JP3599783B2 - Method for producing crystallized product using plasma melting furnace - Google Patents

Method for producing crystallized product using plasma melting furnace Download PDF

Info

Publication number
JP3599783B2
JP3599783B2 JP15506294A JP15506294A JP3599783B2 JP 3599783 B2 JP3599783 B2 JP 3599783B2 JP 15506294 A JP15506294 A JP 15506294A JP 15506294 A JP15506294 A JP 15506294A JP 3599783 B2 JP3599783 B2 JP 3599783B2
Authority
JP
Japan
Prior art keywords
plasma
furnace
melting furnace
melted
crystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15506294A
Other languages
Japanese (ja)
Other versions
JPH0826843A (en
Inventor
正樹 片岡
啓一郎 宮野
義一 永吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP15506294A priority Critical patent/JP3599783B2/en
Publication of JPH0826843A publication Critical patent/JPH0826843A/en
Application granted granted Critical
Publication of JP3599783B2 publication Critical patent/JP3599783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、廃棄物の焼却灰等を溶融して結晶化するためのプラズマ式溶融炉を用いた結晶化物の製造方法に関する。
【0002】
【従来の技術】
昨今、廃棄物の投棄場所の不足が逼迫しており、このため廃棄物の灰分や焼却した焼却灰の減容化、無公害化、再資源化がさけばれている。そして、このような要求を満たすために、かかる焼却灰等を溶融処理した上で結晶化して、結晶化ガラス等の結晶化物を製造する方法が提案されている。
ここで、この焼却灰等を溶融処理する炉としては、旋回溶融炉、コークスベッド、表面溶融炉など加熱源として燃料を燃焼させる方式の炉と、アーク炉、プラズマ炉、誘導加熱炉など加熱源として電気を使用する方式の炉とがある。そして、このうち電気を使用する方式の炉は、高温度が得られ、また排ガス量が少ないので熱効率が良く、経済的であるという特長を有している。
【0003】
このような電気を使用する方式の炉のうち、焼却灰を溶融するためのプラズマ式の溶融炉としては、例えば特開平5−253557号公報に記載されたものが知られている。これは、焼却灰等の被溶融物を収容する炉本体と、この炉本体に収容される焼却灰に向かってプラズマガスを噴出する電極と、炉底部に配される電極とを備えたものであって、プラズマガスを噴出する電極を陰極とするとともに炉底部側の電極を陽極とし、被溶融物を介してプラズマアークを形成してこれを加熱溶融するものである。そして、ここでは陰極とされる電極にグラファイトのような安価なカーボン電極が用いられている。
また、その一方で、電極は金属製であるがプラズマガスとして安価な空気を使用する方式のプラズマ式溶融炉も知られている。
【0004】
【発明が解決しようとする課題】
ところで、上記公報に記載されたプラズマ式溶融炉のように電極としてカーボン電極を使用する場合には、カーボンの燃焼を考慮して炉内を還元雰囲気として加熱溶融を行わざるを得ない。また、プラズマガスとして空気を使用する場合においては、プラズマの高温によってサーマルNOの発生が激しくなるため、これを抑制するのにコークスや他の燃料を供給して部分燃焼させ、COを発生させるようにして、やはり還元雰囲気で加熱溶融を行うようにしている。
【0005】
ところが、その一方で、溶融された焼却灰等の被溶融物を結晶化させるには、焼却灰等に含まれるFeやSからFeSの結晶の核を形成する物質、すなわち結晶核形成剤を生成する必要があり、結晶化物はこの結晶核形成剤を核として析出して形成されることが知られている。
しかしながら、上述したように炉内が強還元雰囲気の状態において焼却灰等を加熱溶融すると、焼却灰等に含まれている酸化鉄は還元されてFeとなり、結晶化に必要な結晶核形成剤が生成されずに結晶化が行われなくなってしまうという結果となる。このため、上述したようにしてプラズマ式溶融炉により焼却灰等を加熱溶融した場合には、溶融された被溶融物から結晶化物を得ることは不可能とされていた。
【0006】
本発明は、上記事情に鑑みてなされたもので、プラズマ式溶融炉を使用して焼却灰等の被溶融物を加熱溶融しながらも、結晶化に必要とされる結晶核形成剤であるFeSを生成して、溶融された被溶融物から結晶化物を得ることが可能なプラズマ式溶融炉を用いた結晶化物の製造方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
ここで、本発明の発明者らは、Fe,SおよびCを含み、SiO2,CaO,Al23を主たる成分とする廃棄物の灰分または廃棄物焼却灰を被溶融物として、プラズマ式溶融炉によって種々の条件の下で該被溶融物を加熱溶融して結晶化物を製造する実験を行ったところ、炉内を適度の酸化雰囲気に制御して被溶融物を加熱溶融することにより、結晶核形成剤の生成を促して結晶化物を製造することが可能になるという知見を得るに至った。そして、この場合の適当な炉内のガス相酸素濃度は1%〜20%であるとの結論を得た。
本発明は、かかる知見に基づいて上記目的を達するものであり、Fe,SおよびCを含み、SiO2,CaO,Al23を主たる成分とする廃棄物の灰分または廃棄物焼却灰を被溶融物としてプラズマ式溶融炉の炉内に収容し、該炉内のガス相酸素濃度を1%〜20%に制御しつつ、プラズマアークによって上記被溶融物を加熱溶融し、結晶核であるFeSを生成させて、それを核として該被溶融物を結晶化させることを特徴とする。
【0008】
【作用】
廃棄物の焼却灰等に主としてFeとして含まれるFeは、加熱溶融時の雰囲気によって変化しなかったり、あるいは異なった化学変化をする。すなわち、強酸化雰囲気においては化学変化することなくFeのままであるが、強還元雰囲気では還元されてFeとなる。ところが、適当な濃度の酸化雰囲気においては、Feは焼却灰等に含まれるCによって一部が還元された後、同じく焼却灰等に含まれるSと反応して、結晶化に必要な結晶核形成剤であるFeSとなる。そして、これらの結晶核形成剤を核として結晶化が促され、結晶化物を得ることが可能となる。
【0009】
ここで、加熱溶融時の炉内のガス相酸素濃度が1%を下回ると、上記結晶核形成剤が生成されずに結晶化が行われず、このため結晶化物が得られなくなるおそれが生じる。また、逆に上記ガス相酸素濃度が20%を上回ると、得られた結晶化物において圧縮強度等の性質が損なわれてしまい、再利用に耐えなくなってしまうおそれが生じる。
なお、一層の結晶核形成剤の生成を促すとともに、圧縮強度等の性質により優れた結晶化物を得るには、上記ガス相酸素濃度は3%〜10%に制御されることが望ましい。また、プラズマアークによる加熱溶融においてサーマルNOの発生を抑えるには、プラズマガスとしてArまたはN、あるいはArとNとの混合ガスを用いるのが望ましい。
【0010】
【実施例】
以下、本発明の実施例について説明する。
図1は、本実施例に用いられるプラズマ式溶融炉の概略を示すものであって、ここで符号1で示すのは溶融炉本体であり、その内壁は耐火材2によって被覆されている。この溶融炉本体1の上蓋には焼却灰等供給孔3が設けられており、被溶融物としての焼却灰等は、ホッパー4から焼却灰等供給装置5を介してこの供給孔3から当該溶融炉本体1の炉内に供給されるようになされている。
【0011】
さらに、この溶融炉本体1の上蓋部には、炉内下方に向けて突出するように一対のプラズマトーチが設けられており、一方が陽電極プラズマトーチ6とされるとともに、他方は陰電極プラズマトーチ7とされている。これらのプラズマトーチ6,7には、プラズマガス供給装置8によってプラズマガスが、また電源装置9によって電力が、さらに冷却水循環装置10によって当該プラズマトーチ6,7および電極の冷却用の冷却水が、それぞれ供給されるようになされている。
さらにまた、溶融炉本体1の上部には排ガス出口孔11が設けられており、炉内の排ガスはこの出口孔11から排出されて排ガス処理設備12で処理されるようになされている。
【0012】
このような構成のプラズマ式溶融炉では、両プラズマトーチ6,7に供給されたプラズマガスはトーチ先端からプラズマ化されて排出され、両電極間に電流を流してプラズマアークを形成し、そのジュール熱および輻射熱によって、炉内に供給、収納された焼却灰等の被溶融物を加熱溶融する。
そこで、このプラズマ式溶融炉を用いて、本実施例により焼却灰等の被溶融物を加熱溶融した後、結晶化して、結晶化物の製造を行った。ここで、表1は本実施例およびこれに対する比較例において使用した焼却灰等の組成分析結果を示すものである。
【0013】
【表1】

Figure 0003599783
【0014】
表2は本発明の実施例1〜3および比較例1における加熱溶融条件を示すものである。
ここで、この種のプラズマ式溶融炉においては、一般にAr,Nまたは空気等がプラズマガスとして使用されるが、サーマルNOの発生を抑えるためにはAr,Nあるいはこれらの混合ガスを用いるのが望ましく、実施例1および比較例1では、単原子でプラズマ化し易いために電極に対する負荷が少なくなるという利点もあるArをプラズマガスとして使用し、また実施例2では電圧上昇させることによって効率を上昇させるためにNをArに付加し、さらに実施例3ではNをプラズマガスとして使用した。
そして、このような条件の下で、実施例1〜3では炉内をガス相酸素濃度8%の酸化雰囲気に維持し、比較例1では炉内をCO濃度8%の還元雰囲気に維持して被溶融物を加熱溶融し、さらにこうして得られた溶融スラグを図2に示す再加熱結晶化法のヒートパターンで結晶化させた。
【0015】
【表2】
Figure 0003599783
【0016】
図3は、このようにして結晶化処理した製品のX線回折分析結果である。
この図3に示されるように、還元雰囲気において溶融した比較例1ではX線回折の結果にピークがなく、製品はガラス状態のままで結晶化していないことが解る。これに対して、本発明の実施例1〜3では、X線回折の結果に顕著なピークが認められ、特にアノーサイト(CaO・2SiO・Al)が析出して結晶化されていることが解る。
【0017】
次に、表3に示す実施例4〜10および比較例2は、表1に示した組成の焼却灰等の被溶融物を、炉内のガス相酸素濃度を種々に変えて加熱溶融し、さらに図2に示した再加熱結晶化法のヒートパターンと同様にして溶融スラグを結晶化させたものである。そして、こうして得られた結晶化物の圧縮強度を測定した。
ただし、ここではプラズマガスとしてArを使用し、空気とNとでガス相の酸素濃度の調整を行うようにした。
【0018】
【表3】
Figure 0003599783
【0019】
この表3に示されるように、ガス相酸素濃度が1%を下回る比較例2においては、上述した比較例1の場合と同様に結晶化が認められなかったが、これに対して酸素濃度を1%〜20%に制御した本発明の実施例4〜10では溶融スラグを結晶化させて結晶化物を得ることができた。そして、さらに酸素濃度を3%〜10%に制御した実施例5〜8においては、得られた結晶化物の圧縮強度がいずれも1500kg/cm以上であり、天然石の御影石の圧縮強度1520kg/cmに匹敵する、あるいはこれを上回る圧縮強度を得ることができた。
このように、本発明の実施例によれば、結晶核形成剤の生成を促して確実に溶融スラグの結晶化を図ることができ、特に炉内のガス相酸素濃度を3%〜10%に制御した実施例5〜8においては、天然石にも匹敵する優れた圧縮強度等の性質を備えた結晶化物を得ることが可能であった。
【0020】
【発明の効果】
以上説明したように本発明によれば、炉内のガス相酸素濃度を1%〜20%という適度な酸化雰囲気に制御して、プラズマ式溶融炉により焼却灰等の被溶融物を加熱溶融することにより、結晶核形成剤となるFeSの生成を促して確実に結晶化させ、結晶化物を製造することが可能となる。特に炉内のガス相酸素濃度を3%〜10%の範囲に制御した場合には、天然石にも匹敵する優れた性質を有する結晶化物を得ることができる。
そしてこれにより、プラズマ式溶融炉による利点を生かしつつも廃棄物の焼却灰等の減容化および無公害化を図ることができるとともに、こうして得られた結晶化物を工業材料として利用することにより、かかる焼却灰等の有効な再資源化をなすことができる。
【図面の簡単な説明】
【図1】本発明の実施例に係わるプラズマ式溶融炉の概略図である。
【図2】本発明の実施例1〜10および比較例1,2に用いた再加熱結晶化法のヒートパターンを示す図である。
【図3】本発明の実施例1〜3および比較例1により結晶化処理された製品のX線回折分析結果を示す図である。
【符号の説明】
1 溶融炉本体
6 陽電極プラズマトーチ
7 陰電極プラズマトーチ
8 プラズマガス供給装置
9 電源装置
10 冷却水循環装置[0001]
[Industrial applications]
The present invention relates to a method for producing a crystallized product using a plasma melting furnace for melting and crystallizing waste incineration ash and the like.
[0002]
[Prior art]
In recent years, the shortage of waste dumping places has become tight, and as a result, volume reduction, elimination of pollution, and recycling of ash from waste and incinerated ash have been avoided. In order to satisfy such demands, there has been proposed a method of producing a crystallized product such as crystallized glass by melting and treating the incinerated ash and the like.
Here, as furnaces for melting this incinerated ash etc., there are furnaces for burning fuel as a heating source such as a swirling melting furnace, a coke bed, a surface melting furnace, and heating sources such as an arc furnace, a plasma furnace, and an induction heating furnace. There is a furnace that uses electricity. Among them, the furnace of the type using electricity has a feature that a high temperature can be obtained and the amount of exhaust gas is small, so that it has good thermal efficiency and is economical.
[0003]
Among such furnaces using electricity, a plasma-type melting furnace for melting incineration ash is disclosed in, for example, JP-A-5-253557. This is provided with a furnace main body that stores a material to be melted such as incineration ash, an electrode that ejects a plasma gas toward the incineration ash housed in the furnace main body, and an electrode that is disposed at the bottom of the furnace. A plasma arc is formed through a material to be melted, and the plasma arc is heated and melted by using an electrode for ejecting plasma gas as a cathode and an electrode on the bottom side of the furnace as an anode. Here, an inexpensive carbon electrode such as graphite is used as an electrode serving as a cathode.
On the other hand, a plasma-type melting furnace in which electrodes are made of metal but use inexpensive air as a plasma gas is also known.
[0004]
[Problems to be solved by the invention]
By the way, when a carbon electrode is used as an electrode as in the plasma melting furnace described in the above-mentioned publication, the furnace must be heated and melted in a reducing atmosphere in consideration of carbon combustion. Further, in the case of using air as the plasma gas, because the generation of thermal NO x becomes severe due to the high temperature plasma, by supplying coke or other fuel is partially combusted to suppress this, to generate CO Thus, the heating and melting are performed in a reducing atmosphere.
[0005]
However, on the other hand, in order to crystallize the molten material such as the incinerated ash, a substance that forms the nucleus of FeS crystals from Fe and S contained in the incinerated ash, that is, a crystal nucleating agent is generated. It is known that a crystallized product is formed by precipitation using this crystal nucleating agent as a nucleus.
However, as described above, when the incineration ash or the like is heated and melted in a furnace in a strongly reducing atmosphere, the iron oxide contained in the incineration ash or the like is reduced to Fe, and the crystal nucleating agent necessary for crystallization is formed. As a result, crystallization is not performed without being generated. For this reason, when the incineration ash and the like are heated and melted by the plasma melting furnace as described above, it has been impossible to obtain a crystallized material from the melted melted material.
[0006]
The present invention has been made in view of the above circumstances, and while heating and melting a material to be melted such as incineration ash using a plasma melting furnace, FeS is a crystal nucleating agent required for crystallization. It is an object of the present invention to provide a method for producing a crystallized material using a plasma melting furnace capable of producing a crystallized material from a molten material to be melted.
[0007]
[Means for Solving the Problems]
Here, the inventors of the present invention use a plasma type ash containing waste ash or waste incineration ash containing Fe, S, and C and containing SiO 2 , CaO, and Al 2 O 3 as main components. When an experiment was conducted to produce a crystallized product by heating and melting the material under various conditions by a melting furnace, by heating and melting the material to be melted while controlling the inside of the furnace to an appropriate oxidizing atmosphere, They have found that it is possible to produce a crystallized product by promoting the generation of a crystal nucleating agent. Then, it was concluded that the appropriate gas phase oxygen concentration in the furnace in this case was 1% to 20%.
The present invention achieves the above-described object based on the above findings, and covers the ash or waste incineration ash of waste containing Fe, S, and C, and having SiO 2 , CaO, and Al 2 O 3 as main components. The melted material is housed in a furnace of a plasma melting furnace as a melt, and while the gas phase oxygen concentration in the furnace is controlled to 1% to 20%, the material to be melted is heated and melted by a plasma arc, and FeS as a crystal nucleus is formed. Is produced, and the melt is crystallized using the nucleus as a nucleus .
[0008]
[Action]
Fe, which is mainly contained as Fe 2 O 3 in incineration ash of wastes, does not change depending on the atmosphere at the time of heating and melting, or changes chemically differently. That is, Fe 2 O 3 remains unchanged in a strong oxidizing atmosphere without chemical change, but is reduced to Fe in a strong reducing atmosphere. However, in an oxidizing atmosphere having an appropriate concentration, Fe 2 O 3 is partially reduced by C contained in the incinerated ash and the like, and then reacts with S also contained in the incinerated ash and the like, so that it is necessary for crystallization. It becomes FeS which is a crystal nucleating agent. Then, crystallization is promoted using these crystal nucleating agents as nuclei, and a crystallized product can be obtained.
[0009]
Here, if the gas phase oxygen concentration in the furnace at the time of heating and melting is less than 1%, the above-mentioned nucleating agent is not generated and crystallization is not performed, so that a crystallized product may not be obtained. Conversely, if the gaseous phase oxygen concentration exceeds 20%, properties such as compressive strength of the obtained crystallized product may be impaired, and the crystallized product may not endure reuse.
The gaseous phase oxygen concentration is desirably controlled to 3% to 10% in order to promote the formation of a single crystal nucleating agent and to obtain a crystallized product having excellent properties such as compressive strength. Further, in order to suppress the generation of thermal NO x in the heat melted by plasma arc, Ar or N 2 as the plasma gas, or Ar and N 2 and to use a mixed gas of desired.
[0010]
【Example】
Hereinafter, examples of the present invention will be described.
FIG. 1 schematically shows a plasma melting furnace used in the present embodiment. Here, reference numeral 1 denotes a melting furnace main body, and an inner wall thereof is covered with a refractory material 2. A supply hole 3 for incineration ash or the like is provided in the upper lid of the melting furnace main body 1, and incineration ash or the like as a material to be melted is supplied from the hopper 4 through the supply hole 3 via an incineration ash or the like supply device 5. It is supplied to the furnace of the furnace main body 1.
[0011]
Further, a pair of plasma torches is provided on the upper lid portion of the melting furnace main body 1 so as to protrude downward in the furnace, one of which is a positive electrode plasma torch 6 and the other is a negative electrode plasma torch. It is a torch 7. These plasma torches 6, 7 are supplied with plasma gas by a plasma gas supply device 8, power by a power supply device 9, and cooling water for cooling the plasma torches 6, 7 and electrodes by a cooling water circulating device 10. Each is made to be supplied.
Further, an exhaust gas outlet hole 11 is provided in the upper portion of the melting furnace main body 1, and the exhaust gas in the furnace is discharged from the outlet hole 11 and is processed by an exhaust gas treatment facility 12.
[0012]
In the plasma type melting furnace having such a configuration, the plasma gas supplied to the plasma torches 6, 7 is converted into plasma from the tip of the torch and discharged, and a current is applied between both electrodes to form a plasma arc, and the Joule of the plasma is formed. The material to be melted such as incineration ash supplied and stored in the furnace is heated and melted by heat and radiation heat.
Thus, using this plasma melting furnace, a material to be melted, such as incineration ash, was heated and melted according to the present embodiment, and then crystallized to produce a crystallized material. Here, Table 1 shows the results of composition analysis of incinerated ash and the like used in this example and comparative examples.
[0013]
[Table 1]
Figure 0003599783
[0014]
Table 2 shows the heating and melting conditions in Examples 1 to 3 and Comparative Example 1 of the present invention.
Here, in this type of plasma melting furnace, Ar, N 2, air, or the like is generally used as a plasma gas. To suppress the generation of thermal NO x , Ar, N 2 or a mixed gas of these gases is used. It is desirable to use Ar. In Example 1 and Comparative Example 1, Ar is used as the plasma gas, which has the advantage that the load on the electrode is reduced because single atoms are easily converted into plasma. In Example 2, the voltage is increased. N 2 was added to Ar to increase the efficiency, and in Example 3, N 2 was used as a plasma gas.
Under these conditions, in Examples 1 to 3, the inside of the furnace was maintained in an oxidizing atmosphere having a gas phase oxygen concentration of 8%, and in Comparative Example 1, the inside of the furnace was maintained in a reducing atmosphere having a CO concentration of 8%. The material to be melted was heated and melted, and the molten slag thus obtained was crystallized by the heat pattern of the reheating crystallization method shown in FIG.
[0015]
[Table 2]
Figure 0003599783
[0016]
FIG. 3 shows an X-ray diffraction analysis result of the product crystallized in this manner.
As shown in FIG. 3, in Comparative Example 1 in which the product was melted in a reducing atmosphere, there was no peak in the result of X-ray diffraction, which indicates that the product was in a glassy state and was not crystallized. On the other hand, in Examples 1 to 3 of the present invention, a remarkable peak was observed in the results of X-ray diffraction, and in particular, anorthite (CaO.2SiO 2 .Al 2 O 3 ) was precipitated and crystallized. I understand that there is.
[0017]
Next, in Examples 4 to 10 and Comparative Example 2 shown in Table 3, the material to be melted such as incinerated ash having the composition shown in Table 1 was heated and melted while changing the gas phase oxygen concentration in the furnace in various ways. Further, the molten slag was crystallized in the same manner as the heat pattern of the reheating crystallization method shown in FIG. Then, the compressive strength of the crystallized product thus obtained was measured.
However, here, Ar was used as the plasma gas, and the oxygen concentration in the gas phase was adjusted with air and N 2 .
[0018]
[Table 3]
Figure 0003599783
[0019]
As shown in Table 3, in Comparative Example 2 in which the gas phase oxygen concentration was less than 1%, no crystallization was observed as in Comparative Example 1 described above. In Examples 4 to 10 of the present invention in which the slag was controlled at 1% to 20%, a crystallized product could be obtained by crystallizing the molten slag. In Examples 5 to 8 in which the oxygen concentration was further controlled to 3% to 10%, the compressive strength of the obtained crystallized product was 1500 kg / cm 2 or more, and the compressive strength of natural stone granite was 1520 kg / cm 2. Compressive strength comparable to or higher than 2 could be obtained.
As described above, according to the embodiment of the present invention, it is possible to promote the generation of the crystal nucleating agent and to surely crystallize the molten slag, and particularly to reduce the gas phase oxygen concentration in the furnace to 3% to 10%. In the controlled Examples 5 to 8, it was possible to obtain a crystallized material having properties such as excellent compressive strength comparable to natural stone.
[0020]
【The invention's effect】
As described above, according to the present invention, a gas-phase oxygen concentration in a furnace is controlled to an appropriate oxidizing atmosphere of 1% to 20%, and a material to be melted such as incineration ash is heated and melted by a plasma melting furnace. Thereby, it is possible to promote the generation of FeS as a crystal nucleus forming agent, to surely crystallize, and to produce a crystallized product. In particular, when the gas phase oxygen concentration in the furnace is controlled in the range of 3% to 10%, a crystallized product having excellent properties comparable to natural stone can be obtained.
And by this, while taking advantage of the plasma-type melting furnace, it is possible to reduce the volume of waste incineration ash and the like and make it pollution-free, and by using the crystallized material thus obtained as an industrial material, It is possible to effectively recycle such incinerated ash.
[Brief description of the drawings]
FIG. 1 is a schematic view of a plasma melting furnace according to an embodiment of the present invention.
FIG. 2 is a view showing a heat pattern of a reheating crystallization method used in Examples 1 to 10 and Comparative Examples 1 and 2 of the present invention.
FIG. 3 is a diagram showing the results of X-ray diffraction analysis of products crystallized according to Examples 1 to 3 and Comparative Example 1 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Melting furnace main body 6 Positive electrode plasma torch 7 Negative electrode plasma torch 8 Plasma gas supply device 9 Power supply device 10 Cooling water circulation device

Claims (3)

Fe,SおよびCを含み、SiO2,CaO,Al23を主たる成分とする廃棄物の灰分または廃棄物焼却灰を被溶融物としてプラズマ式溶融炉の炉内に収容し、該炉内のガス相酸素濃度を1%〜20%に制御しつつ、プラズマアークによって上記被溶融物を加熱溶融し、結晶核であるFeSを生成させて、それを核として該被溶融物を結晶化させることを特徴とするプラズマ式溶融炉を用いた結晶化物の製造方法。The waste ash or waste incineration ash containing Fe, S, and C and containing SiO 2 , CaO, and Al 2 O 3 as main components is housed as a material to be melted in a furnace of a plasma melting furnace. While the gas phase oxygen concentration is controlled at 1% to 20%, the above-mentioned melt is heated and melted by a plasma arc to generate FeS which is a crystal nucleus, and the melt is crystallized using the nucleus as FeS . A method for producing a crystallized product using a plasma type melting furnace. 上記炉内のガス相酸素濃度を3%〜10%に制御することを特徴とする請求項1に記載のプラズマ式溶融炉を用いた結晶化物の製造方法。The method for producing a crystallized product using a plasma melting furnace according to claim 1, wherein the gas phase oxygen concentration in the furnace is controlled to 3% to 10%. 上記プラズマアークを形成するプラズマガスとして、ArおよびNの少なくとも一方を使用することを特徴とする請求項1または請求項2に記載のプラズマ式溶融炉を用いた結晶化物の製造方法。The method for producing a crystallized product using a plasma melting furnace according to claim 1 or 2 , wherein at least one of Ar and N2 is used as a plasma gas for forming the plasma arc.
JP15506294A 1994-07-06 1994-07-06 Method for producing crystallized product using plasma melting furnace Expired - Fee Related JP3599783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15506294A JP3599783B2 (en) 1994-07-06 1994-07-06 Method for producing crystallized product using plasma melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15506294A JP3599783B2 (en) 1994-07-06 1994-07-06 Method for producing crystallized product using plasma melting furnace

Publications (2)

Publication Number Publication Date
JPH0826843A JPH0826843A (en) 1996-01-30
JP3599783B2 true JP3599783B2 (en) 2004-12-08

Family

ID=15597841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15506294A Expired - Fee Related JP3599783B2 (en) 1994-07-06 1994-07-06 Method for producing crystallized product using plasma melting furnace

Country Status (1)

Country Link
JP (1) JP3599783B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838117B1 (en) * 2002-04-08 2005-02-04 Commissariat Energie Atomique DOUBLE MEDIUM HEATED VITRIFICATION FURNACE AND METHOD
FR2909015B1 (en) * 2006-11-27 2009-01-23 Europlasma Sa DEVICE AND METHOD FOR INTEGRATION BY PLASMA FUSION OF TOXIC MATERIALS.
CN114685049B (en) * 2020-12-30 2024-04-26 北京科立科盈科技有限公司 Method for preparing microcrystalline cast stone by using gas slag

Also Published As

Publication number Publication date
JPH0826843A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
US7730745B2 (en) Vitrification furnace with dual heating means
JPS5827937A (en) Moving arc plasma reactor for chemical and metallurgical use
JPH05256579A (en) Method of producing metal melts and electric arc furnace therefor
JP3599783B2 (en) Method for producing crystallized product using plasma melting furnace
JP3619699B2 (en) Phosphorus recovery equipment and phosphorus recovery method
JP2004125246A (en) MELTING METHOD OF HIGH PURITY Si AND MELTER USED THEREFOR
JP3643255B2 (en) Melting furnace and processing method for waste containing phosphorus
JP2856839B2 (en) Silicon purification method
JP2000102777A (en) Heating system for waste
JPH062280B2 (en) Melt processing method
JPS6260810A (en) Method for melting scrap
CN214064933U (en) Plasma gasification melting furnace with multiple heat sources for heating in coordination
JP2952248B2 (en) Method and apparatus for depleting metal from molten glass or molten slag
JP3648039B2 (en) Plasma arc melting furnace and method for melting a material to be melted using the same
JP3670848B2 (en) Method for producing crystallized slag
JP3918280B2 (en) Operation method of ash melting furnace
JPH0631686B2 (en) Exhaust gas heat recovery method and apparatus for melting furnace
JPH0522808B2 (en)
JPH02217788A (en) Smelting of scrap in electric arc furnace and electric arc furnace therefor
JP3596690B2 (en) Method and apparatus for reducing NOx generation in electric furnace
JP2000007318A (en) Removal of boron from metallic silicon and apparatus therefor
JP2002054810A (en) Method for melting waste
JP2003083517A (en) Waste plasma melting method and waste plasma melting device
JP2747983B2 (en) Method and apparatus for melting municipal solid waste incineration ash
JPH05261358A (en) Method and apparatus for melting incineration ash

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees