JPH09101399A - Method for melting waste and method and decomposer for melting, oxidizing and decomposing it - Google Patents

Method for melting waste and method and decomposer for melting, oxidizing and decomposing it

Info

Publication number
JPH09101399A
JPH09101399A JP27833295A JP27833295A JPH09101399A JP H09101399 A JPH09101399 A JP H09101399A JP 27833295 A JP27833295 A JP 27833295A JP 27833295 A JP27833295 A JP 27833295A JP H09101399 A JPH09101399 A JP H09101399A
Authority
JP
Japan
Prior art keywords
melting
oxidation
decomposition
waste
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27833295A
Other languages
Japanese (ja)
Inventor
Yoshihiro Akagawa
吉寛 赤川
Teruaki Morimoto
照明 森本
Akihiko Hayashi
林  昭彦
Seiichiro Yamazaki
誠一郎 山崎
Taichi Sakamoto
太一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Japan Atomic Power Co Ltd
Kawasaki Heavy Industries Ltd
Original Assignee
Japan Atomic Power Co Ltd
Kawasaki Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Power Co Ltd, Kawasaki Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Japan Atomic Power Co Ltd
Priority to JP27833295A priority Critical patent/JPH09101399A/en
Publication of JPH09101399A publication Critical patent/JPH09101399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an efficient and quick melting treatment of wastes and make is possible to carry out the melting treatment of nonflammable wastes separately or carry out an efficient melting treatment of the nonflammable wastes and the oxidizing and decomposing treatment of flammable and/or incombustible wastes collectively and rationally by directly heating molten nonflammable wastes at all times with a high-temperature heating heat source. SOLUTION: Nonflammable wastes 61 and flammable and/or incombustible wastes 62 are respectively supplied to a melting area 42 and an oxidizing and decomposing area 43 in a melting, oxidizing and decomposing reactor 40. The nonflammable wastes 61 supplied to the melting area on one side are melted by a high-temperature heating heat source, and the melts of them are discharged to the oxidizing and decomposing area 43 on the other side and are maintained there. Additionally, the flammable and/or incombustible wastes 62 supplied to the oxidizing and decomposing area 43 are oxidized and decomposed on the melts by the high-temperature heating heat source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物、特に原子
力発電所から発生する低レベルの放射性雑固体廃棄物
等、不燃性雑固体廃棄物を減容処理するための溶融方
法、不燃性雑固体廃棄物と可燃性及び/あるいは難燃性
雑固体廃棄物を減容処理するための溶融・酸化・分解方
法及び溶融・酸化・分解炉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a melting method, a non-combustible miscellaneous method for reducing the volume of waste, particularly non-combustible miscellaneous solid waste such as low-level radioactive miscellaneous solid waste generated from a nuclear power plant. The present invention relates to a melting / oxidizing / decomposing method and a melting / oxidizing / decomposing furnace for reducing the volume of solid waste and combustible and / or flame-retardant miscellaneous solid waste.

【0002】[0002]

【従来の技術】従来より都市ごみ焼却灰の溶融設備に
は、電気方式と化石燃料方式がある。電気方式としては
プラズマ加熱炉、アーク加熱炉、抵抗加熱炉、低周波加
熱炉があり、化石燃料方式としては回転式表面加熱炉、
固定式表面加熱炉、自己燃焼加熱炉、コークスベッド加
熱炉があり、夫々実験中のもの、実証中のもの、建設中
のもの、実用化されたもの等種々ある。これらの溶融設
備はいずれも一長一短があるものの、プラズマ加熱炉が
非常に高温のプラズマアークにより短時間にごみ焼却灰
を溶融できて効率がよいことから有望視されている。
2. Description of the Related Art Conventionally, there are an electric system and a fossil fuel system in a facility for melting municipal incineration ash. There are plasma heating furnaces, arc heating furnaces, resistance heating furnaces, and low-frequency heating furnaces as electric systems, and rotary surface heating furnaces as fossil fuel systems.
There are fixed surface heating furnaces, self-combustion heating furnaces, and coke bed heating furnaces. There are various types such as those under experiment, under demonstration, under construction, and put into practical use. Although all of these melting facilities have merits and demerits, they are regarded as promising because the plasma heating furnace can melt the refuse incineration ash in a short time by the plasma arc of very high temperature and is efficient.

【0003】また、都市ごみ焼却灰の溶融に限らず、低
レベル放射性雑固体廃棄物、産業廃棄物等の不燃性廃棄
物の溶融減容にも有望であることからプラズマ溶融炉の
研究が進められている。プラズマ溶融炉の基本的なもの
は、図9に示すようにプラズマトーチ1を上部炉殻2に
備えつけ、下部炉殻3は断熱のためレンガ4で内張り
し、その上にベースメタル5を保持し、上部炉殻2の中
央に廃棄物装入用ガイド筒6を設け、下部炉殻3の側部
に出湯口7を設け、底部外側に攪拌コイル8を設け、炉
殻全体を水冷構造となしたもので、不燃性廃棄物9はド
ラム缶詰めでガイド筒6より予め溶融して保持しておい
たベースメタル5の溶融池10上に供給し、プラズマト
ーチ1のアーク11により溶融し、その溶融物はオーバ
ーフローさせて出湯口7より排出する(先行技術文献と
して、1984年10月発行の「火力原子力発電」Vo
l 35,No.6のP30に記載のプラズマ溶融炉が
ある)。
Further, not only the melting of municipal waste incineration ash, but also the melting volume of non-combustible waste such as low-level radioactive miscellaneous solid waste, industrial waste, etc. is promising. Has been. As shown in FIG. 9, a basic plasma melting furnace is equipped with a plasma torch 1 in an upper furnace shell 2 and the lower furnace shell 3 is lined with bricks 4 for heat insulation, and a base metal 5 is held on the bricks. A waste charging guide tube 6 is provided in the center of the upper furnace shell 2, a tap hole 7 is provided on the side of the lower furnace shell 3, a stirring coil 8 is provided on the outside of the bottom, and the entire furnace shell has a water cooling structure. The non-combustible waste 9 is supplied from the guide cylinder 6 to the molten pool 10 of the base metal 5 which has been melted and held in advance by the canned drum, and is melted by the arc 11 of the plasma torch 1 and melted. The material is made to overflow and discharged from the outlet 7 (as a prior art document, "Thermal Nuclear Power Generation" Vo issued in October 1984).
l 35, No. There is a plasma melting furnace described in P30 of No. 6).

【0004】また、プラズマ溶融試験炉の構造概念とし
て、図10に示すものが提案されている。これは炉本体
15の炉底16を平坦にし、炉本体15の上部壁17を
斜めに貫通してプラズマトーチ18を駆動装置19によ
り出し入れ可能に設け、プラズマトーチ18に対応して
炉底16に電極20を設け、炉本体15の側壁21の中
高部に廃棄物供給口22を設け、その下方に排ガスダク
ト23を設け、側壁21に隣接する直角方向の側壁24
の下部に出湯口25を設けて通常蓋26にて閉じてい
る。炉本体15の出湯口25側の端部下面は支柱27の
上端に枢支し、反対側の端部下面は支柱28の上端に載
置し、その端部の上方外側面に設けたブラケット29に
炉体傾動装置30の上端を枢支し、炉体傾動装置30の
下端を支持台31上に枢支したもので、不燃性廃棄物3
2は撤物の状態で供給口22より炉本体15内に供給
し、プラズマトーチ18のアークにより溶融し、その溶
融物は蓋26を開け、炉本体15を炉体傾動装置30に
より傾けて出湯口25より排出される(先行技術文献と
して、プラズマ・核融合学会誌、第70巻第5号、19
94年5月、第479〜第487頁に記載の「5.プラ
ズマによる焼却灰の溶融」がある)。
As a structural concept of the plasma melting test furnace, the one shown in FIG. 10 has been proposed. This is done by flattening the bottom 16 of the furnace main body 15, obliquely penetrating the upper wall 17 of the furnace main body 15, and providing a plasma torch 18 so that it can be taken in and out by a drive device 19. An electrode 20 is provided, a waste material supply port 22 is provided at a middle height portion of a side wall 21 of the furnace body 15, an exhaust gas duct 23 is provided below the side wall 21, and a side wall 24 adjacent to the side wall 21 in a right angle direction.
A tap hole 25 is provided at the lower part of the table and is normally closed with a lid 26. The bottom surface of the end of the furnace body 15 on the side of the tap hole 25 is pivotally supported on the upper end of the support column 27, and the bottom surface of the opposite end is mounted on the upper end of the support column 28, and a bracket 29 provided on the upper outer surface of the end section. The upper end of the furnace body tilting device 30 is pivotally supported on the upper end of the furnace body tilting device 30 and the lower end of the furnace body tilting device 30 is pivotally supported on the support base 31.
2 is supplied to the inside of the furnace main body 15 through the supply port 22 in a state of being removed, is melted by the arc of the plasma torch 18, the lid 26 is opened, and the furnace main body 15 is tilted by the furnace body tilting device 30 and discharged. Emitted from the sprue 25 (as prior art documents, Journal of Plasma and Fusion Research, Vol. 70, No. 5, 19
In May 1994, there is "5. Melting of incinerated ash by plasma" described on pages 479 to 487).

【0005】[0005]

【発明が解決しようとする課題】ところで、上記従来の
プラズマ溶融炉、プラズマ溶融試験炉は、いずれも溶融
処理が完了するまで、不燃性廃棄物を供給した領域で、
溶融物を保持するため、未溶融の不燃性廃棄物が溶湯に
覆われて、プラズマアークによる直接加熱ができなくな
り、溶融効率が低下する。また、不燃性廃棄物を効率よ
く加熱するために、耐火構造の炉の溶融領域を制限する
必要があり、そのため炉容積を小さくすると、可燃性及
び難燃性廃棄物を酸化・分解しようとする場合、効率よ
く酸化・分解することができず、酸化・分解量が小さく
なる。さらに、溶融効率を向上させるために、不燃性廃
棄物を供給した領域のみを加熱した場合、プラズマトー
チから離れた領域で溶融物が再凝固し、排出できなくな
る恐れがある。また、従来のプラズマ溶融炉、プラズマ
溶融試験炉は、耐火物を内張りした炉であるため、耐火
物の溶損により炉の稼動率が低下する。即ち炉底全体を
溶融物の流通路としていたため、全体に耐火物の損耗が
生じ、寿命が短かった。
By the way, in the above-mentioned conventional plasma melting furnace and plasma melting test furnace, in the region where non-combustible waste was supplied until the melting process was completed,
Since the molten material is retained, the unmelted incombustible waste is covered with the molten metal, and the direct heating by the plasma arc cannot be performed, so that the melting efficiency is reduced. In addition, in order to efficiently heat non-combustible waste, it is necessary to limit the melting area of the furnace with a refractory structure. Therefore, if the furnace volume is reduced, combustible and flame-retardant waste will be oxidized and decomposed. In this case, it is not possible to efficiently oxidize and decompose, and the amount of oxidation and decomposition becomes small. Further, in order to improve the melting efficiency, if only the region to which the non-combustible waste is supplied is heated, the melt may resolidify in the region away from the plasma torch and may not be discharged. Further, since the conventional plasma melting furnace and plasma melting test furnace are furnaces lined with refractory materials, melting rate of the refractory materials reduces the operating rate of the furnace. That is, since the entire furnace bottom was used as a flow path for the melt, the refractory was worn over the entire furnace and the life was short.

【0006】そこで本発明は、未溶融の不燃性廃棄物が
常時高温加熱用熱源により直接加熱されるようにして、
溶融処理を効率よく短時間で行うことができるように
し、また、不燃性廃棄物の効率的な溶融処理を単独に、
またこの不燃性廃棄物の効率的な溶融処理と可燃性及び
/あるいは難燃性廃棄物の酸化・分解処理を一括して合
理的に行うことができるようにし、さらに炉の寿命を増
長できるようにした廃棄物の溶融方法、溶融・酸化・分
解方法及び溶融・酸化・分解炉を提供しようとするもの
である。
Therefore, the present invention is designed so that unmelted non-combustible waste is always directly heated by a heat source for high temperature heating,
The melting process can be performed efficiently and in a short time, and the efficient melting process of non-combustible waste can be performed independently.
In addition, the efficient melting process of this non-combustible waste and the oxidization / decomposition process of combustible and / or flame-retardant waste can be performed rationally collectively, and the life of the furnace can be further extended. The present invention intends to provide a melting method, melting / oxidizing / decomposing method, and melting / oxidizing / decomposing furnace of the waste.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明の廃棄物の溶融方法は、不燃性廃棄物を、溶融
・酸化・分解炉内の一方の溶融領域に供給し、その不燃
性廃棄物を高温加熱用熱源により溶融し、その溶融物を
他方の酸化分解領域に排出して高温加熱用熱源により保
持することを特徴とするものである。上記課題を解決す
るための本発明の廃棄物の溶融・酸化・分解方法は、不
燃性廃棄物と可燃性及び/あるいは難燃性廃棄物を、溶
融・酸化・分解炉内の溶融領域と酸化・分解領域に夫々
供給し、一方の溶融領域に供給された不燃性廃棄物を高
温加熱用熱源により溶融し、その溶融物を他方の酸化・
分解領域に排出して保持すると共に、その酸化・分解領
域に供給された可燃性及び/あるいは難燃性廃棄物を溶
融物上で高温加熱用熱源により酸化・分解することを特
徴とするものである。
The method for melting waste according to the present invention for solving the above-mentioned problems is achieved by supplying non-combustible waste to one of the melting areas in a melting / oxidation / decomposition furnace, Volatile waste is melted by a heat source for high temperature heating, and the melt is discharged to the other oxidative decomposition region and held by the heat source for high temperature heating. The method for melting, oxidizing and decomposing wastes according to the present invention to solve the above-mentioned problems is a method of melting non-combustible wastes and combustible and / or flame-retardant wastes into a melting region in a melting, oxidation and decomposition furnace and oxidation.・ The non-combustible wastes supplied to the decomposition areas are melted by the heat source for high temperature heating, and the melts are oxidized to the other.
It is characterized by discharging and holding it in the decomposition area and oxidizing and decomposing the combustible and / or flame-retardant waste supplied to the oxidation / decomposition area on the melt by a heat source for high temperature heating. is there.

【0008】この廃棄物の溶融・酸化・分解方法に於い
ては、高温加熱用熱源をプラズマアークとし、プラズマ
トーチを溶融領域と酸化・分解領域に夫々一本あるいは
複数本備えて、溶融・酸化・分解炉内を廃棄物の溶融と
酸化・分解に必要な高温雰囲気にすることが好ましい。
また、溶融物を他方の酸化・分解領域に排出するに於い
て、炉本体を溶融物排出側に傾動させて溶融物を排出す
るか、又はオーバーフローにより溶融物を排出するか、
若しくは溶融領域と酸化・分解領域のレベル差により溶
融物を自然流下させて排出するか、或いは溶融物を溶融
領域の中央に集めて通路より酸化・分解領域に排出する
ことが好ましい。
In this method of melting / oxidizing / decomposing waste, the heat source for high temperature heating is a plasma arc, and one or more plasma torches are provided in the melting region and the oxidizing / decomposing region, respectively. -It is preferable to make the inside of the decomposition furnace a high temperature atmosphere necessary for melting, oxidizing and decomposing waste.
In discharging the melt to the other oxidation / decomposition region, the furnace body is tilted toward the melt discharge side to discharge the melt, or the melt is discharged by overflow,
Alternatively, it is preferable that the melt is naturally flowed down and discharged depending on the level difference between the melting region and the oxidation / decomposition region, or the melt is collected in the center of the melting region and discharged from the passage to the oxidation / decomposition region.

【0009】本発明の廃棄物の溶融・酸化・分解炉は、
不燃性廃棄物を溶融する溶融領域と溶融物を保持し且つ
可燃性及び/あるいは難燃性廃棄物を酸化・分解する酸
化・分解領域を炉本体内に設け、溶融領域と酸化・分解
領域に夫々高温加熱用熱源を設け、溶融領域の炉本体の
上部に不燃性廃棄物供給装置を設け、酸化・分解領域の
炉本体の上部又は側部に可燃性及び難燃性廃棄物供給装
置と酸化・分解用空気供給装置を設け、酸化・分解領域
側の端部炉底に酸化・分解残渣含有溶融物の排出口を設
けてなるものである。
The waste melting / oxidation / decomposition furnace of the present invention is
A melting area that melts non-combustible waste and an oxidation / decomposition area that holds the melt and that oxidizes / decomposes flammable and / or flame-retardant waste are provided in the furnace body. Each is equipped with a heat source for high temperature heating, a non-combustible waste supply device is installed above the furnace body in the melting region, and a combustible and flame-retardant waste supply device and oxidation are provided above or in the side of the furnace body in the oxidation / decomposition region.・ An air supply device for decomposition is provided, and a discharge port for the melt containing the oxidation / decomposition residue is provided at the end bottom of the oxidation / decomposition region.

【0010】この廃棄物の溶融・酸化・分解炉に於いて
は、高温加熱用熱源をプラズマアークとし、プラズマト
ーチを溶融領域と酸化・分解領域に夫々一本又は複数本
設けることが好ましい。また、溶融領域に設けたプラズ
マトーチを、角度可変とするか、又は揺動可能とする
か、若しくは角度可変且つ揺動可能とすることが好まし
い。
In this waste melting / oxidation / decomposition furnace, it is preferable that the heat source for high temperature heating is a plasma arc and one or more plasma torches are provided in the melting region and the oxidation / decomposition region, respectively. Further, it is preferable that the plasma torch provided in the melting region can be changed in angle, can be swung, or can be changed in angle and can be swung.

【0011】然して、本発明の廃棄物の溶融・酸化・分
解炉に於いては、炉本体内の溶融領域の床レベルを高く
し、酸化・分解領域の床レベルを低くして、溶融物が酸
化・分解領域に排出されるようにする場合と、炉本体内
の溶融領域の炉底の側壁側を中心に比べて高く形成し
て、不燃性廃棄物が中央部に供給されるようにすると共
に溶融物が中央に集められて酸化・分解領域へ速やかに
排出されるようにする場合と、炉本体内の溶融領域の炉
底と酸化・分解領域の炉底との境界に溢流壁を設けて、
溶融領域の溶融物が溢流壁よりオーバーフローして酸化
・分解領域へ排出されるようにする場合とがある。
However, in the waste melting / oxidation / decomposition furnace of the present invention, the floor level of the melting area in the furnace main body is raised and the floor level of the oxidation / decomposition area is lowered so that the melt is When it is discharged to the oxidation / decomposition area, and when it is formed higher than the side wall side of the furnace bottom of the melting area in the furnace body, the non-combustible waste is supplied to the central part. At the same time, when the melt is collected in the center and quickly discharged to the oxidation / decomposition region, an overflow wall is placed at the boundary between the bottom of the melting region and the bottom of the oxidation / decomposition region in the furnace body. Provided,
In some cases, the melt in the melting region overflows from the overflow wall and is discharged to the oxidation / decomposition region.

【0012】また、本発明の廃棄物の溶融・酸化・分解
炉に於いては、炉本体内の溶融領域と酸化・分解領域と
の間に堰を設け、この堰に溶融物排出通路を複数本設
け、一定時間毎に交互に溶融物を流通させて使用する場
合がある。そして、本発明の廃棄物の溶融・酸化・分解
炉に於いては、炉本体を、酸化・分解領域側の端部下面
で支持フレームの上端に枢支し、溶融領域側の端部下面
で昇降用ジャッキの上端に枢支して、炉を傾動可能にす
ることが好ましい。
In the waste melting / oxidation / decomposition furnace of the present invention, a weir is provided between the melting area and the oxidation / decomposition area in the furnace body, and a plurality of melt discharge passages are provided in the weir. There is a case where a main body is provided and the melt is circulated and used alternately at regular intervals. Further, in the waste melting / oxidation / decomposition furnace of the present invention, the furnace body is pivotally supported on the upper end of the support frame at the lower surface of the end on the oxidation / decomposition region side, and on the lower surface of the end on the melting region side. It is preferable that the furnace is tiltable by being pivotally supported on the upper end of the lifting jack.

【0013】前記したように本発明の廃棄物の溶融方法
は、炉本体内の溶融領域で不燃性廃棄物を高温加熱用熱
源により溶融し、その溶融物を酸化・分解領域に排出し
て高温加熱用熱源により溶融状態を保持するので、凝固
することがなく、しかも後から溶融領域に供給される不
燃性廃棄物は溶融物に覆われることなく、高温加熱用熱
源により直接加熱されて短時間に効率よく溶融処理でき
る。また、本発明の溶融・酸化・分解方法は、上記の不
燃性廃棄物の溶融処理を効率よく行うことができること
は勿論のこと、可燃性及び/あるいは難燃性廃棄物を酸
化・分解領域の溶融物上で高温加熱用熱源により効率よ
く酸化・分解処理でき、その酸化・分解残渣は高温の溶
融物中に溶け込んで一体化する。しかも溶融物は高温加
熱用熱源により加熱されていて、再凝固することがな
い。従って、不燃性廃棄物と可燃性及び/あるいは難燃
性廃棄物は一括処理により、著しく溶融減容されると共
に、酸化・分解残渣中の放射性核種を固定化することが
可能となる。特に、高温加熱用熱源をプラズマアークと
し、溶融領域と酸化・分解領域に夫々プラズマトーチを
一本あるいは複数本備えて、炉本体内を廃棄物の溶融と
酸化・分解に必要な高温雰囲気にして各領域の温度分布
を一様化することにより、不燃性廃棄物の溶融処理、可
燃性及び/あるいは難燃性廃棄物の酸化・分解処理が、
より円滑に一層効率よく行われる。
As described above, in the method for melting waste according to the present invention, the non-combustible waste is melted by the heat source for high temperature heating in the melting area in the furnace body, and the melt is discharged to the oxidation / decomposition area for high temperature. Since the molten state is maintained by the heat source for heating, it does not solidify, and the incombustible waste that is supplied to the melting area later is not directly covered by the melt, but is directly heated by the heat source for high-temperature heating for a short time. The melt processing can be performed efficiently. In addition, the melting / oxidation / decomposition method of the present invention can efficiently perform the melting treatment of the above-mentioned non-combustible waste, and it is also possible to oxidize / decombust combustible and / or flame-retardant waste in the area. The heat source for high temperature heating can efficiently oxidize / decompose the melt, and the oxidation / decomposition residue is melted and integrated into the high temperature melt. Moreover, the melt is heated by the heat source for high temperature heating and does not re-solidify. Therefore, the non-combustible waste and the combustible and / or flame-retardant waste can be significantly melted and reduced in volume by the batch treatment, and the radionuclide in the oxidation / decomposition residue can be fixed. In particular, a plasma arc is used as the heat source for high-temperature heating, and one or more plasma torches are provided in the melting region and the oxidizing / decomposing region, respectively, to create a high-temperature atmosphere in the furnace body for melting and oxidizing / decomposing waste. By uniformizing the temperature distribution in each region, melting treatment of non-combustible waste, oxidation / decomposition treatment of combustible and / or flame-retardant waste,
It is done more smoothly and more efficiently.

【0014】また、溶融領域の溶融物を酸化・分解領域
へ排出するのに、炉本体を溶融物排出側に傾動させて溶
融物を排出したり、オーバーフローにより溶融物を排出
したり、溶融領域と酸化・分解領域のレベル差により溶
融物を自然流下させて排出したり、溶融物を溶融領域の
中央に集めて通路より酸化・分解領域に排出したりする
と、溶融物が速やかに酸化・分解領域に排出されるの
で、溶融領域は溶融物を保持する大きなスペースは必要
がなく、小さなスペースで効率よく溶融できる。一方、
酸化・分解領域の酸化・分解に必要な炉容積は十分に大
きくとれるので、不燃性廃棄物の溶融処理と可燃性及び
/あるいは難燃性廃棄物の酸化・分解処理が一括して合
理的に行われる。然して、前記のように構成した本発明
の廃棄物の溶融・酸化・分解炉によれば、上記の廃棄物
の溶融方法及び溶融・酸化・分解方法を、円滑、確実
に、能率良く実施できて、廃棄物の減容率を大幅に向上
することができる。
Further, in discharging the melt in the melting region to the oxidation / decomposition region, the furnace body is tilted to the melt discharge side to discharge the melt, or the melt is discharged by overflow, and the melt region is discharged. If the melt is naturally flowed down and discharged depending on the level difference between the oxidation and decomposition areas, or if the melt is collected in the center of the melting area and discharged from the passage to the oxidation and decomposition area, the melt is quickly oxidized and decomposed. Since it is discharged to the area, the melting area does not need a large space for holding the melt, and can be efficiently melted in a small space. on the other hand,
Since the furnace volume required for oxidation / decomposition in the oxidation / decomposition area can be set sufficiently large, the melting process of non-combustible waste and the oxidation / decomposition process of combustible and / or flame-retardant waste can be rationalized collectively. Done. However, according to the waste melting / oxidation / decomposition furnace of the present invention configured as described above, the above-described waste melting method and melting / oxidation / decomposition method can be carried out smoothly, reliably and efficiently. , The volume reduction rate of waste can be greatly improved.

【0015】[0015]

【発明の実施の形態】本発明の廃棄物の溶融方法、溶融
・酸化・分解方法及び溶融・酸化・分解炉を図によって
詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION The melting method, melting / oxidizing / decomposing method and melting / oxidizing / decomposing furnace of the present invention will be described in detail with reference to the drawings.

【0016】先ず、廃棄物の溶融方法及び溶融・酸化・
分解方法を実施するための溶融・酸化・分解炉を図1,
図2,図3によって説明すると、40は溶融・酸化・分
解炉で、耐火構造の炉本体41内に不燃性廃棄物溶融領
域(以下溶融領域と称する)42と溶融物保持兼可燃性
及び難燃性廃棄物酸化・分解領域(以下酸化・分解領域
と称する)43が設けられ、溶融領域42と酸化・分解
領域43の上方に、夫々炉本体41を貫通して高温加熱
用熱源としてプラズマトーチ44,45が揺動可能に二
本づつ左右に、また前後に設けられ、それに対応して炉
底に電極46,47が設けられている。また、溶融領域
42の中央部上方で炉本体41に途中に仕切弁48aを
有する不燃性廃棄物供給装置48が設けられ、酸化・分
解領域43の中央部上方で炉本体41に可燃性及び難燃
性廃棄物供給装置49が設けられ、その側方に酸化・分
解用空気供給装置50が設けられている。炉本体41の
酸化・分解領域43側の端部下面が支持フレーム51の
上端に枢支され、反対側の端部下面がベース52上に立
設した支柱53の上端に載置され、その隣りに昇降用シ
リンダ54の上端がピン結合され、下端がベース52上
の支持台55にピン結合されている。炉本体41の酸化
・分解領域43側の端部上方には排ガスダクト56が接
続されている。前記溶融領域42と酸化・分解領域43
は床レベルに段差が設けられ、即ち溶融領域42の床レ
ベルは高くされ、酸化・分解領域43の床レベルは低く
され且つ外端に向って上向きに傾斜され、しかも溶融領
域42は浅いプールとされ、酸化・分解領域43は深い
プールとされている。そして溶融領域42と酸化・分解
領域43の境界には溢流壁57が設けられ、酸化・分解
領域43の上向き傾斜床の端に溶融物排出口58が設け
られ、その排出口58の外側開口端が通常止栓(図示省
略)にて封塞されている。この封塞された溶融物排出口
58の外側開口端の下方には、溶融物排出口58から排
出される酸化・分解残渣含有溶融物を受容する容器59
を昇降させ且つ水平移動する溶融物充填装置60を臨ま
せている。
First, a method of melting waste and melting / oxidizing
Figure 1 shows a melting, oxidation and decomposition furnace for carrying out the decomposition method.
Referring to FIGS. 2 and 3, reference numeral 40 denotes a melting / oxidizing / decomposing furnace, which has a refractory-structured furnace body 41, a non-combustible waste melting region (hereinafter referred to as a melting region) 42, a melt-holding / combustible property and a difficulty. A combustible waste oxidation / decomposition region (hereinafter referred to as an oxidation / decomposition region) 43 is provided, and a plasma torch serving as a heat source for high-temperature heating penetrating the furnace body 41 above the melting region 42 and the oxidation / decomposition region 43, respectively. 44 and 45 are provided so as to be swingable in pairs, two on the left and right, and on the front and rear, and electrodes 46 and 47 are provided on the bottom of the furnace correspondingly. A non-combustible waste supply device 48 having a sluice valve 48a is provided in the furnace body 41 above the center of the melting region 42, and the furnace body 41 is flammable and difficult to burn above the center of the oxidation / decomposition region 43. A combustible waste supply device 49 is provided, and an oxidizing / decomposing air supply device 50 is provided on the side thereof. The lower surface of the end portion of the furnace body 41 on the side of the oxidation / decomposition region 43 is pivotally supported by the upper end of the support frame 51, and the lower surface of the end portion on the opposite side is placed on the upper end of a column 53 standing upright on the base 52, and next to it. The upper end of the lifting cylinder 54 is pin-connected, and the lower end is pin-connected to the support base 55 on the base 52. An exhaust gas duct 56 is connected above the end of the furnace body 41 on the oxidation / decomposition region 43 side. The melting region 42 and the oxidation / decomposition region 43
Has a step at the floor level, that is, the bed level of the melting region 42 is raised, the bed level of the oxidation / decomposition region 43 is lowered and is inclined upward toward the outer end, and the melting region 42 becomes a shallow pool. The oxidation / decomposition region 43 is a deep pool. An overflow wall 57 is provided at the boundary between the melting region 42 and the oxidation / decomposition region 43, and a melt discharge port 58 is provided at the end of the upward sloping floor of the oxidation / decomposition region 43, and an outside opening of the discharge port 58 is provided. The end is normally sealed with a stopper (not shown). A container 59 for receiving the melt containing the oxidation / decomposition residue discharged from the melt discharge port 58 is provided below the outer open end of the sealed melt discharge port 58.
The melt filling device 60 that moves up and down and moves horizontally is faced.

【0017】次に上記のように構成された廃棄物の溶融
・酸化・分解炉を用いる本発明の廃棄物の溶融方法につ
いて説明する。不燃性廃棄物61をドラム缶詰めの状態
で供給装置48により横向きに炉本体41内の溶融領域
42に供給し、この不燃性廃棄物61を二本のプラズマ
トーチ44により融点以上に加熱して溶融する。と同時
に二本のプラズマトーチ44、酸化・分解領域43の二
本のプラズマトーチ45により炉内雰囲気を溶融物63
を溶融状態に保持できる温度に加熱する。不燃性廃棄物
61は溶融領域42が浅いプールとなっているので、溶
融されるにしたがい溢流壁57を溢流して隣りの酸化・
分解領域43に送り込まれる。そしてその酸化・分解領
域43で二本のプラズマトーチ45により溶融状態が保
持されるので、凝固することがない。しかも後から溶融
領域42に供給される不燃性廃棄物61は溶融物63に
覆われることなく、二本のプラズマトーチ44により直
接加熱されて短時間に効率よく溶融処理される。こうし
て溶融領域42で溶融された不燃性廃棄物61の溶融物
63は次々に酸化・分解領域43に送り込まれて、所要
量まで貯留された後、炉本体41を昇降用シリンダー5
4の駆動により支持フレーム51の上端枢支点を中心に
傾動することにより、止栓を外した溶融物排出口58よ
り排出され、溶融物充填装置60の上昇させておいた容
器59に充填される。この溶融物63の充填された容器
59は下降された後、水平移動により図示せぬ冷却装置
に送られて固化される。炉本体41内で発生した排ガス
は、排ガスダクト56より図示せぬ排ガス浄化処理装置
を経て浄化された上、大気中に排気される。次に本発明
の溶融・酸化・分解方法について説明する。先に不燃性
廃棄物61をドラム缶詰めの状態で供給装置48により
横向きに炉本体41内の溶融領域42に供給し、後から
可燃性及び難燃性廃棄物62を撤物の状態で供給装置4
9により酸化・分解領域43に供給する。そして先に溶
融領域42に供給された不燃性廃棄物61を二本のプラ
ズマトーチ44により融点以上に加熱して溶融する。と
同時に二本のプラズマトーチ44、酸化・分解領域43
の2本のプラズマトーチ45及び溶融物63により炉内
雰囲気を可燃性及び難燃性廃棄物62の酸化・分解温度
以上に加熱する。不燃性廃棄物61は溶融領域42が浅
いプールとなっているので、溶融されるにしたがい溢流
壁57を溢流して隣りの酸化・分解領域43に送り込ま
れる。この溶融物63上には、供給装置49により可燃
性及び難燃性廃棄物62を供給し、且つ必要な酸化・分
解用空気を供給装置50により供給して、可燃性及び難
燃性廃棄物62をプラズマトーチ45により酸化・分解
する。かくして可燃性及び難燃性廃棄物62の酸化・分
解残渣は、溶融物63中に含有され、この酸化・分解残
渣含有溶融物63′は、炉本体41を昇降用シリンダ5
4の駆動により支持フレーム51の上端枢支点を中心に
傾動することにより、止栓を外した溶融物排出口58よ
り排出され、溶融物充填装置60の上昇させておいた容
器59に充填される。この酸化・分解残渣含有溶融物6
3′の充填された容器59は下降された後、水平移動に
より図示せぬ冷却装置に送られて固化される。炉本体4
1内で発生した排ガスは、排ガスダクト56より図示せ
ぬ排ガス浄化処理装置を経て浄化された上、大気中に排
出される。
Next, a method for melting waste according to the present invention using the waste melting / oxidation / decomposition furnace configured as described above will be described. The non-combustible waste 61 is laterally supplied to the melting region 42 in the furnace body 41 by the supply device 48 in a drum-canned state, and the non-combustible waste 61 is heated to a melting point or higher by the two plasma torches 44 and melted. To do. At the same time, the atmosphere in the furnace is melted by the two plasma torches 44 and the two plasma torches 45 in the oxidation / decomposition region 43.
Is heated to a temperature at which it can be maintained in the molten state. Since the incombustible waste 61 has a shallow pool in the melting region 42, as it is melted, it overflows the overflow wall 57 and oxidizes adjacently.
It is sent to the decomposition area 43. Since the two plasma torches 45 maintain the molten state in the oxidation / decomposition region 43, they do not solidify. In addition, the non-combustible waste 61 supplied to the melting region 42 later is directly heated by the two plasma torches 44 without being covered with the melt 63, and is efficiently melted in a short time. The melt 63 of the non-combustible waste 61 thus melted in the melting region 42 is successively sent to the oxidation / decomposition region 43 and stored up to a required amount, and then the furnace body 41 is moved to the lifting cylinder 5
By tilting about the upper end pivot point of the support frame 51 by driving 4, the melt is discharged from the melt discharge port 58 without the stopper, and is filled in the container 59 which has been raised by the melt filling device 60. . The container 59 filled with the melt 63 is lowered and then horizontally moved to a cooling device (not shown) to be solidified. The exhaust gas generated in the furnace body 41 is purified from the exhaust gas duct 56 through an exhaust gas purification processing device (not shown), and then exhausted into the atmosphere. Next, the melting / oxidizing / decomposing method of the present invention will be described. First, the non-combustible waste 61 is laterally supplied to the melting region 42 in the furnace body 41 by the supply device 48 in a drum-canned state, and then the combustible and flame-retardant waste 62 is supplied in a removed state. Four
9 to supply to the oxidation / decomposition region 43. Then, the non-combustible waste 61 previously supplied to the melting region 42 is heated to a melting point or higher by the two plasma torches 44 and melted. At the same time, two plasma torches 44 and oxidation / decomposition region 43
The two plasma torches 45 and the melt 63 heat the atmosphere in the furnace to a temperature above the oxidation / decomposition temperature of the combustible and flame-retardant waste 62. Since the melting region 42 is a shallow pool, the non-combustible waste 61 overflows the overflow wall 57 as it is melted and is sent to the adjacent oxidation / decomposition region 43. The combustible and flame-retardant waste 62 is supplied onto the melt 63 by the supply device 49, and the required oxidizing / decomposing air is supplied from the supply device 50, and the combustible and flame-retardant waste is supplied. The plasma torch 45 oxidizes and decomposes 62. Thus, the oxidation / decomposition residue of the flammable and flame-retardant waste 62 is contained in the melt 63, and this oxidation / decomposition residue-containing melt 63 ′ moves the furnace body 41 up and down the cylinder 5 for raising and lowering.
By tilting about the upper pivot point of the support frame 51 by driving 4, the melt is discharged from the melt discharge port 58 without the stopper, and is filled in the container 59 which has been raised by the melt filling device 60. . This melt containing the oxidation / decomposition residue 6
The container 59 filled with 3'is lowered and then horizontally moved to a cooling device (not shown) to be solidified. Furnace body 4
Exhaust gas generated in 1 is purified by an exhaust gas duct 56 through an exhaust gas purification processing device (not shown) and then discharged into the atmosphere.

【0018】上記のように実施例の廃棄物の溶融方法で
は、炉本体41内の溶融領域42で不燃性廃棄物61を
プラズマトーチ44により溶融し、その溶融物63を直
ちに酸化・分解領域43に排出してプラズマトーチ45
により溶融状態を保持するので、凝固することがなく、
しかも後から溶融領域42に供給される不燃性廃棄物6
1は溶融物63に覆われることなく、プラズマトーチ4
4により直接加熱されて短時間に効率よく溶融処理され
る。また、本発明の溶融・酸化・分解方法では、上記の
不燃性廃棄物61の溶融処理を効率よく行うことができ
ることは勿論のこと、可燃性及び難燃性廃棄物62を酸
化・分解領域43の溶融物63上でプラズマトーチ45
により酸化・分解するので、効率よく酸化・分解処理で
き、その酸化・分解残渣は高温の溶融物63中に溶け込
んで一体化する。しかも酸化・分解領域43の溶融物6
3はプラズマトーチ45により加熱されていて、再凝固
することがない。従って、不燃性廃棄物61と可燃性及
び難燃性廃棄物62は、一括処理により著しく溶融減容
されると共に、酸化・分解残渣中の放射性核種を固定化
することが可能となる。特に本実施例では、プラズマト
ーチ44,45により炉本体41内の溶融領域42と酸
化・分解領域43の温度分布を一様化しているので、溶
融処理、酸化・分解処理が安定して円滑に一層効率よく
行われる。
As described above, in the waste melting method of the embodiment, the incombustible waste 61 is melted by the plasma torch 44 in the melting area 42 in the furnace body 41, and the melt 63 is immediately oxidized / decomposed area 43. Discharge to plasma torch 45
Because it keeps the molten state, it does not solidify,
Moreover, the non-combustible waste 6 supplied to the melting region 42 later
1 is a plasma torch 4 without being covered with the melt 63.
Directly heated by 4 and melted efficiently in a short time. In addition, in the melting / oxidation / decomposition method of the present invention, it is possible to efficiently perform the melting treatment of the above-mentioned incombustible waste 61, and in addition, the combustible and flame-retardant waste 62 is oxidized / decomposed in the area 43. Plasma torch 45 on the melt 63 of
Since it is oxidized and decomposed by the above, it can be efficiently oxidized and decomposed, and the oxidation and decomposition residue is melted and integrated into the high temperature melt 63. Moreover, the melt 6 in the oxidation / decomposition region 43
No. 3 is heated by the plasma torch 45 and does not re-solidify. Therefore, the non-combustible waste 61 and the combustible and flame-retardant waste 62 are significantly melted and reduced in volume by the batch treatment, and the radionuclide in the oxidation / decomposition residue can be fixed. Particularly, in this embodiment, since the temperature distributions of the melting region 42 and the oxidation / decomposition region 43 in the furnace body 41 are made uniform by the plasma torches 44 and 45, the melting process and the oxidation / decomposition process are stable and smooth. It is done more efficiently.

【0019】また、溶融領域42で溶融される不燃性廃
棄物61は、溶融され次第溢流壁57を溢流して酸化・
分解領域43に速やかに排出されるので、溶融領域42
は溶融物63を保持する大きなスペースは必要がなく、
小さなスペースでよい。従って、酸化・分解領域43の
炉容積を十分大きくとれるので、不燃性廃棄物61の溶
融処理と可燃性及び難燃性廃棄物62の酸化・分解処理
が一括して合理的に行われる。また、前記のように構成
された実施例の廃棄物の溶融・酸化・分解炉によれば、
上記の廃棄物の溶融方法及び溶融・酸化・分解方法を、
円滑、確実に、能率よく実施できて、廃棄物の減容率を
大幅に向上できる。
Further, the non-combustible waste 61 melted in the melting region 42 overflows the overflow wall 57 as soon as it is melted and is oxidized and oxidized.
Since it is quickly discharged to the decomposition region 43, the melting region 42
Does not require a large space to hold the melt 63,
A small space is enough. Therefore, since the furnace volume of the oxidation / decomposition region 43 can be made sufficiently large, the melting process of the non-combustible waste 61 and the oxidation / decomposition process of the combustible and flame-retardant waste 62 can be rationalized collectively. Further, according to the waste melting / oxidation / decomposition furnace of the embodiment configured as described above,
The melting method and melting / oxidation / decomposition method of the above waste are
It can be carried out smoothly, reliably and efficiently, and the volume reduction rate of waste can be greatly improved.

【0020】尚、上記実施例ではプラズマトーチ44,
45を揺動可能にしてあるが、溶融領域42の不燃性廃
棄物61の供給位置に向けて、また酸化・分解領域43
の可燃性及び難燃性廃棄物62の供給位置に向けて、角
度可変なものとしてもよく、また揺動可能且つ角度可変
なものとしてもよい。また、上記実施例では高温加熱用
熱源として、プラズマアークを発生させるプラズマトー
チ44,45としたが、これに限るものではなく、電気
アーク、ガスバーナなどでもよい。
In the above embodiment, the plasma torch 44,
Although 45 is swingable, it is directed toward the supply position of the non-combustible waste 61 in the melting area 42, and also in the oxidation / decomposition area 43.
The angle may be variable toward the supply position of the flammable and flame-retardant waste 62, and the swingable and variable angle may be used. Further, in the above embodiment, the plasma torches 44 and 45 for generating the plasma arc are used as the heat source for high temperature heating, but the present invention is not limited to this, and an electric arc, a gas burner or the like may be used.

【0021】また、炉本体41内の溶融領域42と酸化
・分解領域43は、図4に示すように変更してもよい。
即ち、中央に床レベルの高い溶融領域42を、周辺に床
レベルの低い酸化・分解領域43を設けて、溶融領域4
2に供給された不燃性廃棄物61を、傾斜させた一対の
プラズマトーチ44により溶融し、溶融物63を周囲の
堰42aから酸化・分解領域43に自然流下させて保持
するようにしてもよい。
The melting area 42 and the oxidation / decomposition area 43 in the furnace body 41 may be changed as shown in FIG.
That is, the melting region 42 having a high floor level is provided in the center, and the oxidation / decomposition region 43 having a low floor level is provided in the periphery so that the melting region 4
The non-combustible waste 61 supplied to No. 2 may be melted by the pair of inclined plasma torches 44, and the melt 63 may be naturally flowed from the surrounding weir 42a to the oxidation / decomposition region 43 and held. .

【0022】また、図2に示される溶融領域42の床
を、図5に示すように断面円弧状に形成して側壁側を高
くし、これにより不燃性廃棄物61を詰めたドラム缶の
座りを良くすると共に、プラズマトーチ44により溶融
した溶融物63の酸化・分解領域43への排出を容易に
してもよい。
Further, as shown in FIG. 5, the floor of the melting region 42 shown in FIG. 2 is formed to have an arcuate cross section so that the side wall side is made higher, so that the sitting of the drum can filled with the incombustible waste 61 can be improved. At the same time, the melt 63 melted by the plasma torch 44 may be easily discharged to the oxidation / decomposition region 43.

【0023】また、図6に示すようにプラズマトーチ4
4を酸化・分解領域43に向けて傾斜させたり、プラズ
マトーチ45を溶融領域42から酸化・分解領域43に
向けて揺動させたりして、溶融物63の排出を速やかに
するようにしてもよい。
Further, as shown in FIG. 6, the plasma torch 4
4 may be inclined toward the oxidation / decomposition region 43, or the plasma torch 45 may be swung from the melting region 42 toward the oxidation / decomposition region 43 to expedite the discharge of the melt 63. Good.

【0024】また、図7のaに示すように不燃性廃棄物
61の溶融時、炉本体41を昇降用シリンダ54により
逆に傾動し、溶融物63の排出時、図7のbに示すよう
に炉本体41を昇降用シリンダ54により水平に保持し
て酸化・分解領域43への溶融物63の排出を速やかに
するようにしてもよい。また、これにより溶融領域42
の未溶融物や不完全溶融物が酸化・分解領域43に流下
するのを防止し、耐火物の損耗に関らず、溶融領域42
の溶融池レベルを適正に保持できる。
Further, as shown in FIG. 7A, when the incombustible waste 61 is melted, the furnace body 41 is tilted in the opposite direction by the lifting cylinder 54, and when the melt 63 is discharged, as shown in FIG. 7B. Alternatively, the furnace body 41 may be held horizontally by the lifting cylinder 54 to expedite the discharge of the melt 63 to the oxidation / decomposition region 43. In addition, the melting region 42
Of unmelted material or incompletely melted material is prevented from flowing down to the oxidation / decomposition area 43.
The molten pool level of can be properly maintained.

【0025】また、図8のa,bに示すように溶融領域
42と酸化・分解領域43との境界に堰57aを設け、
この堰57aの下部に溶融物63の排出通路57bを2
本以上設け、これらのうち少くとも1本は流通可能と
し、他の排出通路は耐火物による栓等により封塞して、
溶融物63が流通しないようにしてもよい。このように
すると、一定時間後あるいは耐火物の一定溶損を確認後
に、溶融物63を流通させていた排出通路に栓をし、他
の排出通路を流通させることで、溶融物63の排出部の
耐火物の寿命を他の部分の耐火物と同程度にすることが
でき、あるいは損耗部のみを容易に交換/補修すること
ができて、炉の稼動率を向上し、炉の寿命を増長するこ
とができる。
As shown in FIGS. 8A and 8B, a weir 57a is provided at the boundary between the melting region 42 and the oxidation / decomposition region 43,
Two discharge passages 57b for the melt 63 are provided below the weir 57a.
Provided more than one, at least one of these can be circulated, and the other discharge passages are closed with a plug made of refractory,
The melt 63 may not flow. In this way, after a certain period of time or after confirming the constant melting loss of the refractory, the discharge passage through which the melt 63 was flowing is plugged and the other discharge passage is caused to flow, whereby the discharge portion of the melt 63 is discharged. The refractory can be made to have the same life as the refractories of other parts, or only the damaged part can be easily replaced / repaired, improving the operating rate of the furnace and extending the life of the furnace. can do.

【0026】[0026]

【発明の効果】以上の説明で判るように本発明の廃棄物
の溶融方法、溶融・酸化・分解方法によれば、不燃性廃
棄物が常時熱源から直接加熱されるので、短時間に効率
よく溶融処理できる。また、本発明の溶融・酸化・分解
方法によれば可燃性及び/あるいは難燃性廃棄物が溶融
物上で熱源により効率よく酸化・分解され、その酸化・
分解残渣は高温の溶融物中に溶け込んで一体化し、しか
も溶融物は熱源により加熱されていて、再凝固すること
がない。従って、不燃性廃棄物と可燃性及び/あるいは
難燃性廃棄物は一括処理され、著しく溶融減容されると
共に、酸化・分解残渣中の放射性核種を安定に固定する
ことが可能となる。また、不燃性廃棄物の溶融物を速や
かに排出できるので、溶融領域は溶融物を保持する大き
なスペースは必要がなく、小さなスペースでよい。従っ
て、酸化・分解処理の炉容積を十分大きくとれるので、
不燃性廃棄物の溶融処理と可燃性及び/あるいは難燃性
廃棄物の酸化・分解処理を一括して合理的に行われる。
また、本発明の廃棄物の溶融・酸化・分解炉によれば、
廃棄物の溶融と酸化・分解を、円滑、確実に、能率よく
実施できて、廃棄物の減容率を大幅に向上することがで
きる。
As can be seen from the above description, according to the waste melting method, the melting / oxidation / decomposition method of the present invention, the non-combustible waste is directly heated directly from the heat source, so that the waste can be efficiently processed in a short time. Can be melt processed. Further, according to the melting / oxidation / decomposition method of the present invention, flammable and / or flame-retardant waste is efficiently oxidized / decomposed on the melt by a heat source, and the oxidation / decomposition is performed.
The decomposition residue is melted and integrated in the high temperature melt, and the melt is heated by the heat source so that it does not resolidify. Therefore, the non-combustible waste and the combustible and / or flame-retardant waste are collectively processed, the volume of the melt is significantly reduced, and the radionuclide in the oxidation / decomposition residue can be stably fixed. Further, since the melt of the non-combustible waste can be quickly discharged, the melt region does not need a large space for holding the melt, and a small space is sufficient. Therefore, since the furnace volume for oxidation / decomposition can be sufficiently large,
Melt processing of non-combustible waste and oxidation / decomposition processing of combustible and / or flame-retardant waste are rationalized collectively.
According to the waste melting / oxidation / decomposition furnace of the present invention,
Melting, oxidation and decomposition of waste can be performed smoothly, reliably and efficiently, and the volume reduction rate of waste can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の廃棄物の溶融・酸化・分解炉の一実施
例を示す側面図である。
FIG. 1 is a side view showing an embodiment of a waste melting / oxidation / decomposition furnace of the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1の平面図である。FIG. 3 is a plan view of FIG. 1;

【図4】図1の溶融・酸化・分解炉の内部に於ける溶融
領域、酸化・分解領域の変更例を示す図である。
FIG. 4 is a diagram showing a modification example of a melting region and an oxidation / decomposition region inside the melting / oxidation / decomposition furnace of FIG.

【図5】図2に示される溶融領域の床の変更例を示す図
である。
FIG. 5 is a diagram showing a modified example of the floor of the melting region shown in FIG.

【図6】図1の溶融・酸化・分解炉におけるプラズマト
ーチの取付け方の他の例を示す図である。
6 is a diagram showing another example of how to attach the plasma torch in the melting / oxidation / decomposition furnace of FIG.

【図7】炉本体の傾動動作の他の例を示すもので、aは
不燃性廃棄物の溶融時に於ける炉本体の状態を示す図で
あり、bは溶融物の排出時に於ける炉本体の状態を示す
図である。
FIG. 7 shows another example of the tilting operation of the furnace body, wherein a is a diagram showing a state of the furnace body at the time of melting the incombustible waste, and b is a furnace body at the time of discharging the melt. It is a figure which shows the state of.

【図8】炉本体の溶融領域と酸化・分解領域との境界の
溶融物排出部の他の例を示すもので、aは側面図、bは
正面図である。
FIG. 8 shows another example of the melt discharge portion at the boundary between the melting region and the oxidation / decomposition region of the furnace body, where a is a side view and b is a front view.

【図9】従来のプラズマ溶融炉の基本的な概念を示す縦
断面図である。
FIG. 9 is a vertical sectional view showing the basic concept of a conventional plasma melting furnace.

【図10】従来のプラズマ溶融試験炉の構造概念を示す
縦断面図である。
FIG. 10 is a vertical cross-sectional view showing the structural concept of a conventional plasma melting test furnace.

【符号の説明】[Explanation of symbols]

40 溶融・酸化・分解炉 41 炉本体 42 溶融領域 43 酸化・分解領域 44,45 プラズマトーチ 48 不燃性廃棄物供給装置 49 可燃性及び難燃性廃棄物供給装置 50 酸化・分解用空気供給装置 54 昇降用シリンダ 56 排ガスダクト 57 溢流壁 58 溶融物排出口 61 不燃性廃棄物 62 可燃性及び難燃性廃棄物 63 溶融物 63′ 酸化・分解残渣含有溶融物 40 Melting / Oxidation / Decomposition Furnace 41 Furnace Main Body 42 Melting Area 43 Oxidation / Decomposition Area 44, 45 Plasma Torch 48 Non-combustible Waste Supply Device 49 Combustible and Flame Retardant Waste Supply Device 50 Oxidation / Decomposition Air Supply Device 54 Lifting cylinder 56 Exhaust gas duct 57 Overflow wall 58 Melt outlet 61 Non-combustible waste 62 Combustible and flame-retardant waste 63 Melt 63 'Melt containing oxidation / decomposition residue

フロントページの続き (72)発明者 赤川 吉寛 東京都千代田区大手町一丁目6番1号 日 本原子力発電株式会社内 (72)発明者 森本 照明 東京都千代田区内幸町二丁目2−3 川崎 製鉄株式会社内 (72)発明者 林 昭彦 東京都千代田区内幸町二丁目2−3 川崎 製鉄株式会社内 (72)発明者 山崎 誠一郎 東京都江東区南砂2丁目6番5号 川崎重 工業株式会社東京設計事務所内 (72)発明者 坂本 太一 東京都江東区南砂2丁目6番5号 川崎重 工業株式会社東京設計事務所内Front page continuation (72) Yoshitaka Akagawa Yoshihiro Akakawa 1-6-1, Otemachi, Chiyoda-ku, Tokyo Nihon Nuclear Power Co., Ltd. (72) Inventor Morimoto Lighting 2-3 2-3, Uchisaiwaicho, Chiyoda-ku, Tokyo Kawasaki Steel Incorporated (72) Inventor Akihiko Hayashi 2-3 2-3 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Kawasaki Steel Co., Ltd. (72) Inventor Seiichiro Yamazaki 2-6-5 Minamisuna, Koto-ku, Tokyo Kawasaki Heavy Industries, Ltd. Tokyo Design In the office (72) Taichi Sakamoto 2-6-5 Minamisuna, Koto-ku, Tokyo Kawasaki Heavy Industries Ltd. Tokyo Design Office

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 不燃性廃棄物を、溶融・酸化・分解炉内
の一方の溶融領域に供給し、その不燃性廃棄物を高温加
熱用熱源により溶融し、その溶融物を他方の酸化・分解
領域に排出して高温加熱用熱源により保持することを特
徴とする廃棄物の溶融方法。
1. A non-combustible waste is supplied to one melting region in a melting / oxidation / decomposition furnace, the non-combustible waste is melted by a heat source for high temperature heating, and the other melt is oxidized / decomposed. A method for melting waste, characterized in that the waste is discharged to an area and held by a heat source for high temperature heating.
【請求項2】 不燃性廃棄物と可燃性及び/あるいは難
燃性廃棄物を、溶融・酸化・分解炉内の溶融領域と酸化
・分解領域に夫々供給し、一方の溶融領域に供給された
不燃性廃棄物を高温加熱用熱源により溶融し、その溶融
物を他方の酸化・分解領域に排出して保持すると共に、
その酸化・分解領域に供給された可燃性及び/あるいは
難燃性廃棄物を溶融物上で高温加熱用熱源により酸化・
分解することを特徴とする廃棄物の溶融・酸化・分解方
法。
2. Non-combustible waste and flammable and / or flame-retardant waste are supplied to a melting area and an oxidation / decomposition area in a melting / oxidation / decomposition furnace, respectively, and are supplied to one of the melting areas. Incombustible waste is melted by a heat source for high temperature heating, and the melt is discharged to the other oxidation / decomposition area and held,
The combustible and / or flame-retardant waste supplied to the oxidation / decomposition area is oxidized on the melt by a heat source for high-temperature heating.
A method for melting, oxidizing and decomposing waste, characterized by decomposing.
【請求項3】 高温加熱用熱源をプラズマアークとし、
プラズマトーチを溶融領域と酸化・分解領域に夫々一本
あるいは複数本備えて、溶融・酸化・分解炉内を廃棄物
の溶融と酸化・分解に必要な高温雰囲気にすることを特
徴とする請求項1又は2記載の廃棄物の溶融・酸化・分
解方法。
3. A plasma arc is used as a heat source for high temperature heating,
One or more plasma torches are provided in the melting region and the oxidizing / decomposing region, respectively, so that the melting / oxidizing / decomposing furnace has a high temperature atmosphere necessary for melting and oxidizing / decomposing the waste. The method for melting, oxidizing and decomposing waste according to 1 or 2.
【請求項4】 溶融物を他方の酸化・分解領域に排出す
るに於いて、炉本体を溶融物排出側に傾動させて溶融物
を排出するか、又はオーバーフローにより溶融物を排出
するか、若しくは溶融領域と酸化・分解領域のレベル差
により溶融物を自然流下させて排出するか、或いは溶融
物を溶融領域の中央に集めて通路より酸化・分解領域に
排出することを特徴とする請求項1記載の廃棄物の溶融
方法若しくは請求項2又は3記載の廃棄物の溶融・酸化
・分解方法。
4. When discharging the melt to the other oxidation / decomposition region, the furnace body is tilted to the melt discharge side to discharge the melt, or the melt is discharged by overflow, or The melt is naturally flowed down and discharged depending on the level difference between the melting region and the oxidation / decomposition region, or the melt is collected in the center of the melting region and discharged from the passage to the oxidation / decomposition region. The method for melting waste according to claim 2 or the method for melting / oxidizing / decomposing waste according to claim 2 or 3.
【請求項5】 不燃性廃棄物を溶融する溶融領域と溶融
物を保持し且つ可燃性及び/あるいは難燃性廃棄物を酸
化・分解する酸化・分解領域を炉本体内に設け、溶融領
域と酸化・分解領域に夫々高温加熱用熱源を設け、溶融
領域の炉本体の上部に不燃性廃棄物供給装置を設け、酸
化・分解領域の炉本体の上部又は側部に可燃性及び難燃
性廃棄物供給装置と酸化・分解用空気供給装置を設け、
酸化・分解領域側の端部炉底に酸化・分解残渣含有溶融
物の排出口を設けてなる廃棄物の溶融・酸化・分解炉。
5. A melting region for melting non-combustible waste and an oxidation / decomposition region for holding the melt and oxidizing / decomposing combustible and / or flame-retardant waste are provided in the furnace body to form a melting region. Heat sources for high-temperature heating are provided in the oxidation / decomposition area, non-combustible waste supply device is provided above the furnace body in the melting area, and flammable and flame-retardant waste is provided at the top or side of the furnace body in the oxidation / decomposition area. An object supply device and an air supply device for oxidation / decomposition are installed,
A furnace for melting / oxidizing / decomposing waste, which is provided with an outlet for the melt containing oxidation / decomposing residue at the end of the furnace on the side of the oxidizing / decomposing area.
【請求項6】 高温加熱用熱源をプラズマアークとし、
プラズマトーチを溶融領域と酸化・分解領域に夫々一本
又は複数本設けたことを特徴とする請求項5記載の廃棄
物の溶融・酸化・分解炉。
6. A plasma arc is used as a heat source for high temperature heating,
The melting / oxidizing / decomposing furnace for waste according to claim 5, wherein one or a plurality of plasma torches are provided in the melting region and the oxidizing / decomposing region, respectively.
【請求項7】 溶融領域に設けたプラズマトーチを、角
度可変とするか、又は揺動可能とするか、若しくは角度
可変且つ揺動可能としたことを特徴とする請求項5又は
6記載の廃棄物の溶融・酸化・分解炉。
7. The discard according to claim 5, wherein the plasma torch provided in the melting region is variable in angle, is swingable, or is variable in angle and swingable. Material melting, oxidation and decomposition furnace.
【請求項8】 炉本体内の溶融領域の床レベルを高く
し、酸化・分解領域の床レベルを低くして、溶融物が酸
化・分解領域に排出されるようにしたことを特徴とする
請求項5,6,7のいずれかに記載の廃棄物の溶融・酸
化・分解炉。
8. The molten material is discharged to the oxidation / decomposition area by increasing the bed level in the melting area and lowering the bed level in the oxidation / decomposition area in the furnace body. Item 5. The melting / oxidation / decomposition furnace for waste according to any one of Items 5, 6 and 7.
【請求項9】 炉本体内の溶融領域の炉底の側壁側を中
心に比べて高く形成して、不燃性廃棄物が中央部に供給
されるようにすると共に溶融物が中央に集められて酸化
・分解領域へ速やかに排出されるようにしたことを特徴
とする請求項5,6,7,8のいずれかに記載の廃棄物
の溶融・酸化・分解炉。
9. The melting region in the furnace body is formed higher than the side wall side of the furnace bottom as compared to the center so that the non-combustible waste is supplied to the central portion and the molten material is collected in the central portion. The melting / oxidation / decomposition furnace for waste according to any one of claims 5, 6, 7, and 8, characterized in that the waste is rapidly discharged to the oxidation / decomposition region.
【請求項10】 炉本体内の溶融領域の炉底と酸化・分
解領域の炉底との境界に溢流壁を設けて、溶融領域の溶
融物が溢流壁よりオーバーフローして酸化・分解領域へ
排出されるようにしたことを特徴とする請求項5,6,
7,8のいずれかに記載の廃棄物の溶融・酸化・分解
炉。
10. An overflow wall is provided at the boundary between the furnace bottom of the melting region and the furnace bottom of the oxidation / decomposition region in the furnace body, and the melt in the melting region overflows from the overflow wall to cause the oxidation / decomposition region. The discharge is made to
The waste melting / oxidation / decomposition furnace according to any one of 7 and 8.
【請求項11】 炉本体内の溶融領域と酸化・分解領域
との間に堰を設け、この堰に溶融物排出通路を複数本設
け、一定時間毎に交互に溶融物を流通させて使用するこ
とを特徴とする請求項5,6,7のいずれかに記載の廃
棄物の溶融・酸化・分解炉。
11. A weir is provided between a melting region and an oxidation / decomposition region in a furnace body, and a plurality of melt discharge passages are provided in this weir, and the melt is alternately flowed at regular intervals for use. The melting / oxidation / decomposition furnace for waste according to claim 5, 6, or 7.
【請求項12】 炉本体を、酸化・分解領域側の端部下
面で支持フレームの上端に枢支し、溶融領域側の端部下
面で昇降用ジャッキの上端を枢支して、炉を傾動可能に
したことを特徴とする請求項5,6,7,8,9,1
0,11のいずれかに記載の廃棄物の溶融・酸化・分解
炉。
12. The furnace body is tilted by pivotally supporting an upper surface of a supporting frame on a lower surface of an end portion on the side of an oxidation / decomposition region and on an upper surface of an elevating jack on a lower surface of an end portion on a melting region side. Claims 5, 6, 7, 8, 9, 1 characterized by enabling
The waste melting / oxidation / decomposition furnace according to any of 0 and 11.
JP27833295A 1995-10-02 1995-10-02 Method for melting waste and method and decomposer for melting, oxidizing and decomposing it Pending JPH09101399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27833295A JPH09101399A (en) 1995-10-02 1995-10-02 Method for melting waste and method and decomposer for melting, oxidizing and decomposing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27833295A JPH09101399A (en) 1995-10-02 1995-10-02 Method for melting waste and method and decomposer for melting, oxidizing and decomposing it

Publications (1)

Publication Number Publication Date
JPH09101399A true JPH09101399A (en) 1997-04-15

Family

ID=17595860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27833295A Pending JPH09101399A (en) 1995-10-02 1995-10-02 Method for melting waste and method and decomposer for melting, oxidizing and decomposing it

Country Status (1)

Country Link
JP (1) JPH09101399A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257631A (en) * 2003-02-25 2004-09-16 Central Res Inst Of Electric Power Ind Plasma melting treatment apparatus for waste disposal
JP2006517644A (en) * 2003-02-12 2006-07-27 プラスコ エネルギー グループ インコーポレーテッド Hazardous waste treatment system with multiple plasma generators
US8128728B2 (en) 2006-05-05 2012-03-06 Plasco Energy Group, Inc. Gas homogenization system
US8690975B2 (en) 2007-02-27 2014-04-08 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
US9109172B2 (en) 2006-05-05 2015-08-18 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
US9321640B2 (en) 2010-10-29 2016-04-26 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517644A (en) * 2003-02-12 2006-07-27 プラスコ エネルギー グループ インコーポレーテッド Hazardous waste treatment system with multiple plasma generators
JP2004257631A (en) * 2003-02-25 2004-09-16 Central Res Inst Of Electric Power Ind Plasma melting treatment apparatus for waste disposal
US8128728B2 (en) 2006-05-05 2012-03-06 Plasco Energy Group, Inc. Gas homogenization system
US9109172B2 (en) 2006-05-05 2015-08-18 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
US8690975B2 (en) 2007-02-27 2014-04-08 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
US9321640B2 (en) 2010-10-29 2016-04-26 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation

Similar Documents

Publication Publication Date Title
EP0906249B1 (en) Method and system for high-temperature waste treatment
RU2096706C1 (en) Electric arc furnace for steel production, steel production from scrap, and/or from sponge iron, and/or from blast-furnace cast iron in electric arc furnace, and method for steel production from scrap in electric arc furnace
KR890004291B1 (en) Method and apparatus for reclaiming metals from metallic scrap material
JPH09101399A (en) Method for melting waste and method and decomposer for melting, oxidizing and decomposing it
JP2861794B2 (en) Melting furnace with raw material preheating tank
JPH0990095A (en) Volume reduction processing method for low level radioactive miscellaneous solid waste and its system
JP2002526739A (en) DC arc furnace for producing steel and method therefor
JP3236885B2 (en) Waste treatment equipment
JP3280265B2 (en) Apparatus and method for melting incineration residue and fly ash
JPH0949616A (en) Waste melting furnace and waste melting method
JP2002090066A (en) Scrap preheating type electric steel making furnace
EP1226283B1 (en) High temperature premelting apparatus
JPH0611264A (en) Method for treating exhaust gas from closed arc furnace
JP3575785B2 (en) Method and apparatus for treating fall ash in secondary combustion chamber
JP3172781B2 (en) DC electric furnace
JP3350169B2 (en) Waste melting method and apparatus
JP3650193B2 (en) Method for melting metal raw materials
JPH10132230A (en) Waste melting furnace and waste melting method
JP2983413B2 (en) Two tank type arc furnace equipment
JPH09264522A (en) Ash melting furnace
JP3721569B2 (en) Ash melting furnace
JP3212663B2 (en) Ash melting equipment
JP3439641B2 (en) Metal discharge method and apparatus for electric ash melting furnace
JP3108901B2 (en) DC electric furnace
JP3568351B2 (en) Restart method of plasma melting furnace