JP3744668B2 - Ash melting furnace - Google Patents

Ash melting furnace Download PDF

Info

Publication number
JP3744668B2
JP3744668B2 JP01005798A JP1005798A JP3744668B2 JP 3744668 B2 JP3744668 B2 JP 3744668B2 JP 01005798 A JP01005798 A JP 01005798A JP 1005798 A JP1005798 A JP 1005798A JP 3744668 B2 JP3744668 B2 JP 3744668B2
Authority
JP
Japan
Prior art keywords
ash
ash melting
melting furnace
exhaust gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01005798A
Other languages
Japanese (ja)
Other versions
JPH11211053A (en
Inventor
順也 西野
俊一朗 上野
賢一 田原
十次郎 梅田
俊行 鈴木
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP01005798A priority Critical patent/JP3744668B2/en
Publication of JPH11211053A publication Critical patent/JPH11211053A/en
Application granted granted Critical
Publication of JP3744668B2 publication Critical patent/JP3744668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみや産業廃棄物を焼却したときに発生する飛灰や焼却灰を溶融固化する灰溶融炉に係り、特に排ガス中のダイオキシンを効果的に処理する灰溶融炉に関するものである。
【0002】
【従来の技術】
都市ごみ、下水汚泥等の各廃棄物は、焼却施設で焼却処理され、生じた焼却灰やばいじん(飛灰)は、従来埋め立て処分されていた。しかし、埋立処分地枯渇の問題や有害重金属類の溶出による地下水汚染の問題があるため、溶融による減容化、無害化および再資源化の必要性が高まっている。
【0003】
このような背景で、焼却灰中の残留炭素、コークス、灯油および電力を熱源とした焼却炉等から排出される焼却灰などを溶融処理する灰溶融炉が提案され、一部で実処理が行われている。このうち電力を熱源とした灰溶融炉としてプラズマアーク加熱方式と電気抵抗加熱方式がある。
【0004】
図3は従来の灰溶融炉の縦断面図である。
図において、aは灰溶融炉である。bは灰溶融室である。cは灰溶融炉aの下方部に設けた出滓口であり、dは灰溶融炉aの底部に設けた溶融メタル排出口である。eは主電極であり、fは底部電極である。mは主電極eと底部電極fとの間に直流電気を流す電源であり、nおよびoはその電線である。gは灰溶融炉aの頂部に設けた灰投入口で、図示しないコンベヤなどにより搬送された飛灰や焼却灰を灰溶融炉aへ投入する。hは灰溶融炉aの頂部に設けた排ガス排出口である。iは灰溶融室b内に投入された飛灰や焼却灰などの灰固体層であり、jは溶融スラグである。kはメタル層である。
【0005】
【発明が解決しようとする課題】
上記灰溶融炉から排出される排ガス中には、塩類、酸化物、水酸化物を含む多量のダストの他、塩化水素、微量のダイオキシンが含まれている。
【0006】
また、従来の灰溶融炉では、主電極にグラファイトの人造黒鉛を使用しているので、灰溶融炉内にCOガスが発生する。また、同時に灰溶融炉の縦方向に温度勾配があるため、灰中のダイオキシンが蒸発して排ガス中に含まれる傾向がある。これらのCOガスとダイオキシンを分解するために灰溶融炉排ガス出口の下流側にCOガス燃焼器を設けているが、燃焼器を設けるスペースが必要であり、昇温のための補助燃料が必要であるなどの問題がある。
【0007】
本発明は、上記のような問題点を解決するために創案されたもので、溶融時に発生するCOガスを燃焼し、ダイオキシンを灰溶融炉内で分解することによりCOガス燃焼器を廃止してスペースや消費エネルギーの節約を図ることができる灰溶融炉を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明によれば、飛灰や焼却灰を溶融処理する灰溶融炉であって、該灰溶融炉を、灰溶融炉の頂部から懸吊するように設けた仕切壁によって上部に灰投入口を有する灰溶融室と、中間部に溶融スラグをオ−バ−フロ−させて出滓すると同時に、排気ガスを排出する出滓口を有する補助加熱室の2室に構成するとともに、前記仕切壁の上部には連通穴を設け、灰溶融室には上部に主電極と底部に炉底電極を上下に対峙するように配設し、かつ、補助加熱室の上部に酸素ガス供給口を配設し、前記出滓口を外側から囲繞して上下を開放した排ガス排出管を設けた灰溶融炉が提供される。
【0009】
本発明の好ましい実施形態によれば、前記酸素ガス供給口に替えて、プラズマトーチを配設した。
【0010】
次に本発明の作用を説明する。
灰溶融炉を、灰溶融室と補助加熱室の2室で構成する。灰溶融室に投入された飛灰や焼却灰を、まず大きな灰溶融室で灰溶融室内に配設した主電極と炉底電極により加熱して溶融スラグにする。ここで灰は下方の溶融スラグ層とその上に浮上した灰固体層とに分離している。溶融スラグは仕切壁下方の連通路を通って小さな補助加熱室へ流入し、排ガスは仕切壁上方の連通穴を通って補助加熱室へ流入する。補助加熱室内に配設した酸素ガス供給口から酸素濃度を高めた空気を供給して排ガス中のCOガスを燃焼させる。この酸素ガスによる再加熱に替えて空気をプラズマガスとするプラズマトーチによって再加熱してもよい。溶融スラグと排ガスは、排ガス排出口を兼ねた出滓口から排出され、溶融スラグは出滓口を外側から囲繞する排ガス排出管内を下方へ、排ガスは上方へ排出される。排ガスは上下を開放した排ガス排出管で下方から吸引した空気と混合し、急冷して排出される。したがって、灰溶融炉内で分解したダイオキシンの再合成を防止し、かつ、灰溶融炉排ガス出口の下流側へのダストの付着を防止することができるとともに、燃焼器を廃止することができる。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面に基づいて説明する。
図1は本発明の一実施形態を示すもので、本発明による灰溶融炉の縦断面図である。
図1において、1は飛灰や焼却灰を溶融処理する灰溶融炉で、この灰溶融炉1の頂部から懸吊した仕切壁6により、頂部に灰投入口3を有する灰溶融室2と、上部に酸素ガス供給口10と中間部に溶融スラグ13をオ−バ−フロ−させて出滓する出滓口4を有する補助加熱室5の2室に構成している。この出滓口4は、灰溶融室2内で灰固体層12が加熱されて生じたガスや溶融スラグ13から発生するガスを含む排ガス18を排出する排ガス排出口(排気口)を兼ねている。6aは仕切壁6の上部に設けた連通穴で、灰溶融室2内で生じた排ガスは、この連通穴6aを通り補助加熱室5経て出滓口4から排出される。7は仕切壁6の下方部に、灰溶融室2と補助加熱室5の下部を連通するように設けた連通路で、灰溶融室2内で溶融された溶融スラグ13は、この連通路7を通って補助加熱室5に流入する。13aは補助加熱室5に流入した溶融スラグであり、13bは出滓口4から排出された溶融スラグである。8は灰溶融炉1の頂部を貫通するように設けた主電極であり、9は灰溶融炉1の底部に、主電極8と上下に対峙するように埋設した底部電極である。16はこれら主電極8と底部電極9に直流通電する電源であり、17および17aはその電線である。
【0012】
10は補助加熱室5内に設けた酸素ガス供給口で、補助加熱室5に流入したCOガスを含む排ガス18に酸素濃度を高めた空気または酸素ガス10aを供給して燃焼させる。11は出滓口4を外側から囲繞して上下を開放した排ガス排出管である。
【0013】
