JP3350169B2 - Waste melting method and apparatus - Google Patents

Waste melting method and apparatus

Info

Publication number
JP3350169B2
JP3350169B2 JP22128593A JP22128593A JP3350169B2 JP 3350169 B2 JP3350169 B2 JP 3350169B2 JP 22128593 A JP22128593 A JP 22128593A JP 22128593 A JP22128593 A JP 22128593A JP 3350169 B2 JP3350169 B2 JP 3350169B2
Authority
JP
Japan
Prior art keywords
electrode
furnace
ash
melting
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22128593A
Other languages
Japanese (ja)
Other versions
JPH0777318A (en
Inventor
正秀 田中
一毅 村橋
和浩 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22128593A priority Critical patent/JP3350169B2/en
Publication of JPH0777318A publication Critical patent/JPH0777318A/en
Application granted granted Critical
Publication of JP3350169B2 publication Critical patent/JP3350169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、廃棄物焼却炉の焼却
灰、ばいじんあるいは二者の混合物等の廃棄物を電力を
熱源として溶融処理する廃棄物溶融処理方法及び装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for melting waste such as incineration ash, dust, or a mixture of the two in a waste incinerator using electric power as a heat source.

【0002】[0002]

【従来の技術】都市ごみ、下水汚泥等の各種廃棄物は、
焼却施設で焼却処理され、生じた焼却灰、ばいじんは、
従来埋め立て処分されていた。しかし、埋め立て処分地
枯渇の問題や有害重金属類の溶出による地下水汚染の問
題があるため溶融による減量・減容化と無害化の必要性
が高まってきている。加えて、平成4年には制度の一部
が改正され、一般廃棄物の焼却に伴い発生するばいじん
は、溶融等の中間処理が義務づけられた。この背景のも
と、コークス、灯油、電力を熱源とした溶融処理方式が
提案され、一部では実処理が行われている。
2. Description of the Related Art Various wastes such as municipal waste and sewage sludge are
The incineration ash and soot that are incinerated at the incineration facility
Previously, it was landfilled. However, due to the problem of depletion of landfill sites and the problem of groundwater contamination due to elution of harmful heavy metals, the necessity for weight reduction, volume reduction, and detoxification by melting is increasing. In addition, a part of the system was revised in 1992, and soots generated from the incineration of municipal solid waste were required to undergo intermediate treatment such as melting. Against this background, a melting process using coke, kerosene, and electric power as heat sources has been proposed, and some of the processes are actually performed.

【0003】その、溶融処理方式の技術の現状は、小島
一郎氏“焼却残渣の溶融技術の現状と課題”都市と廃棄
物,VOL.23, No.5, 92-107頁(1993)に開示されている。
このうち電力を熱源とした溶融炉として最近有望視され
る方式にプラズマアーク加熱方式と抵抗加熱方式とがあ
り、プラズマアーク加熱方式は、“ごみ焼却灰溶融プラ
ズマアーク炉の開発”三菱重工技報, VOL.29, No.4, 3
46-351頁(1992-7)に開示され、また抵抗加熱方式は、
“電気抵抗式溶融炉による都市ゴミ焼却灰溶融技術”N
KK技報,No.143, 9-16頁(1993)に開示されている。
[0003] The current state of the technology of the melting treatment system is disclosed in Ichiro Kojima, "Current State and Issues of Melting Technology of Incineration Residue", City and Waste, VOL.23, No.5, pp.92-107 (1993). Have been.
Among these, the plasma arc heating method and the resistance heating method have recently been promising as melting furnaces using electric power as a heat source, and the plasma arc heating method is "Development of refuse incineration ash melting plasma arc furnace". , VOL.29, No.4, 3
46-351 (1992-7), and the resistance heating method
"Municipal waste incineration ash melting technology using an electric resistance melting furnace" N
KK Technical Report, No. 143, pp. 9-16 (1993).

【0004】前記のプラズマアーク加熱方式の設備概要
を図4に示す。この方式は炉48の上部炉蓋に中空黒鉛
電極33を1本設け、黒鉛電極の先端を炉の溶融スラグ
37の上面近くに位置させ、当該電極の中空部分にAr
ガスもしくはN2 ガスを上から流し、上部の中空黒鉛電
極33と炉底電極34の間に直流通電しプラズマ化した
ガス流でアークを維持することにより灰を加熱、溶融す
るもので、電極の長寿命化と電極コストの低減およびア
ークの安定化に加え溶融速度が大きく炉をコンパクトに
できるという特徴がある。
FIG. 4 shows an outline of the above-mentioned plasma arc heating equipment. In this method, one hollow graphite electrode 33 is provided in the upper furnace lid of the furnace 48, the tip of the graphite electrode is positioned near the upper surface of the molten slag 37 of the furnace, and Ar is placed in the hollow part of the electrode.
A gas or N 2 gas is flowed from above, and direct current is applied between the upper hollow graphite electrode 33 and the furnace bottom electrode 34 to maintain an arc with a plasma gasified gas flow, thereby heating and melting the ash. In addition to prolonging the life, reducing the electrode cost and stabilizing the arc, it has the characteristic that the melting rate is large and the furnace can be made compact.

【0005】又、前記抵抗加熱方式の設備概要を図5に
示す。この方式は、例えば、従来、高炉スラグからロッ
クウールを作る際に使われた溶解炉技術を、灰に応用し
たものであるが、いずれの技術も交流通電による交流抵
抗加熱方式である。即ち、炉51の上部炉蓋に2本もし
くは3本の黒鉛電極54を設け、黒鉛電極54の先端を
炉の溶融スラグ37に埋没させ、電極間に交流電圧をか
けることにより、溶融スラグ37に交流通電し、溶融状
態になった灰そのものを抵抗体にして電気抵抗熱を発生
させ、その熱でスラグの溶融状態の維持と、溶融スラグ
37からの伝熱で灰を加熱、溶融する方式である。本方
式は、電極の長寿命化と電極コストの低減ができること
に加え熱効率が高い、発生ガスが少ない、アークを生成
しないためフリッカーが発生しない、溶融スラグと溶融
メタルとを分離し分割出滓ができるという特徴がある。
FIG. 5 shows an outline of the equipment of the resistance heating system. In this method, for example, a melting furnace technique conventionally used for making rock wool from blast furnace slag is applied to ash, and each technique is an AC resistance heating method using AC current. That is, two or three graphite electrodes 54 are provided on the upper furnace lid of the furnace 51, and the tips of the graphite electrodes 54 are buried in the molten slag 37 of the furnace. An AC current is applied, and the ash itself in the molten state is used as a resistor to generate electric resistance heat, and the heat maintains the molten state of the slag, and the ash is heated and melted by the heat transfer from the molten slag 37. is there. This system has a longer electrode life and lowers electrode cost, as well as high thermal efficiency, low gas generation, no flicker because no arc is generated, and separation of molten slag and molten metal to separate slag. There is a feature that can be.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、粒子径
の小さい焼却灰やばいじんの溶融にガス流の発生を伴う
プラズマアーク加熱方式を適用すれば、溶融に至る前の
焼却灰やばいじんがガス流により物理的に飛散し、集塵
機27で発生する2次飛灰の増加をまねく問題点を有
し、さらに高温ガスと溶融スラグ37が撹拌されながら
接触するので重金属、アルカリ塩の揮散を促進し、2次
飛灰をさらに増加させ、結果的にスラグ中への重金属閉
じ込め効果が薄れるという問題も有している。
However, if a plasma arc heating method involving the generation of a gas flow is applied to the melting of incinerated ash or dust having a small particle size, the incinerated ash or dust before melting can be reduced by the gas flow. It has a problem that it is physically scattered and increases secondary fly ash generated in the dust collector 27. Further, since the high-temperature gas and the molten slag 37 come into contact with each other while being stirred, volatilization of heavy metals and alkali salts is promoted. There is also a problem that the secondary fly ash is further increased, and as a result, the effect of confining heavy metals in the slag is reduced.

【0007】一方、交流抵抗加熱方式は電気抵抗熱によ
り溶融状態を維持する溶融スラグ層37の上に焼却灰や
ばいじんの灰カバー層35を形成させ、溶融スラグ層か
らの輻射熱、熱伝導によりゆっくりした速度で溶融させ
るので上記プラズマアーク加熱方式の問題点を回避でき
るが、電気抵抗値が安定しないという問題点がある。即
ち、交流抵抗加熱方式は、スラグの撹拌が対流のみで緩
慢なため、焼却灰やばいじん中に含まれるNaCl,K
Cl等のアルカリ塩が溶融スラグ層と比重分離し、溶融
塩層36が溶融スラグ層37の上に分離して形成される
結果、2本ないし3本の黒鉛電極54は溶融塩層36を
貫通することになる。この時、溶融塩の比抵抗値は溶融
スラグの比抵抗値の200分の1倍程度と非常に小さい
ため2本または3本の電極間に交流電圧を印加するこの
方式では、図6に示すように電極間に抵抗値の異なる2
つの抵抗負荷REE-SLAG にREE-SALTを並列に接続した
回路と同等になり比抵抗値の小さな溶融塩の存在は、電
極間の抵抗値REEを低下させるため、通電の抵抗値Rの
低下を招く。その結果、通電が安定せず、電力原単位を
悪化させる他、ひどい場合は定格電流のもとで十分な電
圧が発生せず抵抗加熱ができなくなるという問題点があ
った。
On the other hand, in the AC resistance heating method, an incineration ash or a soot and dust ash cover layer 35 is formed on a molten slag layer 37 which maintains a molten state by electric resistance heat, and is slowly heated by radiant heat and heat conduction from the molten slag layer. Although the above-described problems of the plasma arc heating method can be avoided by melting at a predetermined speed, there is a problem that the electric resistance value is not stable. That is, in the AC resistance heating method, since the slag is slowly stirred only by convection, NaCl, K contained in incinerated ash and dust and soot is not used.
Alkaline salt such as Cl is separated from the molten slag layer by specific gravity, and the molten salt layer 36 is formed separately on the molten slag layer 37. As a result, two or three graphite electrodes 54 penetrate the molten salt layer 36. Will do. At this time, since the specific resistance of the molten salt is very small, about 1/200 of the specific resistance of the molten slag, an AC voltage is applied between two or three electrodes in this method, as shown in FIG. 2 different resistance values between the electrodes
The presence of a molten salt having a small specific resistance value is equivalent to a circuit in which R EE-SALT is connected in parallel to two resistance loads R EE-SLAG , and lowers the resistance value R EE between the electrodes. Causes a decrease in As a result, there has been a problem that the energization is not stable, the power consumption is deteriorated, and in severe cases, a sufficient voltage is not generated under the rated current and resistance heating cannot be performed.

【0008】さらに、溶融塩層に電圧を印加する本方法
は、次式に示すような溶融塩の電気分解の可能性があり 2Na+ +2Cl- →2Na+Cl2 ↑ 2K+ +2Cl- →2K +Cl2 ↑ 溶融塩が分解すれば塩素ガスを発生し、周辺の機器を腐
食するので排ガス処理が困難となる。
Further, in the method of applying a voltage to the molten salt layer, there is a possibility of electrolysis of the molten salt as shown in the following formula. 2Na + + 2Cl → 2Na + Cl 2 ↑ 2K + + 2Cl → 2K + Cl 2 ↑ If the molten salt is decomposed, chlorine gas is generated and peripheral equipment is corroded, so that it becomes difficult to treat the exhaust gas.

【0009】上記、通電の抵抗値Rの低下や溶融塩の電
気分解という不都合を解決する方法としては、例えば特
公平2−10342号公報に開示される図7のように、
電極の方向を水平とし、その位置が溶融塩層36より下
の溶融スラグ層37中に挿入されるよう配設する手段が
ある。しかしながら本方式では消耗する電極を順次継ぎ
足しながら炉内に挿入する電極の追挿が必要で、電極を
溶融スラグの存在する炉体の側壁を貫通して、水平に抜
き差し自在に設けなければならずそのシール構造が複雑
となり、また水平方向での電極の追挿作業が難しいとい
う別の問題を引き起こしていた。
As a method for solving the above-mentioned disadvantages such as a decrease in the resistance value R of current flow and electrolysis of a molten salt, for example, as shown in FIG. 7 disclosed in Japanese Patent Publication No. 2-10342, FIG.
There is a means in which the direction of the electrode is horizontal and the position is inserted into the molten slag layer 37 below the molten salt layer 36. However, in this method, additional electrodes need to be inserted into the furnace while successively adding consumable electrodes, and the electrodes must be provided horizontally freely through the side wall of the furnace body where the molten slag exists. Another problem is that the sealing structure is complicated, and it is difficult to insert the electrodes in the horizontal direction.

【0010】[0010]

【課題を解決するための手段】本発明は上記課題を解決
するものであり、ごみ焼却施設より発生する焼却灰、ば
いじんあるいは二者の混合物からなる廃棄物を電気抵抗
熱を熱源として溶融処理する方法であって、上部電極の
先端位置を溶融塩層と溶融メタル層との間の溶融スラグ
層中に位置せしめ炉底電極との間に、直流通電もしくは
交流2相通電により垂直方向に通電することを特徴とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and melts waste produced from incineration ash, dust, or a mixture of two generated from a refuse incineration facility using electric resistance heat as a heat source. In the method, the tip position of the upper electrode is located in the molten slag layer between the molten salt layer and the molten metal layer, and the current is vertically applied between the furnace bottom electrode by direct current or two-phase alternating current. It is characterized by the following.

【0011】また、上記方法を実現する具体的装置構成
としては、上部電極と下部電極との間に直流電源もしく
は交流2相電源を接続し、上部電極と下部電極との間に
位置させる溶融物での通電が垂直方向となるよう下部電
極を炉底に固定して配設するとともに、1本もしくは複
数本の同電位の電極で構成した上部電極を炉蓋を貫通し
て垂直方向に昇降自在に配設し、さらに、当該上部電極
には溶融物中での電極先端の埋没位置を調節する調節機
構を配したことを特徴とする装置機構である。
As a specific apparatus configuration for realizing the above method, a DC power source or an AC two-phase power source is connected between the upper electrode and the lower electrode, and the molten material is located between the upper electrode and the lower electrode. The lower electrode is fixed to the furnace bottom so that the current flows in the vertical direction, and the upper electrode composed of one or more electrodes of the same potential can be vertically moved vertically through the furnace lid. And an adjustment mechanism for adjusting the buried position of the electrode tip in the melt is disposed on the upper electrode.

【0012】[0012]

【作用】本発明によれば、上部電極の先端位置を溶融塩
層と溶融メタル層との間の溶融スラグ層中に位置せしめ
炉底電極との間に、直流通電もしくは交流2相通電によ
り垂直方向に通電するので抵抗値の異なる溶融スラグと
溶融塩が積み重なっていても従来の交流抵抗加熱で起こ
ったような通電の抵抗値の低下に結びつかず、アルカリ
塩を多く含む場合でも溶融スラグ層の上に溶融塩層を安
定に分離成長させることができ、スラグと分離した状態
で溶融塩を出滓できる。また、上部電極の先端位置より
下の炉底部に発熱が集中するので溶融スラグの対流が盛
んで均一なスラグが生成可能となる。
According to the present invention, the position of the tip of the upper electrode is located in the molten slag layer between the molten salt layer and the molten metal layer, and is vertically applied between the furnace bottom electrode by direct current or alternating current two-phase current. Even if molten slag and molten salt with different resistance values are stacked because they are energized in the same direction, they do not lead to a decrease in the resistance value of current flow as occurs with conventional AC resistance heating, and even when a large amount of alkali salt is contained, the molten slag layer A molten salt layer can be stably separated and grown on the molten salt layer, and the molten salt can be discharged while being separated from the slag. Further, since heat is concentrated on the furnace bottom below the tip of the upper electrode, the convection of the molten slag is increased and uniform slag can be generated.

【0013】さらに、良導体である溶融塩層と溶融メタ
ル層とが溶融スラグ層を挟む構造となるため、見かけ
上、上部電極と炉底電極が、炉の水平断面全体に広がる
効果があり、垂直方向の通電が炉の水平断面全体で起こ
ることにより均一加熱と抵抗値の安定化が実現される。
加えて、上部電極を複数本の同電位の電極で構成する場
合、溶融塩層には電圧勾配が発生せず溶融塩層に電流が
流れないため、溶融塩の電気分解や溶融塩の抵抗加熱と
その結果の揮散が抑制されるので溶融塩層を流れてロス
する電流がなくなり電力原単位を低減できる。以下に本
発明を図に示す実施例に基づいて詳細に説明する。
Further, since the molten salt layer and the molten metal layer, which are good conductors, have a structure sandwiching the molten slag layer, apparently, the upper electrode and the furnace bottom electrode have the effect of spreading over the entire horizontal section of the furnace, Unidirectional heating and stabilization of the resistance value are realized by the energization in the direction occurring over the entire horizontal section of the furnace.
In addition, when the upper electrode is composed of a plurality of electrodes having the same potential, a voltage gradient does not occur in the molten salt layer and no current flows through the molten salt layer, so that electrolysis of the molten salt or resistance heating of the molten salt is performed. And volatilization as a result thereof is suppressed, so that there is no loss of current flowing through the molten salt layer, and the power consumption can be reduced. Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings.

【0014】[0014]

【実施例】図1は、本発明を実施するための全体設備例
を示す。図2は図1のうち直流電気抵抗溶融炉の部分を
拡大して示す図である。図1または図2において、2は
焼却炉、42は発電機、20は直流抵抗加熱式の灰溶融
炉であって、各々その補機とともに、焼却処理施設、発
電施設、灰溶融施設を構成している。
FIG. 1 shows an example of an entire facility for carrying out the present invention. FIG. 2 is an enlarged view of a DC electric resistance melting furnace in FIG. In FIG. 1 or FIG. 2, reference numeral 2 denotes an incinerator, reference numeral 42 denotes a generator, reference numeral 20 denotes a DC resistance heating type ash melting furnace, which together with its auxiliary equipment constitutes an incineration treatment facility, a power generation facility, and an ash melting facility. ing.

【0015】焼却処理施設のうち1はゴミピットであり
受け入れたゴミを貯留するとともに順次焼却炉2に投入
し焼却処理している。発生した排ガスは、ボイラー3、
有害ガス除去装置4、バグフィルター5、誘引送風機6
を介して煙突7から排出される。排ガス中のばいじんは
当該バグフィルター5で除去され、集められたばいじん
は、ばいじん移送コンベア16によりばいじん貯留槽1
7に貯留している。また焼却処理で発生した焼却灰、ボ
イラー灰等は乾式灰出し装置8に収集され、灰移送コン
ベア9により磁力選別機10、振動篩11に導かれ鉄分
12、粗大物13を除去したのち灰移送コンベア14に
より焼却灰貯留槽15に貯留している。
One of the incineration facilities is a garbage pit which stores the received garbage and sequentially puts it into an incinerator 2 for incineration. The generated exhaust gas is boiler 3,
Hazardous gas removal device 4, bag filter 5, induction blower 6
And discharged from the chimney 7. Soot and dust in the exhaust gas is removed by the bag filter 5 and the collected soot is collected by the soot transfer conveyor 16 to the soot storage tank 1.
It is stored at 7. The incineration ash, boiler ash, etc. generated in the incineration process are collected in a dry ash removal device 8 and guided to a magnetic separator 10 and a vibrating sieve 11 by an ash transfer conveyor 9 to remove iron 12 and bulky materials 13 and then transfer the ash. It is stored in the incineration ash storage tank 15 by the conveyor 14.

【0016】発電施設では、焼却処理の発生熱をボイラ
ー3で回収し、ボイラー3、タービン39、復水器4
0、復水タンク41で構成されるサイクルで動力に変換
し、さらに発電機42で電力に変換している。発電機4
2は外部の電力系統と並列運転され、その電力は焼却炉
や溶融炉に給電されている。
In the power generation facility, the heat generated by the incineration process is recovered by the boiler 3, and the boiler 3, turbine 39, condenser 4
0, power is converted into power in a cycle constituted by the condensate tank 41, and further converted into power by the generator 42. Generator 4
2 is operated in parallel with an external electric power system, and the electric power is supplied to an incinerator and a melting furnace.

【0017】灰溶融施設では、ばいじん貯留槽17と焼
却灰貯留槽15とから灰を切り出し灰供給コンベア18
により灰ホッパー19を介して灰溶融炉20に供給して
いる。灰溶融炉20に入った灰は溶融物の対流により炉
の全断面に広がり灰カバー層35を構成する。灰カバー
層35の灰は溶融物からの伝熱で徐々に溶融し、溶融物
に溶け込み、灰中のアルカリ塩成分、スラグ、メタル成
分がそれぞれ溶融塩層36、溶融スラグ層37、溶融メ
タル層38に分離する。
In the ash melting facility, ash is cut out from the dust storage tank 17 and the incinerated ash storage tank 15 and an ash supply conveyor 18 is provided.
Is supplied to an ash melting furnace 20 through an ash hopper 19. The ash that has entered the ash melting furnace 20 spreads over the entire cross section of the furnace due to the convection of the melt to form an ash cover layer 35. The ash of the ash cover layer 35 is gradually melted by the heat transfer from the melt, melts into the melt, and the alkali salt component, the slag, and the metal component in the ash are converted into the molten salt layer 36, the molten slag layer 37, and the molten metal layer, respectively. Separated into 38.

【0018】上部中空黒鉛電極33は炉蓋を貫通して設
けられ、電極昇降装置32で垂直方向に昇降自在に支持
され、その先端位置が溶融スラグ層37中に埋没される
よう電極埋没位置調節器59により制御されている。上
部中空黒鉛電極33と炉底電極34の間には直流電源装
置31から直流電圧を印加することで垂直方向に直流通
電し、溶融スラグ層を抵抗体として電気抵抗熱を発生さ
せ、溶融スラグ38の溶融状態を維持している。またこ
の上部中空黒鉛電極33にはその中空部分に水冷装置が
挿入されており赤熱する電極先端部を内側から冷却し、
黒鉛の酸化損耗を抑制している。
The upper hollow graphite electrode 33 is provided so as to penetrate the furnace lid, and is supported vertically vertically by an electrode lifting / lowering device 32 so as to be buried in the molten slag layer 37. Is controlled by the heater 59. A DC voltage is applied between the upper hollow graphite electrode 33 and the furnace bottom electrode 34 in the vertical direction by applying a DC voltage from the DC power supply device 31 to generate electric resistance heat using the molten slag layer as a resistor to generate a molten slag 38. Is maintained in a molten state. In addition, a water cooling device is inserted into the hollow portion of the upper hollow graphite electrode 33 to cool the tip of the red-hot electrode from the inside,
It suppresses the oxidative wear of graphite.

【0019】さらに本実施例では電極の酸化損耗を防ぐ
ために、炉内雰囲気を無酸素状態に保てるよう溶融炉出
口ガスダクトを分岐し、ガス循環ファン46と排ガス循
環ダクト47を灰シュートまで配設し、COガスを含む
高温の可燃性ガスをガス循環している。この場合灰に含
まれる微量の空気や水分は灰シュート内で高温の循環ガ
スと接触するので、空気は高温の可燃性ガスと燃焼する
ことで、炉内雰囲気が無酸素状態になり、また水分は予
め乾燥することで電極高温部分との接触を抑制でき、電
極の酸化損耗が防げる。
Further, in this embodiment, in order to prevent the electrode from being oxidized and worn, the gas duct at the outlet of the melting furnace is branched to keep the atmosphere in the furnace oxygen-free, and a gas circulation fan 46 and an exhaust gas circulation duct 47 are provided to the ash chute. , High temperature combustible gas including CO gas is circulated. In this case, a small amount of air or moisture contained in the ash comes into contact with the high-temperature circulating gas in the ash chute, so that the air burns with the high-temperature flammable gas to make the furnace atmosphere oxygen-free, By drying in advance, contact with a high-temperature portion of the electrode can be suppressed, and oxidation damage of the electrode can be prevented.

【0020】灰溶融炉20の炉壁には3つの出滓口が、
各々3つの溶滓層の位置に配設され、各々分別して出滓
される。即ち、溶融塩36については、溶融塩の液面の
直上炉壁に出滓口Aが設けられ、炉を傾動させることに
より間欠的に出滓される。溶融スラグ37については、
炉底の上部近傍の炉壁に出滓口Bが設けられ、溶融スラ
グのヘッド圧により、連続的に出滓され、その出滓量は
炉の傾動によるヘッド圧調整により調整される。溶融メ
タル38については、炉底と同じレベルの炉壁に出滓口
Cが設けられその出滓は、一定の溶融メタル量毎もしく
は定期的に間欠的に行われ、通常出滓口にマッドが充填
されており出滓開始時はそのマッドをドリルで穿孔する
ことで実施し、出滓終了時には再びマッドを充填され
る。また、溶融メタル出滓終了の確認は溶融メタルと溶
融スラグの色の違いを目視で確認する方法で把握でき
る。
The furnace wall of the ash melting furnace 20 has three slag outlets,
Each is disposed at the position of three slag layers, and each is separated and discharged. That is, with respect to the molten salt 36, a slag port A is provided on the furnace wall immediately above the liquid level of the molten salt, and the slag is intermittently discharged by tilting the furnace. About molten slag 37,
A slag port B is provided in the furnace wall near the upper part of the furnace bottom, and slag is continuously sunk by the head pressure of the molten slag, and the amount of the slag is adjusted by adjusting the head pressure by tilting the furnace. For the molten metal 38, a slag port C is provided on the furnace wall at the same level as the furnace bottom, and the slag is periodically or intermittently performed at a fixed amount of the molten metal. The mud is filled and the mud is drilled at the start of slagging, and the mud is filled again at the end of slagging. Further, the completion of the molten metal slag can be confirmed by visually confirming the difference in color between the molten metal and the molten slag.

【0021】出滓されたスラグは徐冷コンベア21で冷
却されスラグピット22に貯留し、同様に出滓されたメ
タルは冷却コンベア23で冷却されメタルピット24に
貯留される。また溶融塩は溶融塩取り鍋25に出滓し冷
却、貯留される。
The discharged slag is cooled by a slow cooling conveyor 21 and stored in a slag pit 22, and the discharged metal is cooled by a cooling conveyor 23 and stored in a metal pit 24. The molten salt is discharged into a molten salt ladle 25, cooled, and stored.

【0022】直流抵抗式灰溶融炉20で発生した可燃性
ガスは燃焼炉26で燃焼後、環境集塵フードに排気さ
れ、徐冷コンベア21、冷却コンベア23、取り鍋25
で発生し環境集塵フード61で吸引されるガスとともに
集塵器27で2次飛灰が集塵され、集塵ファン28を介
して煙突7に排気される。集塵器27で集塵された2次
飛灰は、コンベアを介して2次飛灰無害化装置30に送
られ、フェライト化処理等により無害化している。
The combustible gas generated in the DC resistance type ash melting furnace 20 is burned in the combustion furnace 26 and then exhausted to the environmental dust collecting hood, where it is gradually cooled, the cooling conveyor 23, the cooling conveyor 23, and the ladle 25.
The secondary fly ash is collected by the dust collector 27 together with the gas generated in the above and sucked by the environmental dust collecting hood 61, and is exhausted to the chimney 7 via the dust collecting fan 28. The secondary fly ash collected by the dust collector 27 is sent to the secondary fly ash detoxifying device 30 via a conveyor, and is rendered harmless by ferrite treatment or the like.

【0023】なお上記実施例において電源装置31を直
流電源装置としたが電源装置31を交流2相電源装置と
しても垂直方向の通電が炉の水平面全体で起こることに
より同様の効果、作用を奏することは言うまでもない。
In the above embodiment, the power supply device 31 is a DC power supply device. However, even when the power supply device 31 is an AC two-phase power supply device, the same effect and action can be obtained because the vertical energization occurs over the entire horizontal surface of the furnace. Needless to say.

【0024】図3は上部電極を複数の同電位の中空黒鉛
電極60で構成した他の実施例であり上部電極以外の構
成は図1または図2と同じであるが、本実施例の場合、
上部電極が3本であるが、1本の場合に比べ発熱中心部
位が3倍にできるため炉の直径を大きくできる。そし
て、図5に示す交流通電の場合と異なり、上部電極本数
は任意に設定できる。また、3本の上部電極が同電位で
あるため溶融塩層36には電圧勾配が殆ど発生せず溶融
塩層に電流が流れないため、溶融塩の電気分解や溶融塩
の抵抗加熱とその結果の揮散が抑制されるので溶融塩層
を流れてロスする電流がなくなり電力原単位を低減でき
る。
FIG. 3 shows another embodiment in which the upper electrode is constituted by a plurality of hollow graphite electrodes 60 having the same potential. The structure other than the upper electrode is the same as that of FIG. 1 or FIG.
Although the number of upper electrodes is three, the center of heat generation can be tripled as compared with the case of one upper electrode, so that the furnace diameter can be increased. Unlike the case of the alternating current shown in FIG. 5, the number of upper electrodes can be arbitrarily set. Further, since the three upper electrodes are at the same potential, a voltage gradient hardly occurs in the molten salt layer 36 and no current flows through the molten salt layer. Since the volatilization of gas is suppressed, there is no current that flows through the molten salt layer and is lost, and the power consumption can be reduced.

【0025】[0025]

【発明の効果】以上に説明したような構成にすることに
よって本発明は以下の効果を奏する。 (1)上部電極の先端位置を溶融物中に埋没させ炉底電
極との間で垂直方向に通電するため溶融塩による抵抗値
低下の悪影響がない。 (2)良導体である溶融塩層と溶融メタル層とが溶融ス
ラグ層を挟む構造となるため抵抗値が安定し、均一加熱
が可能となる。 (3)溶融塩層に電流が流れないため電力原単位を低減
できる。特に上部電極を複数の同電位の電極とする場合
は溶融塩層には電圧勾配が殆ど発生せず、効果的に電力
原単位の低減ができる。 (4)溶融塩層に電流が流れ溶融塩が加熱して揮散する
ことが抑制されるので溶融塩層を分離成長させ、スラグ
と分離した状態で出滓できる。 (5)垂直方向の通電は発熱が炉底部に集中するので溶
融スラグの対流が盛んで均一加熱が可能となる。 (6)抵抗加熱によれば、電極の損耗消費量を少なくす
ることができる。特に、直流通電の場合その効果が大き
い。また上部電極を中空とし中空部分に水冷装置を配し
電極を冷却する場合やガス循環装置を配しガス循環する
場合はさらに電極の損耗消費量を抑制できる。 (7)上部電極を複数の同電位の電極とする場合は、そ
の本数は任意に設定でき電極の本数に応じて、炉径を大
きくできる。
According to the above-described configuration, the present invention has the following effects. (1) Since the tip of the upper electrode is immersed in the melt and is vertically energized with the furnace bottom electrode, there is no adverse effect of a decrease in the resistance due to the molten salt. (2) Since the molten salt layer and the molten metal layer, which are good conductors, have a structure sandwiching the molten slag layer, the resistance value is stabilized, and uniform heating is possible. (3) Since no current flows through the molten salt layer, the power consumption can be reduced. In particular, when the upper electrode is a plurality of electrodes having the same potential, almost no voltage gradient occurs in the molten salt layer, and the power consumption can be effectively reduced. (4) Since the current flows through the molten salt layer and the molten salt is suppressed from being heated and volatilized, the molten salt layer can be separated and grown, and the slag can be removed while being separated from the slag. (5) In the vertical energization, heat is concentrated on the bottom of the furnace, so that the convection of the molten slag is increased and uniform heating is possible. (6) According to the resistance heating, it is possible to reduce the consumption of the electrode by wear. In particular, in the case of direct current, the effect is great. When the upper electrode is hollow and a water cooling device is provided in the hollow portion to cool the electrode, or when a gas circulating device is provided to circulate the gas, the consumption of the electrode can be further reduced. (7) When the upper electrode is a plurality of electrodes having the same potential, the number of the electrodes can be arbitrarily set, and the furnace diameter can be increased according to the number of the electrodes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための全体設備を示す。FIG. 1 shows the overall equipment for implementing the present invention.

【図2】図1に示す、直流電気抵抗炉の部分の拡大図を
示す。
FIG. 2 shows an enlarged view of a portion of the DC resistance furnace shown in FIG.

【図3】本発明の別の実施例を示す図であり、図1や図
2に示す、直流電気抵抗炉の上部電極を複数本の同電位
の電極で構成する場合の直流電気抵抗炉の部分を拡大図
を示す。
FIG. 3 is a view showing another embodiment of the present invention, wherein the upper electrode of the DC electric resistance furnace shown in FIGS. 1 and 2 is constituted by a plurality of electrodes having the same potential; The part is shown in an enlarged view.

【図4】従来の電力を熱源とした溶融処理装置のうちプ
ラズマアーク加熱方式による装置図を示す。
FIG. 4 shows an apparatus diagram of a plasma arc heating method among conventional melting processing apparatuses using electric power as a heat source.

【図5】従来の電力を熱源とした溶融処理装置のうち抵
抗加熱方式による装置図を示す。
FIG. 5 shows an apparatus diagram of a conventional melting processing apparatus using electric power as a heat source by a resistance heating method.

【図6】従来の交流電気抵抗加熱炉において溶融塩層が
存在する場合の等価電気回路図を示す。
FIG. 6 is an equivalent electric circuit diagram when a molten salt layer is present in a conventional AC electric resistance heating furnace.

【図7】通電の抵抗値Rの低下や溶融塩の電気分解の不
都合を解決する従来の溶融処理装置図を示す。
FIG. 7 is a diagram of a conventional melting treatment apparatus for solving the problem of lowering the resistance value R of energization and the inconvenience of electrolysis of a molten salt.

【符号の説明】[Explanation of symbols]

1 ごみピット 2 焼却炉 3 ボイラー 4 有害ガス除去装置 5 バグフィルター 6 誘引送風機 7 煙突 8 乾式灰出し装置 9 灰移送コンベア 10 磁力選別機 11 振動篩 12 鉄分 13 粗大物 14 灰移送コンベア 15 焼却灰貯留槽 16 ばいじん移送コンベア 17 ばいじん貯留槽 18 灰供給コンベア 19 灰ホッパー 20 直流抵抗式灰溶融炉 21 スラグ徐冷コンベア 22 スラグピット 23 メタル徐冷コンベア 24 メタルピット 25 溶融塩取り鍋 26 焼却炉 27 集塵機 28 集塵ファン 29 コンベア 30 2次飛灰無害化装置 31 直流電源装置 32 電極昇降装置 33 中空黒鉛電極 34 炉底電極 35 灰カバー層 36 溶融塩層 37 溶融スラグ層 38 溶融メタル層 39 タービン 40 復水器 41 復水タンク 42 発電機 43 水冷ノズル 44 電極冷却装置 45 空気ファン 46 ガス循環ファン 47 ガス循環ダクト 48 プラズマアーク式灰溶融炉 49 急冷塔 50 スラグ水砕装置 51 交流電気抵抗式灰溶融炉 52 交流電源装置 53 振り分けコンベア 54 黒鉛電極 55 スラグメタル徐冷コンベア 56 スラグメタルピット 57 モリブデン電極 58 傾動装置 59 電極埋没位置調節器 60 同電位の中空黒鉛電極 61 環境集塵フード REFERENCE SIGNS LIST 1 garbage pit 2 incinerator 3 boiler 4 harmful gas removing device 5 bag filter 6 induction blower 7 chimney 8 dry ash removal device 9 ash transfer conveyor 10 magnetic separator 11 vibrating sieve 12 iron 13 bulk material 14 ash transfer conveyor 15 incinerated ash storage Vessel 16 Dust transfer conveyor 17 Dust storage tank 18 Ash supply conveyor 19 Ash hopper 20 DC resistance ash melting furnace 21 Slag slow cooling conveyer 22 Slag pit 23 Metal slow cooling conveyer 24 Metal pit 25 Molten salt collecting pot 26 Incinerator 27 Dust collector 28 Dust collection fan 29 Conveyor 30 Secondary fly ash detoxifying device 31 DC power supply device 32 Electrode lifting device 33 Hollow graphite electrode 34 Furnace bottom electrode 35 Ash cover layer 36 Molten salt layer 37 Molten slag layer 38 Molten metal layer 39 Turbine 40 Condensate Container 41 Condensate tank 42 Generator 3 Water Cooling Nozzle 44 Electrode Cooling Device 45 Air Fan 46 Gas Circulation Fan 47 Gas Circulation Duct 48 Plasma Arc Ash Melting Furnace 49 Quenching Tower 50 Slag Granulator 51 AC Electric Resistance Ash Melting Furnace 52 AC Power Supply 53 Sorting Conveyor 54 Graphite Electrode 55 Slag metal slow cooling conveyor 56 Slag metal pit 57 Molybdenum electrode 58 Tilting device 59 Electrode burial position adjuster 60 Hollow graphite electrode at the same potential 61 Environmental dust hood

フロントページの続き (72)発明者 栗林 和浩 福岡県北九州市戸畑区大字中原46−59 新日本製鐵株式会社 機械・プラント事 業部内 (56)参考文献 特開 平2−97816(JP,A) 特開 平2−97813(JP,A) 特開 平6−42724(JP,A) 特開 昭55−67396(JP,A) 特開 平4−251106(JP,A) 特開 昭55−114383(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23G 5/00 115 F23G 5/10 H05B 3/00 350 F23J 1/00 B09B 3/00 Continued on the front page (72) Inventor Kazuhiro Kuribayashi 46-59 Ohara Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka Nippon Steel Corporation Machinery & Plant Business Department (56) References JP-A-2-97816 (JP, A) JP-A-2-97813 (JP, A) JP-A-6-42724 (JP, A) JP-A-55-67396 (JP, A) JP-A-4-251106 (JP, A) JP-A-55-114383 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F23G 5/00 115 F23G 5/10 H05B 3/00 350 F23J 1/00 B09B 3/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ごみ焼却施設より発生する焼却灰、ばい
じんあるいは二者の混合物からなる廃棄物を電気抵抗熱
を熱源として溶融処理する方法であって、上部電極の先
端位置を溶融塩層と溶融メタル層との間の溶融スラグ層
中に位置せしめ炉底電極との間に、直流通電もしくは交
流2相通電により垂直方向に通電することを特徴とする
廃棄物の溶融処理方法。
1. A method for melting incineration ash, soot and dust generated from a refuse incineration facility using electric resistance heat as a heat source, wherein the tip of an upper electrode is melted with a molten salt layer. A method for melting waste according to claim 1, characterized in that a current is applied in a vertical direction by direct current or two-phase alternating current between a metal layer and a furnace bottom electrode positioned in a molten slag layer.
【請求項2】 ごみ焼却施設より発生する焼却灰、ばい
じんあるいは二者の混合物からなる廃棄物を電気抵抗熱
を熱源として溶融処理する装置において、上部電極と下
部電極との間に直流電源もしくは交流2相電源を接続
し、上部電極と下部電極との間に位置させる溶融物での
通電が垂直方向となるよう下部電極を炉底に固定して配
設するとともに、1本もしくは複数本の同電位の電極で
構成した上部電極を炉蓋を貫通して垂直方向に昇降自在
に配設し、さらに、当該上部電極には溶融物中での電極
先端の埋没位置を調節する調節機構を配したことを特徴
とする廃棄物の溶融処理装置。
2. An apparatus for melting and processing incineration ash, soot and dust generated from a refuse incineration facility using electric resistance heat as a heat source, wherein a direct current power supply or an alternating current is applied between an upper electrode and a lower electrode. A two-phase power source is connected, and the lower electrode is fixed to the furnace bottom so that the current flowing through the melt located between the upper electrode and the lower electrode is vertical, and one or more An upper electrode composed of an electrode of a potential is disposed vertically vertically through the furnace lid, and furthermore, the upper electrode is provided with an adjustment mechanism for adjusting the burying position of the electrode tip in the melt. A waste melting apparatus characterized by the above-mentioned.
JP22128593A 1993-09-06 1993-09-06 Waste melting method and apparatus Expired - Fee Related JP3350169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22128593A JP3350169B2 (en) 1993-09-06 1993-09-06 Waste melting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22128593A JP3350169B2 (en) 1993-09-06 1993-09-06 Waste melting method and apparatus

Publications (2)

Publication Number Publication Date
JPH0777318A JPH0777318A (en) 1995-03-20
JP3350169B2 true JP3350169B2 (en) 2002-11-25

Family

ID=16764392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22128593A Expired - Fee Related JP3350169B2 (en) 1993-09-06 1993-09-06 Waste melting method and apparatus

Country Status (1)

Country Link
JP (1) JP3350169B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020053205A (en) * 2000-12-27 2002-07-05 윤기섭 High Temperature Melting System of Three Phases Registration Type for Treatment of wastes or Sewage Sludge
CN109114980A (en) * 2018-09-30 2019-01-01 河南省德耀节能科技股份有限公司 A kind of energy-efficient mineral hot furnace

Also Published As

Publication number Publication date
JPH0777318A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
JP5361971B2 (en) Apparatus and method for incineration ash treatment using plasma arc
JP3350169B2 (en) Waste melting method and apparatus
CN109073215B (en) Plasma melting method for treating object to be treated and plasma furnace used therefor
JP3280265B2 (en) Apparatus and method for melting incineration residue and fly ash
JP3088515B2 (en) Induction heating residue melting furnace
JPH0355410A (en) Melting and disposing method for incinerated ash
JP3744668B2 (en) Ash melting furnace
JPH09101399A (en) Method for melting waste and method and decomposer for melting, oxidizing and decomposing it
JP3575785B2 (en) Method and apparatus for treating fall ash in secondary combustion chamber
JPH11270834A (en) Ash melting furnace
JP3196918B2 (en) Waste melting method and waste melting equipment
JPH0210342B2 (en)
RU2775593C1 (en) Method for melting ash and slag from waste incineration plants
JP3721569B2 (en) Ash melting furnace
JPS6179907A (en) Waste material processing method
JP3757409B2 (en) Ash melting furnace and method for forming bottom electrode of ash melting furnace
JP2003083517A (en) Waste plasma melting method and waste plasma melting device
EP2587145B1 (en) Method for the pollution-free thermal processing of solid municipal waste and plant for carrying out said method
JP3921784B2 (en) Ash melting furnace
JP3714383B2 (en) Ash melting furnace and method of operating the same
JPH1019230A (en) Method for melting treatment of refuse inclineration ash and melting furnace therefor
JP3932262B2 (en) Combustion equipment and exhaust gas treatment method
JPH11108330A (en) Melting furnace
JP2747983B2 (en) Method and apparatus for melting municipal solid waste incineration ash
JP4174716B2 (en) Salt discharge method in ash melting furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees