JP3918280B2 - Operation method of ash melting furnace - Google Patents

Operation method of ash melting furnace Download PDF

Info

Publication number
JP3918280B2
JP3918280B2 JP04937298A JP4937298A JP3918280B2 JP 3918280 B2 JP3918280 B2 JP 3918280B2 JP 04937298 A JP04937298 A JP 04937298A JP 4937298 A JP4937298 A JP 4937298A JP 3918280 B2 JP3918280 B2 JP 3918280B2
Authority
JP
Japan
Prior art keywords
ash
furnace
layer
melting furnace
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04937298A
Other languages
Japanese (ja)
Other versions
JPH11248134A (en
Inventor
順也 西野
克明 松澤
賢一 田原
十次郎 梅田
直人 吉成
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP04937298A priority Critical patent/JP3918280B2/en
Publication of JPH11248134A publication Critical patent/JPH11248134A/en
Application granted granted Critical
Publication of JP3918280B2 publication Critical patent/JP3918280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、食塩などのアルカリ塩を多く含む飛灰を、溶融炉処理する灰溶融炉に係り、特に灰溶融中に飛灰中に含まれるアルカリ塩を積極的に電気分解し、アルカリ塩による炉壁の耐火材の劣化を軽減することのできる、灰溶融炉の運転方法に関する。
【0002】
【従来の技術】
都市ごみ、下水汚泥等の各種廃棄物は、焼却施設で焼却処理され、生じた焼却灰やばいじんは、従来埋め立て処分されていた。しかし、埋め立て処分地枯渇の問題や有害金属類の溶出による地下水汚染の問題があるため溶融による減量・減溶融化と無害化の必要性が高まってきている。
【0003】
このような背景で灰中の残留炭素、コークス、灯油、電力を熱源とした溶融処理方式が提案され、一部で実処理が行われている。このうち、電力を熱源とした溶融炉としてプラズマアーク加熱方式や抵抗加熱方式などがある。
【0004】
抵抗加熱方式の灰溶融炉は溶融スラグ内に対抗電極を配置し、直流または交流通電による電気抵抗熱(ジュール熱)により灰を加熱溶融するものであり、1)熱効率が高い、2)発生ガスが少ない、3)アークを生成しないためフリッカが発生しない、4)溶融スラグと溶融メタルとを分離した分割出滓ができる、という特徴がある。
【0005】
かかる抵抗加熱方式の灰溶融処理方法として特開平7−77318号に開示されたものがある。図2は上記公報に開示されたもので灰溶融炉の断面および前後設備のフローシートを示している。図において、aは灰溶融炉、bは上部電極、cは炉底電極、dは電源装置、eは溶融メタル層、fは溶融スラグ層、gは溶融塩層、hはCOガス燃焼炉、iは集塵機、jは集塵ファン、kは煙突、mは電極埋没位置調節器である。上記発明の特徴は、ごみ焼却施設より発生する焼却灰、ばいじんあるいは二者の混合物からなる廃棄物を電気抵抗熱を熱源として溶融処理する方法であって、上部電極bの先端位置を溶融塩層gと溶融メタル層eの間の溶融スラグ層f中に位置せしめ炉底電極cの間に、直流通電もしくは交流2相通電により垂直方向に通電することにより溶融塩を電気分解することなく、溶融スラグ層fの上方に溶融塩層gを安定的に形成し、有害な塩素ガス、塩化水素ガス等の発生を防止しようとするものである。
【0006】
しかし、上述のように灰溶融炉a内に溶融塩層gを形成させるような操業をすると、溶融塩は炉壁材を侵触する性質が極めて強いので、侵触を防ぐため高価な炉壁材料を使う必要がある。また、電気の伝導性のよい溶融塩が炉壁中に浸透するので、短絡事故を起こしやすい。そこで本願出願人は、鋭意研究の結果、炉底の陰極と炉蓋から挿入された陽極との間で通電して、電気抵抗熱により灰を溶融する際に、食塩(NaCl)などのアルカリ塩を積極的に電気分解する操業方法を採用することにした。かかる操業方法によれば、例えば食塩は、塩素ガスと金属ナトリウムに電気分解する。塩素ガスは、水蒸気と反応して塩化水素と次亜塩素酸になるが、次亜塩素酸は酸素を放出して塩化水素になる。また、金属ナトリウムは、蒸発し酸化雰囲気中で酸化ナトリウムとなる。そして、これらの物質は排ガス中に含まれて外部に放出される。なお、金属ナトリウムは一部溶融メタル層e中に残る。
【0007】
【発明が解決しようとする課題】
本願の発明者等は、直流電気抵抗式灰溶融炉のパイロットプラントを用いて、種々の条件で運転したところ運転条件によって、アルカリ塩の電気分解が活発に行われる場合とほとんど行われない場合があることがわかった。実験による知見によれば、灰自身の融点を1250℃以下におさえることと、炉内に温度傾斜をつけて、溶融スラグ層の上部に灰固体層を維持し、溶融スラグ層と灰固体層の間に固体の灰と溶融スラグが共存する溶融遷移層を存在させることが重要であることがわかった。
【0008】
本発明は、以上述べた問題点および知見に鑑み案出されたもので、直流電気抵抗式の灰溶融炉において、食塩等のアルカリ塩の電気分解が活発に行われる灰溶融炉の運転方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため本発明の灰溶融炉の運転方法は、炉底に設けた炉底電極と炉蓋から挿入した上部電極との間で通電して電気抵抗熟により灰を溶融する直流電気抵抗式灰溶融炉の運転方法であって、上記灰溶融炉に供給する灰の塩基度を0.9〜1.1の範囲に調節するとともに、上記灰溶融炉内に下から上に向って順に、溶融メタル層、溶融スラグ層、溶融スラグと固体の灰が共存する溶融遷移層、灰固体層を形成し、炉の断面積当りの電流密度が0.1〜5A/cm2 、処理する灰の重量当りの電力消費量が500〜1000KwH/tになるように電流・電圧値を制御するものである。なお、塩基度とは灰中の酸化カルシウム(Ca O)と2酸化ケイ素(SiO2 )との重量比(CaO/SiO2 )を云う。
【0010】
上記電流密度を0.7〜1.3A/cm2 ,電力消費量を700〜800KwH/tとするのが最も好ましい。
【0011】
次に本発明の作用を説明する。先ず、灰溶融炉に投入する灰の塩基度を調節する。灰が飛灰である場合は、塩基度は1.3〜1.5なので2酸化ケイ素(ケイ砂)を添加することにより塩基度を0.9〜1.1の範囲にする。塩基度の調節は、例えば特願平8−142632号に開示されているように、蛍光X線分析装置などの塩基度測定装置により塩基度を連続的に測定し、ケイ砂または石灰の投入量を調節することにより行う。塩基度を0.9〜1.1にしたのは、このときに灰の融点が最も低く1100℃程度になるからである。(石川島播磨技報 1997 Vol.37 No. 3 P215〜220)。
【0012】
炉内では下から上に向って順にメタル層、溶融スラグ層、溶融スラグと固体の灰が共存する溶融遷移層、灰固体層を形成する。このとき溶融スラグ層、溶融遷移層、灰固体層の順に温度が低下するような温度傾斜をつけた運転とする。溶融スラグ層の温度は、1100〜1250℃とする。溶融遷移層の温度は灰の融点の温度に保たれている。
【0013】
上記温度を達成するため、炉の断面積当りの電流密度は0.1〜5A/cm2 、好ましくは0.7〜1.3A/cm2 とし、灰の重量当りの電力消費量は500〜1000KwH/t、好ましくは700〜800KwH/tとなるように電流・電圧値を制御する。
【0014】
【発明の実施の形態】
以下、本発明の1実施形態について図面を参照しつつ説明する。
図1は本発明の実施に使用する直流電気抵抗式灰溶融炉の断面図である。図において、1は灰溶融炉である。2は炉底1aに設けられた炉底電極であり、3は炉蓋1bから挿入した上部電極である。炉底電極2と上部電極3は、それぞれ電源4の陰極と陽極とに接続されて直流通電されている。5は灰入口で焼却灰や飛灰7が供給される。灰7は塩基度が0.9〜1.1の範囲に調節されている。塩基度の調節は、例えば特願平8−142632号に開示されているように、灰供給機の前にケイ砂投入ホッパ、石灰投入ホッパを設け、灰供給機の出口に蛍光X線分析装置などの塩基度測定装置を取り付けて塩基度を連続的に計測し、ケイ砂または石灰の投入量を調節することにより行えばよい。なお、6はガス排出口、8は排ガスである。
【0015】
灰溶融炉1内には、下から上に向って順に、溶融メタル層9、溶融スラグ層10、溶融スラグと固体の灰が共存する溶融遷移層11、灰固体層12が形成されている。溶融スラグ層10の温度は1100〜1250℃に保たれている。
【0016】
上記温度を達成するため、炉の断面積当りの電流密度は0.1〜5A/cm2 、好ましくは0.7〜1.3A/cm2 とし、灰の重量当りの電力消費量は500〜1000KwH/t、好ましくは700〜800KwH/tになるように電源4の電流・電圧値を制御する。なお、13はスラグ排出口、14はメタル排出口、15は排出される溶融スラグ、16は排出される溶融メタルである。溶融メタル16は、溶融メタル層9の厚さが厚くなりすぎたとき溶融スラグ15を排出した後、アークを発生させて溶融メタル層9を溶かして排出される。
【0017】
次に本実施形態の作用を説明する。
溶融スラグ層10および溶融遷移層11内で活発に電気分解が行われるためには、ナトリウムイオンなどの陽イオンおよび塩素イオンなどの陰イオンが活発に移動することによる通電であることが必要である。溶融スラグの温度が1250℃以下であればこのような通電であるのに対し、1250℃を越える温度では、溶融スラグ内を電子が移動することによる通電が主になるため、電気分解が活発に行われなくなる。本発明では、塩基度を1前後に調節して灰7の融点を下げるとともに、電流密度を低くすることにより、発熱量を少くして溶融スラグ層9内の温度を1250℃以下に保つようにしたものである。また、溶融遷移層11内の温度は灰の融点に保たれており、この部分で最も活発に電気分解が行われる。
【0018】
本発明は、以上述べた実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
【0019】
以上説明したように、本発明の灰溶融炉の運転方法は、灰溶融炉に供給する灰の塩基度を1前後にするとともに電流密度を低く押えることにより、溶融スラグ層の温度を1250℃以下に保つようにしたので、飛灰中に含まれるアルカリ塩の電気分解が活発に行われ、アルカリ塩による炉壁材の侵触が少く、長寿命を保つことができるなどの優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の実施のための灰溶融炉の断面図である。
【図2】従来例として示される灰溶融炉の断面図である
【符号の説明】
1 灰溶融炉
2 炉底電極
3 上部電極
4 電源
9 メタル層
10 溶融スラグ層
11 溶融遷移層
12 灰固体層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ash melting furnace that treats fly ash containing a large amount of alkali salt such as salt, etc., in particular, by electrolyzing the alkali salt contained in the fly ash during ash melting, The present invention relates to a method for operating an ash melting furnace that can reduce deterioration of a refractory material on a furnace wall.
[0002]
[Prior art]
Various types of waste such as municipal waste and sewage sludge were incinerated at incineration facilities, and the resulting incinerated ash and dust were conventionally disposed of in landfills. However, there is a problem of depletion of landfill sites and groundwater contamination due to leaching of toxic metals, so the need for weight reduction, melting and detoxification by melting is increasing.
[0003]
Against this background, a melting treatment method using residual carbon in ash, coke, kerosene, and electric power as heat sources has been proposed, and some actual treatments have been performed. Among these, there are a plasma arc heating method and a resistance heating method as a melting furnace using electric power as a heat source.
[0004]
The resistance heating type ash melting furnace has a counter electrode in the molten slag and heats and melts the ash by electric resistance heat (Joule heat) by direct current or alternating current. 1) High thermal efficiency 2) Generated gas 3) Since no arc is generated, flicker does not occur, and 4) it is possible to divide molten slag and molten metal separately.
[0005]
As such a resistance heating type ash melting method, there is one disclosed in JP-A-7-77318. FIG. 2 shows the cross section of the ash melting furnace and the flow sheet of the front and rear equipment disclosed in the above publication. In the figure, a is an ash melting furnace, b is an upper electrode, c is a furnace bottom electrode, d is a power supply device, e is a molten metal layer, f is a molten slag layer, g is a molten salt layer, h is a CO gas combustion furnace, i is a dust collector, j is a dust collecting fan, k is a chimney, and m is an electrode buried position adjuster. A feature of the above invention is a method of melting waste made of incineration ash, dust, or a mixture of the two from a waste incineration facility using electrical resistance heat as a heat source, wherein the tip position of the upper electrode b is a molten salt layer. Molten salt is not electrolyzed by electrification in the vertical direction by direct current conduction or alternating current two-phase conduction between the bottom electrode c positioned in the molten slag layer f between g and the molten metal layer e. The molten salt layer g is stably formed above the slag layer f to prevent generation of harmful chlorine gas, hydrogen chloride gas, and the like.
[0006]
However, when the operation is performed to form the molten salt layer g in the ash melting furnace a as described above, the molten salt has a very strong property of invading the furnace wall material. It is necessary to use it. In addition, since a molten salt having good electrical conductivity penetrates into the furnace wall, a short circuit accident is likely to occur. Therefore, as a result of earnest research, the applicant of the present application conducted an energization between the cathode at the bottom of the furnace and the anode inserted from the furnace lid to melt the ash by electric resistance heat, and thus an alkaline salt such as sodium chloride (NaCl). We decided to adopt an operation method that positively electrolyzes. According to this operating method, for example, salt is electrolyzed into chlorine gas and metallic sodium. Chlorine gas reacts with water vapor to form hydrogen chloride and hypochlorous acid, but hypochlorous acid releases oxygen to form hydrogen chloride. Metal sodium evaporates and becomes sodium oxide in an oxidizing atmosphere. These substances are contained in the exhaust gas and released to the outside. Note that part of the metal sodium remains in the molten metal layer e.
[0007]
[Problems to be solved by the invention]
The inventors of the present application, when operated under various conditions using a pilot plant of a direct current electric resistance type ash melting furnace, depending on the operating conditions, there are cases where the electrolysis of the alkali salt is actively performed and rarely performed. I found out. According to experimental findings, the melting point of the ash itself is kept below 1250 ° C., the temperature gradient is set in the furnace, the ash solid layer is maintained on the upper part of the molten slag layer, and the molten slag layer and the ash solid layer It was found that it is important to have a molten transition layer between which solid ash and molten slag coexist.
[0008]
The present invention has been devised in view of the problems and knowledge described above, and provides a method for operating an ash melting furnace in which electrolysis of alkali salts such as salt is actively performed in a direct current electric resistance type ash melting furnace. The purpose is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the method of operating the ash melting furnace of the present invention is a direct current electric method in which ash is melted by ripening electric resistance by energizing between a furnace bottom electrode provided at the furnace bottom and an upper electrode inserted from the furnace lid. A resistance type ash melting furnace operating method, wherein the basicity of the ash supplied to the ash melting furnace is adjusted to a range of 0.9 to 1.1, and the bottom of the ash melting furnace is directed upward from the bottom. In order, a molten metal layer, a molten slag layer, a molten transition layer in which molten slag and solid ash coexist, and an ash solid layer are formed, and the current density per cross-sectional area of the furnace is 0.1 to 5 A / cm 2 . The current / voltage value is controlled so that the power consumption per weight of ash is 500 to 1000 KwH / t. The basicity refers to the weight ratio (CaO / SiO 2 ) between calcium oxide (Ca 2 O) and silicon dioxide (SiO 2 ) in ash.
[0010]
Most preferably, the current density is 0.7 to 1.3 A / cm 2 and the power consumption is 700 to 800 KwH / t.
[0011]
Next, the operation of the present invention will be described. First, the basicity of the ash charged into the ash melting furnace is adjusted. When the ash is fly ash, the basicity is 1.3 to 1.5, so the basicity is adjusted to a range of 0.9 to 1.1 by adding silicon dioxide (silica sand). For example, as disclosed in Japanese Patent Application No. 8-142632, the basicity is continuously measured by a basicity measuring device such as a fluorescent X-ray analyzer, and the amount of silica sand or lime input is adjusted. By adjusting the. The reason why the basicity was set to 0.9 to 1.1 is that the melting point of ash is the lowest at this time and is about 1100 ° C. (Ishikawajima Harima Technical Report 1997 Vol.37 No. 3 P215-220).
[0012]
In the furnace, a metal layer, a molten slag layer, a molten transition layer in which molten slag and solid ash coexist, and an ash solid layer are formed in order from bottom to top. At this time, the operation is performed with a temperature gradient such that the temperature decreases in the order of the molten slag layer, the molten transition layer, and the ash solid layer. The temperature of a molten slag layer shall be 1100-1250 degreeC. The temperature of the melting transition layer is kept at the melting point of ash.