12は灰溶融室2内に投入された飛灰や焼却灰などの灰固体層で、未溶融の状態で溶融スラグ層13の上に浮いた状態となっている。14は溶融スラグ13と分離して灰溶融室2底部に溜まった溶融メタル層である。溶融メタル層14内では溶融スラグ層13に比べて電気抵抗が極端に少ないので、この部分ではジュール熱が発生せず、メタルの大部分は固体で、上面だけがわずかに溶融している。溶融メタル層14は、適当な時期に主電極8との間でアークを発生させてメタルを溶融してからメタル排出口15を通して外部に排出する。19は排ガス排出管11の下方から排ガス排出管11内に流入した空気で、出滓口4から排出された排ガス18と混合して排ガス18を冷却する。なお、出滓口4を灰溶融炉1の中間に設けたのは、ここからオーバーフローさせて溶融スラグ層13のレベルを一定に保持するためである。
【0014】
図2は本発明の他の実施形態を示すもので、灰溶融炉の縦断面図である。なお、図1に示した灰溶融炉とは、実質的に構成を同じくするものであり、重複する説明は省略する。
図2において、20は酸素ガス供給口10に替えて、補助加熱室5内に設けたプラズマトーチである。灰溶融炉1内に生じるCOガスの濃度は、通常、2〜3%であるが、条件によっては低いときがある。その場合には、酸素だけでは十分な熱量が出ないので、この空気をプラズマガスとするプラズマトーチ20により補助加熱室5内の温度を高める。
【0015】
次に本発明の実施形態の作用について説明する。
灰溶融炉1を、灰溶融室2と補助加熱室5の2室で構成する。灰溶融室2に投入された飛灰や焼却灰を、まず大きな灰溶融室2で灰溶融室2内に配設した主電極8と炉底電極9により加熱して溶融スラグ13にする。ここで灰は下方の溶融スラグ層13とその上に浮上した灰固体層12とに分離している。溶融スラグ13は仕切壁6下方の連通路7を通って小さな補助加熱室5へ流入し、排ガス18は仕切壁6上方の連通穴6aを通って補助加熱室5へ流入する。補助加熱室5内に配設した酸素ガス供給口10から酸素濃度を高めた空気を供給して排ガス中のCOガスを燃焼させる。この酸素ガスによる再加熱に替えて空気をプラズマガスとするプラズマトーチ20によって再加熱してもよい。溶融スラグ13aと排ガス18は、排ガス排出口を兼ねた出滓口4から排出され、溶融スラグ13aは出滓口4を外側から囲繞する排ガス排出管11内を下方へ、排ガス18は上方へ排出される。排ガス18は上下を開放した排ガス排出管11で下方から吸引した空気と混合し、急冷して排出される。したがって、灰溶融炉1内で分解したダイオキシンの再合成を防止し、かつ、灰溶融炉排ガス出口の下流側へのダストの付着を防止することができるとともに、燃焼器を廃止することができる。
【0016】
本発明は、上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変更し得ることは勿論である。
【0017】
【発明の効果】
以上述べたように、本発明によれば、灰溶融炉内で分解したダイオキシンの再合成を防止し、かつ、灰溶融炉排ガス出口の下流側へのダストの付着を防止することができるとともに、COガス燃焼器を廃止することができる優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明による灰溶融炉の縦断面図である。
【図2】本発明の他の実施形態の灰溶融炉の縦断面図である。
【図3】従来の灰溶融炉の縦断面図である。
【符号の説明】
1 灰溶融炉
2 灰溶融室
3 灰投入口
4 出滓口
5 補助加熱室
6 仕切壁
6a 連通穴
7 連通路
8 主電極
9 炉底電極
10 酸素ガス供給口
11 排気ガス排出管
12 灰固体層
13 溶融スラグ
14 溶融メタル
15 メタル排出口
16 電源
18 排ガス流
19 空気流
20 プラズマトーチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ash melting furnace that melts and solidifies fly ash and incineration ash generated when municipal waste and industrial waste are incinerated, and more particularly to an ash melting furnace that effectively treats dioxins in exhaust gas. .
[0002]
[Prior art]
Municipal waste, sewage sludge, and other wastes were incinerated at incineration facilities, and the resulting incineration ash and dust (fly ash) were previously disposed of in landfills. However, there is a problem of depletion of landfill sites and groundwater contamination due to the leaching of toxic heavy metals, so the need for volume reduction, detoxification and recycling by melting is increasing.
[0003]
Against this background, an ash melting furnace that melts incinerated ash discharged from incinerators that use residual carbon, coke, kerosene and electric power as the heat source has been proposed. It has been broken. Among these, there are a plasma arc heating method and an electric resistance heating method as an ash melting furnace using electric power as a heat source.
[0004]
FIG. 3 is a longitudinal sectional view of a conventional ash melting furnace.
In the figure, a is an ash melting furnace. b is an ash melting chamber. c is a tap outlet provided at the lower part of the ash melting furnace a, and d is a molten metal discharge port provided at the bottom of the ash melting furnace a. e is the main electrode and f is the bottom electrode. m is a power source for flowing DC electricity between the main electrode e and the bottom electrode f, and n and o are the electric wires. g is an ash charging port provided at the top of the ash melting furnace a, and the fly ash and incinerated ash conveyed by a conveyor (not shown) are charged into the ash melting furnace a. h is an exhaust gas outlet provided at the top of the ash melting furnace a. i is an ash solid layer such as fly ash or incinerated ash charged into the ash melting chamber b, and j is a molten slag. k is a metal layer.
[0005]
[Problems to be solved by the invention]
The exhaust gas discharged from the ash melting furnace contains hydrogen chloride and a small amount of dioxin in addition to a large amount of dust containing salts, oxides and hydroxides.
[0006]
Further, in the conventional ash melting furnace, artificial graphite such as graphite is used for the main electrode, so that CO gas is generated in the ash melting furnace. At the same time, since there is a temperature gradient in the vertical direction of the ash melting furnace, dioxins in the ash tend to evaporate and be contained in the exhaust gas. In order to decompose these CO gas and dioxin, a CO gas combustor is provided on the downstream side of the ash melting furnace exhaust gas outlet. However, a space for installing the combustor is required, and auxiliary fuel for raising the temperature is required. There are some problems.
[0007]
The present invention was devised to solve the above-described problems. The CO gas combustor is abolished by burning CO gas generated during melting and decomposing dioxin in an ash melting furnace. An object of the present invention is to provide an ash melting furnace capable of saving space and energy consumption.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, an ash melting furnace for melting fly ash and incinerated ash, the partition wall provided to suspend the ash melting furnace from the top of the ash melting furnace The ash melting chamber has an ash inlet at the top and the auxiliary heating chamber has an outlet that discharges exhaust gas at the same time as the molten slag is overflowed in the middle and discharged. In addition, a communication hole is provided in the upper part of the partition wall, the main electrode in the ash melting chamber and the furnace bottom electrode in the bottom part are arranged so as to face each other, and oxygen in the upper part of the auxiliary heating chamber. There is provided an ash melting furnace provided with an exhaust gas exhaust pipe which is provided with a gas supply port and which surrounds the tap port from the outside and opens up and down.
[0009]
According to a preferred embodiment of the present invention, a plasma torch is provided instead of the oxygen gas supply port.
[0010]
Next, the operation of the present invention will be described.
The ash melting furnace is composed of two chambers, an ash melting chamber and an auxiliary heating chamber. First, fly ash and incinerated ash charged into the ash melting chamber are heated to a molten slag by a main electrode and a furnace bottom electrode disposed in the ash melting chamber in a large ash melting chamber. Here, the ash is separated into a lower molten slag layer and an ash solid layer that floats thereon. The molten slag flows into the small auxiliary heating chamber through the communication path below the partition wall, and the exhaust gas flows into the auxiliary heating chamber through the communication hole above the partition wall. Air with an increased oxygen concentration is supplied from an oxygen gas supply port disposed in the auxiliary heating chamber to burn the CO gas in the exhaust gas. Instead of reheating with oxygen gas, reheating may be performed with a plasma torch using air as a plasma gas. The molten slag and the exhaust gas are discharged from the outlet that also serves as the exhaust gas outlet, and the molten slag is discharged downward in the exhaust gas discharge pipe that surrounds the outlet from the outside, and the exhaust gas is discharged upward. The exhaust gas is mixed with the air sucked from below by an exhaust gas exhaust pipe whose upper and lower sides are opened, and is rapidly cooled and discharged. Therefore, resynthesis of dioxins decomposed in the ash melting furnace can be prevented, dust can be prevented from adhering to the downstream side of the ash melting furnace exhaust gas outlet, and the combustor can be eliminated.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of the present invention and is a longitudinal sectional view of an ash melting furnace according to the present invention.
In FIG. 1, reference numeral 1 denotes an ash melting furnace for melting fly ash and incinerated ash, and an ash melting chamber 2 having an ash charging port 3 at the top by a partition wall 6 suspended from the top of the ash melting furnace 1, The auxiliary gas heating chamber 5 is composed of two chambers having an oxygen gas supply port 10 in the upper portion and an outlet port 4 through which the molten slag 13 overflows in the middle portion. The tap outlet 4 also serves as an exhaust gas exhaust port (exhaust port) for exhausting exhaust gas 18 including gas generated by heating the ash solid layer 12 in the ash melting chamber 2 and gas generated from the molten slag 13. . 6a is a communication hole provided in the upper part of the partition wall 6, and the exhaust gas generated in the ash melting chamber 2 passes through this communication hole 6a, and is discharged from the outlet 4 through the auxiliary heating chamber 5. 7 is a communication path provided in the lower part of the partition wall 6 so as to communicate the lower part of the ash melting chamber 2 and the auxiliary heating chamber 5. The molten slag 13 melted in the ash melting chamber 2 is connected to the communication path 7. Through the auxiliary heating chamber 5. 13 a is a molten slag that has flowed into the auxiliary heating chamber 5, and 13 b is a molten slag discharged from the spout 4. Reference numeral 8 denotes a main electrode provided so as to penetrate the top of the ash melting furnace 1, and 9 denotes a bottom electrode embedded in the bottom of the ash melting furnace 1 so as to face the main electrode 8 vertically. Reference numeral 16 denotes a power source for direct current to the main electrode 8 and the bottom electrode 9, and 17 and 17a are electric wires thereof.
[0012]
Reference numeral 10 denotes an oxygen gas supply port provided in the auxiliary heating chamber 5, and air or oxygen gas 10 a having an increased oxygen concentration is supplied to the exhaust gas 18 containing CO gas flowing into the auxiliary heating chamber 5 and burned. Reference numeral 11 denotes an exhaust gas discharge pipe which surrounds the tap outlet 4 from the outside and opens up and down.
[0013]
Reference numeral 12 denotes an ash solid layer such as fly ash or incinerated ash charged into the ash melting chamber 2 and floats on the molten slag layer 13 in an unmelted state. 14 is a molten metal layer separated from the molten slag 13 and accumulated at the bottom of the ash melting chamber 2. In the molten metal layer 14, the electrical resistance is extremely smaller than that of the molten slag layer 13, so no Joule heat is generated in this portion, most of the metal is solid, and only the upper surface is slightly melted. The molten metal layer 14 generates an arc with the main electrode 8 at an appropriate time, melts the metal, and then discharges it to the outside through the metal discharge port 15. Reference numeral 19 denotes air that flows into the exhaust gas exhaust pipe 11 from below the exhaust gas exhaust pipe 11 and mixes with the exhaust gas 18 exhausted from the outlet 4 to cool the exhaust gas 18. In addition, the reason that the tap outlet 4 is provided in the middle of the ash melting furnace 1 is to overflow from here and keep the level of the molten slag layer 13 constant.
[0014]
FIG. 2 shows another embodiment of the present invention and is a longitudinal sectional view of an ash melting furnace. Note that the ash melting furnace shown in FIG. 1 has substantially the same configuration, and redundant description is omitted.
In FIG. 2, reference numeral 20 denotes a plasma torch provided in the auxiliary heating chamber 5 in place of the oxygen gas supply port 10. The concentration of the CO gas generated in the ash melting furnace 1 is usually 2 to 3%, but may be low depending on the conditions. In that case, since oxygen alone does not generate a sufficient amount of heat, the temperature in the auxiliary heating chamber 5 is increased by the plasma torch 20 using this air as a plasma gas.
[0015]
Next, the operation of the embodiment of the present invention will be described.
The ash melting furnace 1 includes two chambers, an ash melting chamber 2 and an auxiliary heating chamber 5. First, the fly ash and incinerated ash charged into the ash melting chamber 2 are heated in the large ash melting chamber 2 by the main electrode 8 and the furnace bottom electrode 9 disposed in the ash melting chamber 2 to form molten slag 13. Here, the ash is separated into a lower molten slag layer 13 and an ash solid layer 12 that floats thereon. The molten slag 13 flows into the small auxiliary heating chamber 5 through the communication passage 7 below the partition wall 6, and the exhaust gas 18 flows into the auxiliary heating chamber 5 through the communication hole 6 a above the partition wall 6. Air with an increased oxygen concentration is supplied from an oxygen gas supply port 10 disposed in the auxiliary heating chamber 5 to burn the CO gas in the exhaust gas. Instead of reheating with oxygen gas, reheating may be performed by a plasma torch 20 using air as a plasma gas. The molten slag 13a and the exhaust gas 18 are discharged from the tap outlet 4 which also serves as the exhaust gas discharge port. Is done. The exhaust gas 18 is mixed with the air sucked from below by the exhaust gas discharge pipe 11 whose top and bottom are opened, and is rapidly cooled and discharged. Therefore, recombination of the dioxins decomposed in the ash melting furnace 1 can be prevented, dust can be prevented from adhering to the downstream side of the ash melting furnace exhaust gas outlet, and the combustor can be eliminated.
[0016]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
[0017]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent recombination of dioxins decomposed in the ash melting furnace, and to prevent adhesion of dust to the downstream side of the ash melting furnace exhaust gas outlet, There is an excellent effect that the CO gas combustor can be eliminated.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an ash melting furnace according to the present invention.
FIG. 2 is a longitudinal sectional view of an ash melting furnace according to another embodiment of the present invention.
FIG. 3 is a longitudinal sectional view of a conventional ash melting furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ash melting furnace 2 Ash melting room 3 Ash inlet 4 Outlet 5 Auxiliary heating chamber 6 Partition wall 6a Communication hole 7 Communication path 8 Main electrode 9 Furnace electrode 10 Oxygen gas supply port 11 Exhaust gas discharge pipe 12 Ash solid layer 13 Molten slag 14 Molten metal 15 Metal outlet 16 Power source 18 Exhaust gas flow 19 Air flow 20 Plasma torch

Claims (2)

飛灰や焼却灰を溶融処理する灰溶融炉であって、該灰溶融炉を、灰溶融炉の頂部から懸吊するように設けた仕切壁によって上部に灰投入口を有する灰溶融室と、中間部に溶融スラグをオーバーフローさせて出滓すると同時に、排ガスを排出する出滓口を有する補助加熱室の2室に構成するとともに、前記仕切壁の上部には連通穴を設け、灰溶融室には上部に主電極と底部に炉底電極を上下に対峙するように配設し、かつ、補助加熱室の上部に酸素ガス供給口を配設し、前記出滓口を外側から囲繞して上下を開放した排ガス排出管を設けてなり、灰溶融室から前記連通穴を通って補助加熱室に流入した排ガス中のCOガスを、酸素ガス供給口から酸素濃度を高めた空気または酸素ガスを供給して燃焼させるようにしたことを特徴とする灰溶融炉。An ash melting furnace for melting fly ash and incinerated ash, wherein the ash melting furnace has an ash inlet at the top by a partition wall provided so as to be suspended from the top of the ash melting furnace; At the same time, the molten slag is overflowed in the middle portion and discharged, and at the same time, the auxiliary heating chamber having a discharge port for discharging the exhaust gas is formed, and a communication hole is provided in the upper part of the partition wall, The main electrode at the top and the furnace bottom electrode at the bottom are arranged so as to face up and down, and the oxygen gas supply port is arranged at the top of the auxiliary heating chamber. The exhaust gas exhaust pipe is opened, and CO gas in the exhaust gas flowing into the auxiliary heating chamber from the ash melting chamber through the communication hole is supplied, and air or oxygen gas with an increased oxygen concentration is supplied from the oxygen gas supply port. ash melting furnace, characterized in that so as to burn and 前記酸素ガス供給口に替えて、空気をプラズマガスとするプラズマトーチを配設し、灰溶融室から前記連通穴を通って補助加熱室に流入した排ガス中のCOガスを、空気のプラズマガスによって燃焼させた請求項1記載の灰溶融炉。Instead of the oxygen gas supply port, a plasma torch using air as a plasma gas is provided, and CO gas in the exhaust gas flowing into the auxiliary heating chamber from the ash melting chamber through the communication hole is converted into air plasma gas. The ash melting furnace according to claim 1, which is burned .
JP01005798A 1998-01-22 1998-01-22 Ash melting furnace Expired - Fee Related JP3744668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01005798A JP3744668B2 (en) 1998-01-22 1998-01-22 Ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01005798A JP3744668B2 (en) 1998-01-22 1998-01-22 Ash melting furnace

Publications (2)

Publication Number Publication Date
JPH11211053A JPH11211053A (en) 1999-08-06
JP3744668B2 true JP3744668B2 (en) 2006-02-15

Family

ID=11739771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01005798A Expired - Fee Related JP3744668B2 (en) 1998-01-22 1998-01-22 Ash melting furnace

Country Status (1)

Country Link
JP (1) JP3744668B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895102A (en) * 2019-12-16 2020-03-20 中国恩菲工程技术有限公司 Electric stove
CN111336526A (en) * 2020-03-31 2020-06-26 浙江大凡智能科技有限公司 Multi-electrode plasma melting furnace

Also Published As

Publication number Publication date
JPH11211053A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JP3744668B2 (en) Ash melting furnace
JP3280265B2 (en) Apparatus and method for melting incineration residue and fly ash
JP3921706B2 (en) Electrode sealing device for ash melting furnace
JP3849287B2 (en) Exhaust gas treatment method for ash melting furnace
JPH11270834A (en) Ash melting furnace
JP3575785B2 (en) Method and apparatus for treating fall ash in secondary combustion chamber
JP3744669B2 (en) Ash melting furnace
JPH0694926B2 (en) Method of melting incineration ash
JPH11201439A (en) Ash-melting furnace
JP3757409B2 (en) Ash melting furnace and method for forming bottom electrode of ash melting furnace
JP3918280B2 (en) Operation method of ash melting furnace
JP3350169B2 (en) Waste melting method and apparatus
JP3567614B2 (en) Exhaust gas treatment equipment for ash melting furnace
JP3921784B2 (en) Ash melting furnace
JP2991618B2 (en) Ash melting method and ash melting furnace
JP3575570B2 (en) Ash melting furnace
JPH0355792A (en) Plasma generator for fusion furnace
JP3714384B2 (en) Ash melting furnace
JP4174716B2 (en) Salt discharge method in ash melting furnace
JP3921198B2 (en) Melting equipment to make all wastes into pollution-free resources
JP3799582B2 (en) Ash melting furnace
JP3027287B2 (en) Electric resistance type melting furnace and its operation method
JP3611348B2 (en) Electric melting furnace
JPH11207287A (en) Apparatus for treating exhaust gas of ash melting furnace
JP3743473B2 (en) Ash melting furnace tapping apparatus and tapping method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees