JP6534251B2 - Incineration method of solid industrial waste - Google Patents

Incineration method of solid industrial waste Download PDF

Info

Publication number
JP6534251B2
JP6534251B2 JP2014198981A JP2014198981A JP6534251B2 JP 6534251 B2 JP6534251 B2 JP 6534251B2 JP 2014198981 A JP2014198981 A JP 2014198981A JP 2014198981 A JP2014198981 A JP 2014198981A JP 6534251 B2 JP6534251 B2 JP 6534251B2
Authority
JP
Japan
Prior art keywords
waste
incineration
refractory material
industrial waste
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014198981A
Other languages
Japanese (ja)
Other versions
JP2016070569A (en
Inventor
武正 圭史
圭史 武正
和寛 湯谷
和寛 湯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2014198981A priority Critical patent/JP6534251B2/en
Publication of JP2016070569A publication Critical patent/JP2016070569A/en
Application granted granted Critical
Publication of JP6534251B2 publication Critical patent/JP6534251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、固形産業廃棄物の焼却処理方法に関し、殊に、焼却炉の耐火材の浸食を低減するための焼却処理方法に関するものである。   The present invention relates to an incineration method for solid industrial waste, and more particularly to an incineration method for reducing the erosion of refractory materials in incinerators.

産業廃棄物の焼却処理設備において、焼却炉の内壁面には、高温の有害ガスから炉壁を保護するために、耐火材が内張りされている。この耐火材は、炉の使用に伴って損傷を受けるため、定期的な交換が必要となる。   In the industrial waste incineration facility, the inner wall of the incinerator is lined with a refractory to protect the furnace wall from high temperature harmful gases. The refractories are subject to damage as the furnace is used and require regular replacement.

耐火材が損傷する要因としては、
(1)耐火材の耐熱温度以上の条件で操業することにより耐火材自体が溶融したり、温度条件の急激な変化により耐火材がヒートショックを受けたりする、熱による損傷
(2)回転炉などの内壁面に使用された場合、機械的応力が周期的にかかることによる割れ等が発生したり、接触する原料との磨耗で耐火材が削り取られたりする、機械的損傷
(3)原料が溶融等を起こして耐火材内部へ侵入することにより、耐火材の組成変化を起こし、耐熱性や強度が失われる、化学的損傷
等がある。
As a factor to damage the refractory material,
(1) Damage caused by heat, where the refractory material itself melts by operating under the heat resistance temperature of the refractory material or the refractory material receives a heat shock due to a rapid change in temperature conditions (2) rotary furnace etc. When it is used on the inner wall surface of the material, mechanical damage may occur due to cyclical application of mechanical stress, or the refractory material may be scraped off due to abrasion with the contacting material, mechanical damage (3) melting of the material When the material intrudes into the interior of the refractory material, it causes a change in the composition of the refractory material, resulting in loss of heat resistance and strength, and chemical damage.

これらの要因に対して耐火材を保護し、損傷を抑えるために、従来は、燃焼温度を低く抑えたり、比較的損傷を受けにくい高級耐火材を使用するという対策をとっていた。あるいは、一般耐火材を使用して、損傷したらその都度取り替えていた。   Conventionally, in order to protect the refractory material against these factors and to prevent damage, measures have been taken to lower the combustion temperature or use a high-grade refractory material that is relatively resistant to damage. Alternatively, a common refractory was used and replaced each time it was damaged.

ところが、燃焼温度を低く抑えると、処理速度が低下するだけでなく、燃焼ガスの臭気除去が困難になり、ガス処理を安全に行うためのコストが高くなる。また、損傷を受けにくい高級耐火材を使用しても、耐用年数には限度があり、費用が嵩む。さらに、一般耐火材を使用する場合、損傷する毎に頻繁に取り替えなければならず、費用や手間がかかるだけでなく、取り替える間は廃棄物の焼却処理が中断される等の不具合が生じる。   However, when the combustion temperature is kept low, not only the processing speed is lowered, but also the odor removal of the combustion gas becomes difficult, and the cost for safely performing the gas processing becomes high. Also, the use of high-grade refractory materials that are not easily damaged has limited service life and is expensive. Furthermore, when using a general refractory material, it must be replaced frequently every time it is damaged, which is not only expensive and time-consuming, but also causes problems such as interruption of waste incineration during replacement.

一方、特許文献1には、多孔質耐火材の表面をグラスライニングによりガラス膜で被覆する方法が開示されている。   On the other hand, Patent Document 1 discloses a method of covering the surface of a porous refractory material with a glass film with a glass lining.

特開2002−174419号公報JP, 2002-174419, A

しかしながら、特許文献1の方法も、被覆材の費用や被覆作業の手間を要し、さらに、被覆作業中は廃棄物の焼却処理が中断されるという問題がある。   However, the method of Patent Document 1 also requires the cost of the coating material and the labor of coating operation, and further, there is a problem that the waste incineration treatment is interrupted during the coating operation.

本発明は、固形の産業廃棄物を焼却処理する際、簡易且つ低コストで、しかも廃棄物の焼却処理を中断せずに、耐火材の損傷を抑制することを目的とする。   An object of the present invention is to suppress damage to a refractory material easily and at low cost and without interrupting the incineration of waste when incinerating solid industrial waste.

上記問題を解決するため、本発明は、固形の産業廃棄物を焼却処理する方法において、焼却処理前に、廃棄物に対して1質量%以上2質量%以下の消石灰またはそれと同量のカルシウムを含有するカルシウム含有物質を添加し、混合した後に焼却処理を行うことにより、焼却灰の溶融を防ぐことを特徴とする、固形産業廃棄物の焼却処理方法を提供する。
In order to solve the above problems, the present invention relates to a method of incinerating solid industrial waste, comprising 1% by mass or more and 2% by mass or less of slaked lime or equivalent calcium to the waste before incineration treatment. The present invention provides a method for incinerating solid industrial waste characterized in that melting of incineration ash is prevented by adding the calcium-containing substance to be contained and performing incineration treatment after mixing.

焼却処理後の焼却灰の、CaO(質量%)/SiO(質量%)で表される塩基度の平均値が0.40以上2.0以下であることが好ましい。前記産業廃棄物の酸化ケイ素含有量が10質量%以上でもよい。 Of ash after incineration, CaO (wt%) / mean value of the basicity represented by SiO 2 (mass%) is preferably 0.40 to 2.0. The content of silicon oxide in the industrial waste may be 10% by mass or more.

本発明によれば、簡易な方法且つ低コストで、廃棄物の焼却処理を中断することなく、耐火物の損傷を抑制することができる。   According to the present invention, damage to refractories can be suppressed by a simple method and at low cost without interrupting waste incineration treatment.

本発明の実施例にかかる廃棄物処理設備の構成を示す概略図である。It is the schematic which shows the structure of the waste disposal facility concerning the Example of this invention.

以下、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described.

従来、廃棄物の焼却処理を行う焼却炉であるロータリーキルンに内張りされた耐火材は、損傷により、通常7〜8ヶ月で補修を行う必要が生じていた。本発明者らは、その主な原因が、廃棄物の焼却灰の塩基度が平均約0.3と低いために、焼却灰の融点が低く、焼却灰が溶融することで、耐火材が構造スポーリングを起こすためであると考えた。   In the past, refractory materials lined in a rotary kiln, which is an incinerator that performs waste incineration treatment, usually needs to be repaired in 7 to 8 months due to damage. The present inventors mainly have a low melting point of incineration ash because the basicity of waste incineration ash is as low as about 0.3 on average, and the incineration ash is melted, whereby the refractory material has a structure I thought that it was to cause spalling.

そして、焼却処分する固形廃棄物中にカルシウム含有物質を添加し、焼却灰の塩基度を上げることで融点を高くすれば、耐火材内部への侵食を起こしにくくなることを見出した。そこで、本発明は、耐火材で内張りした焼却炉を用いて廃棄物を燃焼させる際、焼却前の廃棄物に対して1質量%以上の消石灰またはそれと同量のカルシウムを含有するカルシウム含有物質を添加することとした。   Then, it has been found that if the calcium-containing substance is added to the solid waste to be incinerated and the melting point is raised by raising the basicity of the incineration ash, the inside of the refractory material is less likely to be corroded. Therefore, when burning wastes using an incinerator lined with a refractory material, the present invention is a calcium-containing material containing 1 mass% or more of slaked lime or equivalent calcium to waste before incineration. It was decided to add.

廃棄物にカルシウム含有物質を添加して塩基度が上がれば、焼却灰の融点が上昇し、焼却灰が溶融しにくくなる。これにより、焼却灰溶融物の耐火材への浸透が抑制され、耐火材の構造スポーリングが起こりにくくなる。すなわち、耐火材の損傷を抑制し、寿命を延ばすことができる。十分な効果を得るためには、焼却灰の塩基度を平均0.4以上とすることが好ましい。なお、塩基度とは、焼却灰中のCaOとSiOとの質量%の比(CaO(質量%)/SiO(質量%))のことである。ただし、塩基度は2.0以下に抑えることが望ましい。塩基度が2.0を超えると、溶融温度の上昇により溶融エネルギー原単位が著しく増加し、炉内温度が想定以上に上昇して焼却灰が溶融した場合、流動性が極めて高くなり、浸透による耐火材の損傷が大きくなってしまうためである。 If the calcium-containing substance is added to the waste to raise the basicity, the melting point of the incineration ash will rise, and the incineration ash will be difficult to melt. Thereby, the penetration to the refractory material of incineration ash molten material is suppressed, and structural spalling of a refractory material becomes difficult to occur. That is, damage to the refractory can be suppressed and the life can be extended. In order to obtain a sufficient effect, it is preferable to make the basicity of incineration ash into 0.4 or more on average. The basicity is the ratio of mass% of CaO to SiO 2 in incinerated ash (CaO (mass%) / SiO 2 (mass%)). However, it is desirable to suppress the basicity to 2.0 or less. When the basicity exceeds 2.0, the melting energy unit increases remarkably due to the increase of the melting temperature, and when the temperature in the furnace rises more than expected and the incineration ash is melted, the fluidity becomes extremely high, and it is due to permeation It is because damage of a refractory material will become large.

焼却灰の塩基度(平均0.4以上)は、いわゆる傾向管理によりなされる。焼却灰は多数のものがあって、成分は必ずしも同様ではなく、焼却灰自体の塩基度は0.2〜1程度に大きく変化する。また、その処理は日々、大量に連続してなされるため、焼却灰の成分を常に監視することは生産的ではない。そこで、1日に一回程度でよいので、焼却灰の塩基度を測定し、その焼却灰について塩基度を調整するアルカリ量を設定し、その日の各処理予定の固形廃棄物への添加量とする。なお、焼却灰のサンプリング方法として、例えば、4時間ごとに1回、1日あたりで計6回のサンプリングを実施し、1日分計6点のサンプルを混合後に縮分する事で、当該日の代表サンプルとすることが出来る。これでも、この日の中では、塩基度が必ずしも0.4以上と常になるとは限らないが、日々この操作を繰り返すことで、長期間でみれば塩基度が0.4以上の傾向となる傾向管理の実施となり、耐火材の損耗を抑制できる。   The basicity (average 0.4 or more) of incinerated ash is made by so-called trend management. There are a large number of incineration ash, the components are not necessarily the same, and the basicity of the incineration ash itself changes largely to about 0.2-1. In addition, since the treatment is carried out continuously in large quantities daily, it is not productive to constantly monitor the components of the incineration ash. Therefore, the amount should be about once a day, so measure the basicity of the incineration ash, set the alkali amount to adjust the basicity of the incineration ash, and add the amount to the solid waste of each treatment scheduled for the day Do. In addition, as a sampling method of the incineration ash, for example, once every four hours, a total of six samplings per day are carried out, and a total of six samples per day are mixed and then fractionated after the mixing. Can be a representative sample of Even in this case, the basicity is not always 0.4 or more on this day, but by repeating this operation every day, the basicity tends to be 0.4 or more in the long run It becomes the implementation of management and can suppress the wear and tear of refractory materials.

カルシウム含有物質としては、消石灰や炭酸カルシウム、石膏の他、カルシウムが含有されているその他の粉体や泥状のものでもよい。また、これらを2種以上混合したものでも構わない。廃棄物内に均一に混合することにより溶融を防ぐという観点から、これらのカルシウム含有物質は、粒子状のものや溶液状、スラリー状であることが好ましい。例えば炭酸カルシウムの場合には、平均粒子径50μm以下であることが好ましい。   The calcium-containing substance may be calcium hydroxide, calcium carbonate, gypsum, or any other powder or mud-like substance containing calcium. Moreover, what mixed 2 or more types of these may be used. These calcium-containing substances are preferably in the form of particles, solutions, or slurries from the viewpoint of preventing melting by uniformly mixing them in the waste. For example, in the case of calcium carbonate, the average particle diameter is preferably 50 μm or less.

このようなカルシウム含有物質を、焼却処分する固形の産業廃棄物中に投入し、均一に攪拌した後、廃棄物を焼却炉で焼却することにより、発生する焼却灰の塩基度が上がり、焼却灰の融点が上昇する。そのため、耐火材内部に溶融(侵食)しにくくなり、耐火材の延命化につながる。   Such calcium-containing substances are introduced into solid industrial waste to be incinerated and uniformly stirred, and then the waste is incinerated in an incinerator, whereby the basicity of generated incineration ash is increased, and the incineration ash is incinerated. The melting point of Therefore, it becomes difficult to fuse | melt (erode) inside a refractory material, and it leads to prolongation of a refractory material.

本発明は、廃棄物の酸化ケイ素含有量が10質量%の場合に、殊に効果的である。さらに、焼却炉に内張りされている耐火材の耐熱温度が1000℃以上の場合に効果的である。   The invention is particularly effective when the silicon oxide content of the waste is 10% by weight. Furthermore, it is effective when the heat-resistant temperature of the refractory material lined in the incinerator is 1000 ° C. or higher.

このように、本発明は、固形の産業廃棄物を焼却処理する際、カルシウム含有物質を添加するという極めて簡易な方法により、耐火材の損傷を抑制することができる。これにより、耐火材の寿命を延ばし、交換サイクルを延ばすことができ、コストや手間を削減できる。しかも、耐火材に対して、表面を保護材で被覆処理する等の作業を行わないので、その作業による焼却処理中断の必要もない。したがって、焼却炉の停止に伴う温度低下によって起こる燃焼ガスの臭気やダイオキシンの発生機会を減らすことができる。   Thus, the present invention can suppress damage to a refractory material by a very simple method of adding a calcium-containing substance when incinerating solid industrial waste. As a result, the life of the refractory can be extended, the replacement cycle can be extended, and costs and labor can be reduced. In addition, since the refractory material is not subjected to an operation such as coating the surface with a protective material, there is no need to interrupt the incineration treatment by the operation. Therefore, it is possible to reduce the odor of combustion gas and the chance of the generation of dioxin caused by the temperature decrease accompanying the shutdown of the incinerator.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to such examples. It is apparent that those skilled in the art can conceive of various changes or modifications within the scope of the technical idea described in the claims, and the technical scope of the present invention is also natural for them. It is understood to belong to

廃棄物にカルシウム含有物質を添加した後に焼却する本発明の焼却処理方法と、カルシウム含有物質を添加せずに焼却する従来の焼却処理方法とを実施した際の、耐火材の肉厚の変化および焼却灰の塩基度を測定した。   Changes in thickness of refractory material when implementing the incineration method of the present invention incineration after adding a calcium-containing substance to waste and the conventional incineration method incinerating without adding a calcium-containing substance and The basicity of incinerated ash was measured.

図1は、廃棄物処理設備1の構成の概要であり、図中の矢印は、廃棄物の流れを示す。廃棄物はショベルカー2で運搬され、スキップコンベア3に投入された後、エプロンコンベア4、スライドゲート5を介して、焼却炉であるロータリーキルン6に投入される。ロータリーキルン6は、直径4.9m、長さ14mのものを使用した。   FIG. 1 is an outline of the configuration of the waste treatment facility 1, and arrows in the figure indicate the flow of waste. The waste is transported by the shovel car 2 and introduced into the skip conveyor 3 and then introduced into the rotary kiln 6 which is an incinerator via the apron conveyor 4 and the slide gate 5. The rotary kiln 6 had a diameter of 4.9 m and a length of 14 m.

2007年1月15日〜2007年7月10日の約6ヶ月間、廃棄物にカルシウム含有物質を添加せずに焼却炉を使用し、焼却炉に内張りされた耐火材(Al:89%、SiO:4%、Cr:5%)の肉厚の測定を行った。なお、耐火材の肉厚測定は、耐火材に直径80〜100mmの円筒形の穴を開け、穴部分の厚さを計測することで実施した。焼却処理は、廃棄物をロータリーキルン6に6〜10t/h投入し、ロータリーキルン6内において、900〜1100℃で約1時間焼却した。耐火材の肉厚測定結果は表1に示す通りであり、肉厚の減肉速度は平均24.9mm/月であった。 Refractory material (Al 2 O 3) : An incinerator is used without adding a calcium-containing substance to waste for about 6 months from January 15, 2007 to July 10, 2007 The thickness of 89%, SiO 2 : 4%, Cr 2 O 3 : 5%) was measured. In addition, the thickness measurement of the refractory material was implemented by making a 80- to 100-mm diameter cylindrical hole in the refractory material and measuring the thickness of the hole portion. In the incineration treatment, 6 to 10 t / h of the waste was put into the rotary kiln 6, and the rotary kiln 6 was incinerated at 900 to 1100 ° C. for about 1 hour. The thickness measurement results of the refractory material are as shown in Table 1, and the thickness reduction rate was 24.9 mm / month on average.

Figure 0006534251
Figure 0006534251

また、1週間に1回、蛍光X線分析を行い、得られたCa、Si濃度から換算してCaO、SiO濃度を算出し、焼却灰の塩基度を求めた。なお、蛍光X線分析は、アワーズテック株式会社製の蛍光X線分析装置「OURSTEX160」を使用して行い、本測定の前には予め標準物質による検量を実施した。焼却灰の塩基度は0.20〜0.49の範囲で推移し、約6ヶ月間の平均は0.33であった。 Further, fluorescent X-ray analysis was performed once a week, and the CaO and SiO 2 concentrations were calculated by converting them from the obtained Ca and Si concentrations, and the basicity of the incinerated ash was determined. The fluorescent X-ray analysis was performed using a fluorescent X-ray analyzer "OURSTEX 160" manufactured by ARSTEC Corporation, and calibration with a standard substance was performed in advance before this measurement. The basicity of the incinerated ash remained in the range of 0.20 to 0.49, and the average for about 6 months was 0.33.

次に、2012年10月19日〜2013年5月1日の約6.5ヶ月間、本発明の実施例として、廃棄物に消石灰を投入した後、焼却炉で焼却し、焼却炉に内張りされた耐火材(Al:83%、SiO:6%、Cr:10%)の肉厚の測定を行った。 Next, for about 6.5 months of October 19, 2012 to May 1, 2012, as the embodiment of the present invention, after slaked lime is put into waste, it is incinerated in an incinerator and the inner lining of the incinerator The thickness of the refractory material (Al 2 O 3 : 83%, SiO 2 : 6%, Cr 2 O 3 : 10%) was measured.

まず、焼却処分する固形の廃棄物144〜200tをピットにて作製後、消石灰を廃棄物に対して2質量%投入した。ピット内の廃棄物を自動ショベルですくい、廃棄物中の消石灰が均一になるように、ショベルカーで約1時間攪拌した。廃棄物は、湿量基準で水分量28.4〜64.7%のものを用い、pH7〜11に調整した。   First, after preparing solid waste 144 to 200 t to be incinerated in a pit, 2 mass% of slaked lime was added to the waste. The waste in the pit was scooped with an automatic shovel, and stirred with a shovel for about 1 hour so that slaked lime in the waste became uniform. The waste was adjusted to pH 7 to 11 using a moisture content of 28.4 to 64.7% on a wet basis.

消石灰を添加した廃棄物を、ショベルカー2で廃棄物処理設備1まで運搬し、図1に示すスキップコンベア3、エプロンコンベア4、スライドゲート5を介して、ロータリーキルン6に6〜10t/h投入した。そして、ロータリーキルン6内において、900〜1100℃で約1時間焼却処理を行った。   The waste material to which slaked lime was added was transported to the waste treatment facility 1 by the shovel car 2 and was introduced to the rotary kiln 6 at 6 to 10 t / h via the skip conveyor 3, the apron conveyor 4 and the slide gate 5 shown in FIG. . And in the rotary kiln 6, incineration processing was performed at 900-1100 degreeC for about 1 hour.

耐火材の肉厚測定結果は表2に示す通りであり、肉厚の減肉速度は平均11.3mm/月となった。   The thickness measurement results of the refractory material are as shown in Table 2, and the thickness reduction rate was 11.3 mm / month on average.

Figure 0006534251
Figure 0006534251

また、1日に1回、蛍光X線分析を行い、焼却灰の塩基度を求めた。焼却灰の塩基度は0.27〜0.72の範囲で推移し、約6.5ヶ月間の平均は0.48であった。   In addition, fluorescent X-ray analysis was performed once a day to determine the basicity of incinerated ash. The basicity of incinerated ash remained in the range of 0.27 to 0.72, and the average for about 6.5 months was 0.48.

本発明を適用することにより、塩基度の平均値が高くなるとともに、耐火材の減肉速度が大幅に低下した。すなわち、従来に比べて耐火材の寿命が長くなり、補修または取り替えのサイクルを2倍以上延ばすことができるようになった。   By applying the present invention, the average value of basicity is increased, and the thickness reduction rate of the refractory material is significantly reduced. That is, the life of the refractory material is longer than before, and the repair or replacement cycle can be extended more than twice.

本発明は、廃棄物の焼却炉の耐火材の劣化を低減する方法として適用できる。   The present invention can be applied as a method for reducing the deterioration of refractory materials of waste incinerators.

1 廃棄物処理設備
2 ショベルカー
3 スキップコンベア
4 エプロンコンベア
5 スライドゲート
6 ロータリーキルン
1 Waste Disposal Equipment 2 Excavator 3 Skip Conveyor 4 Apron Conveyor 5 Slide Gate 6 Rotary Kiln

Claims (3)

固形の産業廃棄物を焼却処理する方法において、
焼却処理前に、廃棄物に対して1質量%以上2質量%以下の消石灰またはそれと同量のカルシウムを含有するカルシウム含有物質を添加し、混合した後に焼却処理を行うことにより、焼却灰の溶融を防ぐことを特徴とする、固形産業廃棄物の焼却処理方法。
In the method of incinerating solid industrial waste,
Before incineration treatment, calcium-containing material containing 1% by mass or more and 2% by mass or less of calcium hydroxide or calcium content with respect to the waste is added, mixed and incinerated to melt the incineration ash A method of incinerating solid industrial waste characterized in that
焼却処理後の焼却灰の、CaO(質量%)/SiO(質量%)で表される塩基度の平均値が0.40以上2.0以下であることを特徴とする、請求項1に記載の固形産業廃棄物の焼却処理方法。 The average value of the basicity represented by CaO (mass%) / SiO 2 (mass%) of the incinerated ash after incineration treatment is characterized by being 0.40 or more and 2.0 or less. The incineration processing method of the solid industrial waste as described. 前記産業廃棄物の酸化ケイ素含有量が10質量%以上であることを特徴とする、請求項1または2に記載の固形産業廃棄物の焼却処理方法。
The method for incinerating solid industrial waste according to claim 1 or 2, wherein the silicon oxide content of the industrial waste is 10% by mass or more.
JP2014198981A 2014-09-29 2014-09-29 Incineration method of solid industrial waste Active JP6534251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014198981A JP6534251B2 (en) 2014-09-29 2014-09-29 Incineration method of solid industrial waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014198981A JP6534251B2 (en) 2014-09-29 2014-09-29 Incineration method of solid industrial waste

Publications (2)

Publication Number Publication Date
JP2016070569A JP2016070569A (en) 2016-05-09
JP6534251B2 true JP6534251B2 (en) 2019-06-26

Family

ID=55864393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014198981A Active JP6534251B2 (en) 2014-09-29 2014-09-29 Incineration method of solid industrial waste

Country Status (1)

Country Link
JP (1) JP6534251B2 (en)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202292A (en) * 1983-04-30 1984-11-16 Osaka Gas Co Ltd Preparation of producer gas
US5005493A (en) * 1989-11-08 1991-04-09 American Combustion, Inc. Hazardous waste multi-sectional rotary kiln incinerator
JPH04278110A (en) * 1991-03-01 1992-10-02 Seiji Momoi Disposal of waste by melting
JPH04278111A (en) * 1991-03-05 1992-10-02 Nobuaki Debari Incinerator
JPH0788456A (en) * 1993-09-20 1995-04-04 Hitachi Zosen Corp Melting treatment of incineration ash in waste refuse incinerator
JP3829244B2 (en) * 1997-07-23 2006-10-04 宇部興産株式会社 Waste gasification method
JPH11248141A (en) * 1998-02-27 1999-09-14 Babcock Hitachi Kk Method for treating burnt exhaust gas
JP3918280B2 (en) * 1998-03-02 2007-05-23 石川島播磨重工業株式会社 Operation method of ash melting furnace
JP3620965B2 (en) * 1998-06-02 2005-02-16 株式会社クボタ Phosphorus immobilization method
JP3339420B2 (en) * 1998-09-24 2002-10-28 住友金属工業株式会社 Gasification and melting furnace for waste and gasification and melting method
JP2000210649A (en) * 1999-01-27 2000-08-02 Meidensha Corp Heat treatment of material to be treated and heat- treating device
JP2001065831A (en) * 1999-08-24 2001-03-16 Meidensha Corp Method for heat treating matter to be treated
JP2001099572A (en) * 1999-09-29 2001-04-13 Mitsubishi Materials Corp Waste disposing device
JP2002174419A (en) * 2000-09-27 2002-06-21 Hakko Tsusho Kk Method for protecting furnace wall of combustion furnace, and combustion furnace provided with furnace wall undergoing protection processing with the method
JP2002174416A (en) * 2000-12-07 2002-06-21 Taiheiyo Cement Corp Adjusting method for chemical components of incinerated residue of combustible substance
JP3697479B2 (en) * 2001-11-27 2005-09-21 Jfeエンジニアリング株式会社 Method for producing incinerated ash with stabilized lead
JP2004077037A (en) * 2002-08-20 2004-03-11 Kobe Steel Ltd Melting treatment method for incineration residue and its device
JP3960275B2 (en) * 2003-08-11 2007-08-15 株式会社協和エクシオ Operation method of ash melting furnace
JP4124103B2 (en) * 2003-11-14 2008-07-23 株式会社Ihi Waste incineration method and incinerator
JP4281620B2 (en) * 2004-05-26 2009-06-17 株式会社Ihi Pumping device, pumping method and incinerator
JP2006343073A (en) * 2005-06-10 2006-12-21 Jfe Engineering Kk Waste melting treatment method
JP4954646B2 (en) * 2006-09-07 2012-06-20 株式会社神鋼環境ソリューション Incineration ash melting equipment
JP4871329B2 (en) * 2008-07-04 2012-02-08 株式会社神鋼環境ソリューション Method for predicting ash adhesion to sewage sludge incinerator and sewage sludge incineration method using the method
JP5416752B2 (en) * 2011-11-08 2014-02-12 株式会社神鋼環境ソリューション Incineration ash melting method and waste melting equipment

Also Published As

Publication number Publication date
JP2016070569A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP4871329B2 (en) Method for predicting ash adhesion to sewage sludge incinerator and sewage sludge incineration method using the method
CN111023101B (en) Method for establishing kiln skin of hazardous waste incineration rotary kiln
CN107101498B (en) The method for reducing the coking of dangerous waste incinerator rotary kiln
Mikša et al. Spent potlining utilisation possibilities
JP6534251B2 (en) Incineration method of solid industrial waste
JP2007145701A (en) Monolithic refractory, refractory and oven
JPS591983A (en) Method of diagnosing inside of rotary kiln
JP2020032343A (en) Method for suppressing elution of boron in boron-including material, and method for production of treatment material for boron elution suppression
JP3496690B2 (en) Melting furnace and its zirconia refractories
JP2006232653A (en) Refractory brick and waste material melting furnace
CN108645205A (en) A method of preventing cylinder of rotary kiln and is corroded by harmful element
JP6793869B1 (en) Waste melting treatment method, waste melting slag powder and its manufacturing method
JP3375758B2 (en) Furnace for melting waste
JP2010254577A (en) Cement clinker, method of manufacturing the same, hydraulic material using the same, and clinker cooler
JP2010235334A (en) Method for making mercury soluble in water
JP3278760B2 (en) ZrO2-based molten cast refractories for melting furnaces such as incineration ash and method for producing the same
JP2007145622A (en) Spinel-magnesia brick
JP6718323B2 (en) Refractory manufacturing method that reuses used refractories
KARAYANNIS Extruded and sintered clay ceramics containing steel-making dust
JP2022053646A (en) Extending method for unshaped refractory
JP4838184B2 (en) Refractory for furnace inner wall, manufacturing method thereof, and waste treatment apparatus
JP4677915B2 (en) Refractory and melting furnace made of this refractory
JP2001041659A (en) Coating method for refractory wall in rotary melting furnace
JP6302626B2 (en) Refractory mortar
JPH07256229A (en) Waste-melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190528

R150 Certificate of patent or registration of utility model

Ref document number: 6534251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250