[0013]
In order to achieve the above temperature, the current density per cross-sectional area of the furnace is 0.1-5 A / cm 2 , preferably 0.7-1.3 A / cm 2, and the power consumption per ash weight is 500- The current / voltage value is controlled to be 1000 KwH / t, preferably 700 to 800 KwH / t.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a DC electric resistance ash melting furnace used in the practice of the present invention. In the figure, 1 is an ash melting furnace. 2 is a furnace bottom electrode provided on the furnace bottom 1a, and 3 is an upper electrode inserted from the furnace lid 1b. The furnace bottom electrode 2 and the upper electrode 3 are connected to the cathode and the anode of the power source 4 and are DC-energized. Incineration ash and fly ash 7 are supplied to the ash inlet 5. Ash 7 has a basicity adjusted to a range of 0.9 to 1.1. For adjusting the basicity, for example, as disclosed in Japanese Patent Application No. 8-142632, a silicate feeder and a lime feeder are provided in front of the ash feeder, and a fluorescent X-ray analyzer is provided at the outlet of the ash feeder. A basicity measuring device such as the above may be attached to measure the basicity continuously and adjust the amount of silica sand or lime input. In addition, 6 is a gas discharge port and 8 is exhaust gas.
[0015]
In the ash melting furnace 1, a molten metal layer 9, a molten slag layer 10, a molten transition layer 11 in which molten slag and solid ash coexist, and an ash solid layer 12 are formed in order from bottom to top. The temperature of the molten slag layer 10 is maintained at 1100 to 1250 ° C.
[0016]
In order to achieve the above temperature, the current density per cross-sectional area of the furnace is 0.1-5 A / cm 2 , preferably 0.7-1.3 A / cm 2, and the power consumption per ash weight is 500- The current / voltage value of the power source 4 is controlled to be 1000 KwH / t, preferably 700 to 800 KwH / t. Note that 13 is a slag discharge port, 14 is a metal discharge port, 15 is a molten slag to be discharged, and 16 is a molten metal to be discharged. When the molten metal layer 9 becomes too thick, the molten metal 16 discharges the molten slag 15 and then generates an arc to melt and discharge the molten metal layer 9.
[0017]
Next, the operation of this embodiment will be described.
In order to perform electrolysis actively in the molten slag layer 10 and the molten transition layer 11, it is necessary to be energized by the active movement of cations such as sodium ions and anions such as chlorine ions. . When the temperature of the molten slag is 1250 ° C. or lower, such energization is performed, whereas at a temperature exceeding 1250 ° C., the electrolysis is actively performed because electrons mainly move through the molten slag. No longer done. In the present invention, the basicity is adjusted to around 1 to lower the melting point of the ash 7 and the current density is lowered so that the heat generation amount is reduced and the temperature in the molten slag layer 9 is kept at 1250 ° C. or lower. It is a thing. Further, the temperature in the molten transition layer 11 is maintained at the melting point of ash, and electrolysis is most actively performed in this portion.
[0018]
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the invention.
[0019]
As described above, the operation method of the ash melting furnace of the present invention sets the basicity of the ash supplied to the ash melting furnace to around 1 and keeps the current density low, thereby reducing the temperature of the molten slag layer to 1250 ° C. or less. Therefore, the alkaline salt contained in the fly ash is actively electrolyzed, and the furnace wall material is less likely to be invaded by the alkali salt.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an ash melting furnace for carrying out the present invention.
FIG. 2 is a sectional view of an ash melting furnace shown as a conventional example.
DESCRIPTION OF SYMBOLS 1 Ash melting furnace 2 Furnace bottom electrode 3 Upper electrode 4 Power supply 9 Metal layer 10 Molten slag layer 11 Molten transition layer 12 Ash solid layer

Claims (3)

炉底に設けた炉底電極と炉蓋から挿入した上部電極との間で通電して電気抵抗熱によって、アルカリ塩を含む灰を溶融する直流電気抵抗式灰溶融炉の運転方法であって、上記灰溶融炉に供給する灰の融点が最も低くなるように、灰の塩基度を0.9〜1.1の範囲に調節するとともに、溶融スラグ層の温度を、灰の融点〜1250℃の範囲に保ち、上記灰溶融炉内に下から上に向かって順に、溶融メタル層、溶融スラグ層、溶融スラグと固体の灰が共存する溶融遷移層、灰固体層を形成することにより、アルカリ塩の電気分解を活発に行わせて溶融塩層の発生を防ぐべく、炉の断面積あたりの電流密度が所要の値になるように電流値を制御することを特徴とする灰溶融炉の運転方法。A method for operating a direct current electric resistance type ash melting furnace in which an ash containing an alkali salt is melted by electric resistance heat by energizing between a furnace bottom electrode provided on the furnace bottom and an upper electrode inserted from the furnace lid, The basicity of the ash is adjusted to a range of 0.9 to 1.1 so that the melting point of the ash supplied to the ash melting furnace is the lowest, and the temperature of the molten slag layer is adjusted to a melting point of the ash of 1250 ° C. range kept, in order from bottom to top in the ash melting furnace, molten metal layer, the molten slag layer, melt transition layer ash molten slag and solid coexist, by forming the ash solid layer, an alkali salt A method of operating an ash melting furnace characterized by controlling the current value so that the current density per cross-sectional area of the furnace becomes a required value in order to actively carry out electrolysis of the molten metal to prevent generation of a molten salt layer . 上記炉の断面積あたりの電流密度が0.1〜5A/cm である請求項1記載の灰溶融炉の運転方法。The method of operation ash melting furnace according to claim 1, wherein the current density per cross-sectional area of the furnace is 0.1~5A / cm 2. 上記炉の断面積あたりの電流密度が0.7〜1.3A/cmCurrent density per cross-sectional area of the furnace is 0.7 to 1.3 A / cm 2 である請求項1記載の灰溶融炉の運転方法。The method for operating an ash melting furnace according to claim 1, wherein:
JP04937298A 1998-03-02 1998-03-02 Operation method of ash melting furnace Expired - Fee Related JP3918280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04937298A JP3918280B2 (en) 1998-03-02 1998-03-02 Operation method of ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04937298A JP3918280B2 (en) 1998-03-02 1998-03-02 Operation method of ash melting furnace

Publications (2)

Publication Number Publication Date
JPH11248134A JPH11248134A (en) 1999-09-14
JP3918280B2 true JP3918280B2 (en) 2007-05-23

Family

ID=12829212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04937298A Expired - Fee Related JP3918280B2 (en) 1998-03-02 1998-03-02 Operation method of ash melting furnace

Country Status (1)

Country Link
JP (1) JP3918280B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1147827A1 (en) * 2000-04-21 2001-10-24 Giovacchino Montagnani Process for neutralising harmful powders and plant that carries out this method
JP6534251B2 (en) * 2014-09-29 2019-06-26 Dowaエコシステム株式会社 Incineration method of solid industrial waste

Also Published As

Publication number Publication date
JPH11248134A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
KR100549789B1 (en) Method for the vitrification of a powder substance and device therefor
JP3918280B2 (en) Operation method of ash melting furnace
JP2880574B2 (en) Treatment of oxide-containing dust
JP4965890B2 (en) Electric melting furnace operation control method
JP3849287B2 (en) Exhaust gas treatment method for ash melting furnace
JPH0694926B2 (en) Method of melting incineration ash
JPH067007B2 (en) Waste melting furnace slag facility
JP3744668B2 (en) Ash melting furnace
JP3744669B2 (en) Ash melting furnace
JP3582117B2 (en) Decomposition method of molten salt in incineration ash melting furnace
JP3757409B2 (en) Ash melting furnace and method for forming bottom electrode of ash melting furnace
JP4174716B2 (en) Salt discharge method in ash melting furnace
JP3350169B2 (en) Waste melting method and apparatus
JP3196918B2 (en) Waste melting method and waste melting equipment
JP3567614B2 (en) Exhaust gas treatment equipment for ash melting furnace
JP3714384B2 (en) Ash melting furnace
JP3831930B2 (en) Electrode sealing device for ash melting furnace
JP3799582B2 (en) Ash melting furnace
JPH0519277B2 (en)
JP3921784B2 (en) Ash melting furnace
JP3714383B2 (en) Ash melting furnace and method of operating the same
JPH10267235A (en) Melt treatment apparatus for incineration residue and fly ash and method thereof
JP3575570B2 (en) Ash melting furnace
JPH11201439A (en) Ash-melting furnace
JPH11207287A (en) Apparatus for treating exhaust gas of ash melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees