、X線画像装置の用途に応じて、画素ディジタル値317における上位および下位の値をそれぞれ所定の数だけ除いたり、もしくは所定の率だけ除くようにあらかじめ決定する。
【0122】
図19に示すフローのSTEP3において、STEP2で決めた画像デジタル値317の画素分布範囲を、図21に示すように、広い範囲となるように全画素の画像デジタル値317の変換を実施する。図21は、適切な画素分布範囲に変更した全画素の画像デジタル値317の一例を示すグラフである。
【0123】
次に、画像デジタル値317の最大値と最小値を表示用画像デジタル値318の最大値と最小値に変換する変換方法の一例を示す。画素分布状況から検知できた画像デジタル値317の最大値と最小値をBmaxとBminとする。表示用画像デジタル値318の最大値と最小値をHmaxとHminとする。また、変換する前の画像デジタル値317をBdata、変換後の表示用画像デジタル値318をHdataとすると、全画素の画像デジタル値317の変換は次式により実施される。
Hdata=a×Bdata/b−c/b
【0124】
ただしa= Hmax−Hmin、
b= Bmax−Bmin、
c= Hmax×Bmin−Hmin×Bmaxである。
【0125】
上記式に示すように、画素分布範囲を広げる変換を行うことにより、画像の分解能が落ちることが懸念されるが、CRT等の表示機器の階調度よりA/D変換器311の分解能をあげることにより解決される。
また、記憶部313の容量を大きくして各画素の階調をA/D変換器311の分解能より大きくすることにより、記憶部313におけるデータ飽和までの余裕度を増すことができる。
【0126】
次に、濃度補正の具体的方法について説明する。
図22は画像を表示目的に応じてまたは視覚的に見やすくするための変換特性を示す図である。
前述の図19に示すフローのSTEP4において、表示目的に応じて図22に示すように全画素の画像デジタル値について濃度補正が行われる。図22に示す変換特性において、画像デジタル値の大きさを変更することと、画像の明るさ、すなわち濃度を変更することとはまったく同一の作業となる。
【0127】
X線画像を見る検査者が明るい部分を見たいときは直線に近いγ1の特性により変換し、反対に暗い部分をより詳しく見たいときは暗い部分の範囲を広げるγ2の特性により変換する。
次に、STEP5において、変換した表示用画像デジタル値318を記憶手段313において元の画像デジタル値317と置き換え、記憶部313に再度記憶しなおす。
【0128】
さらに、表示部315により記憶部313の更新された表示用デジタル値314をCRT等の表示機器320で画像表示させる。
以上のように、第5の実施例のX線画像装置は、表示される画像の明暗の範囲を広げることができ、表示目的に応じた変換特性により、視覚的に優れた画像を得ることができる。
【0129】
また、第5の実施例のX線画像装置は、X線照射するときの時間設定や距離設定の困難さが無く、条件設定が容易であり使いやすく、A/D変換手段のもつ分解能よりも大きい容量をもつ記憶手段によって階調度の大きい画像データが保持されることも条件設定の容易さをさらに高めており、X線照射時の条件設定を容易なものとしている。
【0130】
《第6の実施例》
以下、本発明のX線画像装置の第6の実施例について説明する。第6の実施例のX線画像装置は、前述の第5の実施例のX線画像装置における信号増幅手段である信号増幅器309を変更したものである。
【0131】
本発明の第6の実施例のX線画像装置は、前述の第5の実施例のX線画像装置の信号増幅器309を、画像アナログ信号が小さいほど大きく増幅し、画像アナログ信号が大きいほど小さく増幅するよう構成したものである。この増幅器は、例えば図22に示すγ2のような変換特性を持っていて、X線が通過しにくい小さな信号ほど大きく増幅され、暗い部分をより濃度範囲が広い状態で画像アナログ信号を出力する。この画像アナログ信号はA/D変換手段においてA/D変換されてデジタル値となり、本発明の第5の実施の形態のX線画像装置と同様にしてCRT等の表示機器320に表示される。
【0132】
以上のように構成された第6の実施例のX線画像装置は、明るい部分の画像より暗い部分の画像の方をよりきめ細かく表示することができ、視覚的に優れた画像を得ることができる。
また、第6の実施例のX線画像装置は、X線照射するときの時間設定や距離設定の困難さを無くし、X線照射時の条件設定を容易にして使いやすい装置になるとともに、A/D変換手段のもつ分解能よりも数倍大きい容量をもつ記憶手段によって画像データが保持されることも条件設定の容易さをさらに高めている。
【0133】
【発明の効果】
以上の説明から明らかなように、本発明のX線画像装置は、X線照射装置により出力調整をすることなく、X線画像装置において最適の画質を得ることができる。
また、本発明のX線画像装置は、最適の画質のX線照射が得られたとき、X線の照射を停止することなく、最適の画質を維持することができる。
また、本発明のX線画像装置は、自動的に最適の画質を有する画像を表示することができる。
【0134】
また、本発明のX線画像装置は、複数回分の累積値の中から、診断箇所や診断方法に応じた最も適切な画像を選択することができる。
また、本発明のX線画像装置は、X線照射が適切なものかどうかを判断し、自動的に累積の開始を行うことができる。
【0135】
また、本発明のX線画像装置においては、信号出力手段がX線を受けてその強度に応じた画像アナログ信号を出力すると、この画像アナログ信号がA/D変換手段により画像デジタル値にA/D変換され、複数または全画素の画像デジタル値の大きさの上位および下位のそれぞれ所定の数もしくは所定の率だけ除くとともに、残りの画像デジタル値の最大値と最小値がそれぞれ所定の値となるように変換し、さらに表示目的に応じた変換特性によって表示用画像デジタル値に変換している。これにより、表示されている画像の明暗の範囲を広げることができ、表示目的に応じた変換特性により、視覚的に優れた画像を得ることができる。また、本発明のX線画像装置は、X線照射するときの時間設定や距離設定の困難さが無く、X線照射時の条件設定が容易であり、使いやすい装置である。さらに、本発明によれば、A/D変換手段のもつ分解能よりも大きい容量をもつ記憶手段によって階調度の大きい画像データが保持されることも条件設定の容易さをさらに高めており、X線画像装置におけるX線照射時の条件設定を容易なものとしている。
【0136】
また、本発明のX線画像装置は、信号出力手段がX線を受けてその強度に応じた画像アナログ信号を出力すると、信号増幅手段は画像アナログ信号の大きさが小さいほど大きく増幅し、画像アナログ信号の大きさが大きいほど小さく増幅する。すなわちX線が通過しにくい部分、すなわち暗い部分はより濃度範囲が広がった状態で信号を出力する。この画像アナログ信号がA/D変換され、CRT等に表示される。これにより画像が明るい部分より暗い部分の方をよりきめ細かに表示でき、視覚的に最もよく見えるようになる。
【図面の簡単な説明】
【図1】本発明の第1の実施例におけるX線画像装置の全体構成を示すブロック図である。
【図2】第1の実施例のX線画像装置における画像データの大小と明るさの関係の一例を示す図である。
【図3】第1の実施例のX線画像装置における白点異常データ除去用フィルタの説明で使用したCCDセンサの一部分の画素を概念的に示す図である。
【図4】第1の実施例のX線画像装置における白点異常データ除去用フィルタの処理手順を示すフローである。
【図5】本発明の第2の実施例におけるX線画像装置の全体構成を示すブロック図である。
【図6】第2の実施例のX線画像装置における白点異常データ除去用フィルタの処理手順を示すフローである。
【図7】第2の実施例のX線画像装置における白点異常データがないときの輝度分布を示すグラフである。
【図8】第2の実施例のX線画像装置における白点異常データがあるときの輝度分布を示すグラフである。
【図9】第2の実施例のX線画像装置における白点異常データ除去用フィルタの処理手順を示すフローである。
【図10】第2の実施例のX線画像装置のフロッピーディスク及びフロッピーディスクドライブ等を示す図であり、(a)は記憶媒体本体であるフロッピーディスクの物理フォーマットの例を示す図であり、(b)はフロッピーディスクを収納するフロッピーディスクケースを示す図であり、(c)はフロッピーディスクによりプログラムの記録再生を行うフロッピーディスクドライブ等を示す図である。
【図11】本発明の第3の実施例におけるX線画像装置の全体構成を示すブロック図である。
【図12】第3の実施例のX線画像装置における照射開始から累積開始までの処理手順を示すフローである。
【図13】第3の実施例のX線画像装置における累積開始から画像表示までの処理手順を示すフローである。
【図14】本発明の第4の実施例におけるX線画像装置の全体構成を示すブロック図である。
【図15】第4の実施例のX線画像装置における照射開始から累積開始までの処理手順を示すフローである。
【図16】第4の実施例のX線画像装置における累積開始から累積停止までの処理手順を示すフローである。
【図17】第4の実施例のX線画像装置における累積停止から画像表示までの処理手順を示すフローである。
【図18】本発明の第5の実施例におけるX線画像装置の全体構成を示すブロック図である。
【図19】第5の実施例のX線画像装置におけるデジタル値変換器の作業手順を示すフローである。
【図20】第5の実施例のX線画像装置における全画素の画像デジタル値の画素分布を示すグラフである。
【図21】第5の実施例のX線画像装置における全画素の画像デジタル値変換後の画素分布を示すグラフである。
【図22】第5の実施例のX線画像装置において表示目的に応じて、又は視覚的に見やすい画像を形成するための変換特性を示すグラフである。
【図23】従来のX線画像装置の全体構成を示すブロック図である。
【図24】従来のX線画像装置における照射開始から画像表示までの処理手順を示すフローである。
【図25】CCDセンサの画素構成を概念的に示す図である。
【図26】CCDセンサの画像アナログ信号の出力及びA/D変換の方法を概念的に示す図である。
【符号の説明】
1 X線
2 CCD素子
4 A/D変換器
5 ラインバッファ
6 白点異常データ除去用フィルタ
7 フレームメモリ
8 CPU
9 画像表示装置
10 CPU
11 画像データ取り込み部
12 画像表示部
14 記憶媒体

Claims (4)

  1. X線を受けて複数の画素を有する画像データにおける各画素の輝度を示す画素値を画像デジタル信号として出力するX線検出と、
    前記X線検出部からの複数回の画像デジタル信号に基づき前記各画素ごとの画素値が画素値基準値を超えているか否かを検出し、前記画素値基準値を超えている画素数に応じて画素数変数を設定する画素値検出部と、
    前記画素値検出部からの前記画素数変数が画素数基準値を超えているか否かを検出する画素数検出部と、
    前記X線検出からの複数回の画像デジタル信号に基づき前記各画素ごとに画素値を累積し、その累積画素値を算出する累積と、
    前記累積部において算出された前記累積画素値が累積画素値基準値を超えているか否かを検出し、前記累積画素値基準値を超えている画素数に応じて累積画素数変数を設定する累積値検出部と、
    前記累積値検出部からの前記累積画素数変数が累積画素数基準値を超えているか否かを検出する累積画素数検出部と、を備え、
    前記画素数検出部において前記画素数変数が前記画素数基準値を超えていることを検出したとき、前記累積部に累積開始指示信号が入力され、前記累積画素数検出部において前記累積画素数変数が前記累積画素数基準値を超えていることを検出したとき、前記累積部に累積停止指示信号が入力されるよう構成されたX線画像装置。
  2. 累積画素数検出部において累積画素数変数が累積画素数基準値を超えていることを検出したとき、累積停止フラグが入力されて累積部に累積停止指示信号を出力する累積停止を備えた請求項1記載のX線画像装置。
  3. 累積画素数検出部において累積画素数変数が累積画素数基準値を超えていることを検出したとき、表示指示フラグが入力されて、各画素の累積画素値をもとに画像表示部にX線画像を表示するよう表示指示信号を出力する表示指示を備えた請求項1記載のX線画像装置。
  4. 画素数検出部において画素数変数が画素数基準値を超えていることを検出したとき、累積開始フラグが入力されて累積部に累積開始指示信号を出力する累積開始部を備えた請求項1記載のX線画像装置。
JP2001397491A 1996-06-26 2001-12-27 X線画像装置 Expired - Fee Related JP3603069B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001397491A JP3603069B2 (ja) 1996-06-26 2001-12-27 X線画像装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP8-165652 1996-06-26
JP16565296 1996-06-26
JP8-242764 1996-09-13
JP24276496 1996-09-13
JP2001397491A JP3603069B2 (ja) 1996-06-26 2001-12-27 X線画像装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04589097A Division JP3363735B2 (ja) 1996-06-26 1997-02-28 X線画像装置

Publications (2)

Publication Number Publication Date
JP2002232784A JP2002232784A (ja) 2002-08-16
JP3603069B2 true JP3603069B2 (ja) 2004-12-15

Family

ID=27322549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001397491A Expired - Fee Related JP3603069B2 (ja) 1996-06-26 2001-12-27 X線画像装置

Country Status (1)

Country Link
JP (1) JP3603069B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110942738A (zh) * 2019-12-04 2020-03-31 惠州市华星光电技术有限公司 显示面板的闪烁值的测量装置及测量方法

Also Published As

Publication number Publication date
JP2002232784A (ja) 2002-08-16

Similar Documents

Publication Publication Date Title
JP3363735B2 (ja) X線画像装置
JP5393245B2 (ja) 画像処理装置、画像処理装置の制御方法、x線画像撮影装置およびx線画像撮影装置の制御方法
JP3950665B2 (ja) 放射線撮像装置及び放射線撮像装置の撮像方法
JP4360777B2 (ja) 電子内視鏡装置の増幅度自動調整装置
JP3670439B2 (ja) X線装置
JP4995193B2 (ja) X線画像診断装置
US20050243967A1 (en) Radiographic image capturing apparatus, radiographic image display apparatus, and methods thereof
JPH01161976A (ja) X線撮影装置
JP4164644B2 (ja) X線画像診断装置
JPWO2003000136A1 (ja) X線画像診断装置及びx線画像データの補正方法
JP2016001855A (ja) 画像処理装置および画像処理方法、画像処理システム
US6477228B2 (en) Method for operating an X-ray diagnosis device with immediate imaging
JP2001238136A (ja) 検出器の欠陥ピクセル訂正
JP4293774B2 (ja) X線撮影装置
JP3603069B2 (ja) X線画像装置
JP2003175022A (ja) X線画像装置
JP2020149237A (ja) 画像処理装置、放射線撮影装置および画像処理方法
JP5188255B2 (ja) 放射線画像撮影装置および画像欠陥検出方法
JP3407621B2 (ja) X線画像装置
JP3109530B2 (ja) X線撮影装置
JP2952483B2 (ja) 放射線画像情報読取表示装置
JP2004128582A (ja) 顕微鏡撮影装置
JP4682424B2 (ja) ディジタル画像補正装置、ディジタル画像補正方法、x線画像による診断装置
JPS6162446A (ja) デジタルサブトラクシヨンシステム
JP5147517B2 (ja) 画像撮影装置および画像欠陥検出方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees