JPH11248134A - Method for operating ash melting furnace - Google Patents

Method for operating ash melting furnace

Info

Publication number
JPH11248134A
JPH11248134A JP10049372A JP4937298A JPH11248134A JP H11248134 A JPH11248134 A JP H11248134A JP 10049372 A JP10049372 A JP 10049372A JP 4937298 A JP4937298 A JP 4937298A JP H11248134 A JPH11248134 A JP H11248134A
Authority
JP
Japan
Prior art keywords
ash
furnace
layer
molten
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10049372A
Other languages
Japanese (ja)
Other versions
JP3918280B2 (en
Inventor
Junya Nishino
順也 西野
Katsuaki Matsuzawa
克明 松澤
Kenichi Tawara
賢一 田原
Jujiro Umeda
十次郎 梅田
Naoto Yoshinari
直人 吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP04937298A priority Critical patent/JP3918280B2/en
Publication of JPH11248134A publication Critical patent/JPH11248134A/en
Application granted granted Critical
Publication of JP3918280B2 publication Critical patent/JP3918280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lengthen a lifetime by preventing a corrosion of a wall of an ash melting furnace. SOLUTION: The method for operating a DC electric resistance type ash melting furnace 1 for melting an ash by an electric resistance heat, by supplying a current between a furnace bottom electrode 2 provided at a furnace bottom and an upper electrode 3 inserted from a furnace cover, comprises the steps of regulating a basisity of the ash 7 supplied to the furnace 1 to a range of 0.9 to 1.1; sequentially forming from below to above a molten metal layer 9, a molten slag layer 10, a molten transfer layer 11 in which the molten slag and solid ash coexist, and an ash solid layer 12 in the furnace 11; and controlling current and voltage values, so that a current density per sectional area of the furnace becomes 0.1 to 5 A/cm<2> and a power consumption amount per weight of the ash to be treated is 500 to 1,000 kwH/t.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、食塩などのアルカ
リ塩を多く含む飛灰を、溶融炉処理する灰溶融炉に係
り、特に灰溶融中に飛灰中に含まれるアルカリ塩を積極
的に電気分解し、アルカリ塩による炉壁の耐火材の劣化
を軽減することのできる、灰溶融炉の運転方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ash melting furnace for processing a fly ash containing a large amount of an alkali salt such as salt in a melting furnace, and more particularly, to actively reducing an alkali salt contained in the fly ash during ash melting. The present invention relates to a method of operating an ash melting furnace, which can be electrolyzed and can reduce deterioration of a refractory material of a furnace wall due to an alkali salt.

【0002】[0002]

【従来の技術】都市ごみ、下水汚泥等の各種廃棄物は、
焼却施設で焼却処理され、生じた焼却灰やばいじんは、
従来埋め立て処分されていた。しかし、埋め立て処分地
枯渇の問題や有害金属類の溶出による地下水汚染の問題
があるため溶融による減量・減溶融化と無害化の必要性
が高まってきている。
2. Description of the Related Art Various wastes such as municipal waste and sewage sludge are
Incineration ash and dust generated by incineration in the incineration facility
Previously, it was landfilled. However, due to the problem of depletion of landfill sites and the problem of groundwater contamination due to elution of harmful metals, the necessity of weight reduction / melting by melting and detoxification is increasing.

【0003】このような背景で灰中の残留炭素、コーク
ス、灯油、電力を熱源とした溶融処理方式が提案され、
一部で実処理が行われている。このうち、電力を熱源と
した溶融炉としてプラズマアーク加熱方式や抵抗加熱方
式などがある。
[0003] Under such a background, a melting treatment method using a residual carbon in ash, coke, kerosene, and electric power as a heat source has been proposed.
Actual processing is performed in part. Among them, there are a plasma arc heating method and a resistance heating method as a melting furnace using electric power as a heat source.

【0004】抵抗加熱方式の灰溶融炉は溶融スラグ内に
対抗電極を配置し、直流または交流通電による電気抵抗
熱(ジュール熱)により灰を加熱溶融するものであり、
1)熱効率が高い、2)発生ガスが少ない、3)アーク
を生成しないためフリッカが発生しない、4)溶融スラ
グと溶融メタルとを分離した分割出滓ができる、という
特徴がある。
The resistance heating type ash melting furnace has a counter electrode disposed in a melting slag and heats and melts the ash by electric resistance heat (Joule heat) caused by direct current or alternating current.
It is characterized by 1) high thermal efficiency, 2) little generated gas, 3) no flicker due to no arc generation, and 4) separate slag that separates molten slag and molten metal.

【0005】かかる抵抗加熱方式の灰溶融処理方法とし
て特開平7−77318号に開示されたものがある。図
2は上記公報に開示されたもので灰溶融炉の断面および
前後設備のフローシートを示している。図において、a
は灰溶融炉、bは上部電極、cは炉底電極、dは電源装
置、eは溶融メタル層、fは溶融スラグ層、gは溶融塩
層、hはCOガス燃焼炉、iは集塵機、jは集塵ファ
ン、kは煙突、mは電極埋没位置調節器である。上記発
明の特徴は、ごみ焼却施設より発生する焼却灰、ばいじ
んあるいは二者の混合物からなる廃棄物を電気抵抗熱を
熱源として溶融処理する方法であって、上部電極bの先
端位置を溶融塩層gと溶融メタル層eの間の溶融スラグ
層f中に位置せしめ炉底電極cの間に、直流通電もしく
は交流2相通電により垂直方向に通電することにより溶
融塩を電気分解することなく、溶融スラグ層fの上方に
溶融塩層gを安定的に形成し、有害な塩素ガス、塩化水
素ガス等の発生を防止しようとするものである。
An example of such a resistance heating ash melting method is disclosed in JP-A-7-77318. FIG. 2 shows a cross section of the ash melting furnace and a flow sheet of the front and rear facilities disclosed in the above publication. In the figure, a
Is an ash melting furnace, b is a top electrode, c is a furnace bottom electrode, d is a power supply device, e is a molten metal layer, f is a molten slag layer, g is a molten salt layer, h is a CO gas combustion furnace, i is a dust collector, j is a dust collecting fan, k is a chimney, and m is an electrode burying position adjuster. The feature of the invention is a method of melting and processing incineration ash generated from a refuse incineration plant, soot and dust, or a mixture of the two, using electric resistance heat as a heat source. g in the molten slag layer f between the molten metal layer e and the molten salt is melted without electrolysis by flowing electricity between the furnace bottom electrode c in the vertical direction by direct current or two-phase current. The purpose is to stably form a molten salt layer g above the slag layer f to prevent generation of harmful chlorine gas, hydrogen chloride gas and the like.

【0006】しかし、上述のように灰溶融炉a内に溶融
塩層gを形成させるような操業をすると、溶融塩は炉壁
材を侵触する性質が極めて強いので、侵触を防ぐため高
価な炉壁材料を使う必要がある。また、電気の伝導性の
よい溶融塩が炉壁中に浸透するので、短絡事故を起こし
やすい。そこで本願出願人は、鋭意研究の結果、炉底の
陰極と炉蓋から挿入された陽極との間で通電して、電気
抵抗熱により灰を溶融する際に、食塩(NaCl)など
のアルカリ塩を積極的に電気分解する操業方法を採用す
ることにした。かかる操業方法によれば、例えば食塩
は、塩素ガスと金属ナトリウムに電気分解する。塩素ガ
スは、水蒸気と反応して塩化水素と次亜塩素酸になる
が、次亜塩素酸は酸素を放出して塩化水素になる。ま
た、金属ナトリウムは、蒸発し酸化雰囲気中で酸化ナト
リウムとなる。そして、これらの物質は排ガス中に含ま
れて外部に放出される。なお、金属ナトリウムは一部溶
融メタル層e中に残る。
However, when an operation is performed to form a molten salt layer g in the ash melting furnace a as described above, the molten salt has a very strong property of invading the furnace wall material. You need to use wall material. Further, since the molten salt having good electric conductivity penetrates into the furnace wall, a short circuit accident is likely to occur. Therefore, as a result of earnest research, the applicant of the present application has found that when electricity is supplied between the cathode at the bottom of the furnace and the anode inserted from the furnace lid to melt the ash by electric resistance heat, an alkaline salt such as sodium chloride (NaCl) is used. Decided to adopt an operation method that actively electrolyzes. According to this operation method, for example, salt is electrolyzed into chlorine gas and metallic sodium. Chlorine gas reacts with water vapor to form hydrogen chloride and hypochlorous acid, but hypochlorous acid releases oxygen to form hydrogen chloride. Also, the metallic sodium evaporates and becomes sodium oxide in an oxidizing atmosphere. These substances are contained in the exhaust gas and released to the outside. Note that the metallic sodium partially remains in the molten metal layer e.

【0007】[0007]

【発明が解決しようとする課題】本願の発明者等は、直
流電気抵抗式灰溶融炉のパイロットプラントを用いて、
種々の条件で運転したところ運転条件によって、アルカ
リ塩の電気分解が活発に行われる場合とほとんど行われ
ない場合があることがわかった。実験による知見によれ
ば、灰自身の融点を1250℃以下におさえることと、
炉内に温度傾斜をつけて、溶融スラグ層の上部に灰固体
層を維持し、溶融スラグ層と灰固体層の間に固体の灰と
溶融スラグが共存する溶融遷移層を存在させることが重
要であることがわかった。
SUMMARY OF THE INVENTION The inventors of the present application have used a pilot plant of a DC electric resistance type ash melting furnace,
When operated under various conditions, it was found that, depending on the operating conditions, the electrolysis of the alkali salt was sometimes actively performed or was hardly performed. According to experimental findings, the melting point of the ash itself must be kept below 1250 ° C,
It is important to maintain a ash solid layer above the molten slag layer with a temperature gradient in the furnace and to have a molten transition layer where solid ash and molten slag coexist between the molten slag layer and the ash solid layer It turned out to be.

【0008】本発明は、以上述べた問題点および知見に
鑑み案出されたもので、直流電気抵抗式の灰溶融炉にお
いて、食塩等のアルカリ塩の電気分解が活発に行われる
灰溶融炉の運転方法を提供することを目的とする。
The present invention has been devised in view of the above-mentioned problems and findings, and is directed to a direct current resistance type ash melting furnace in which electrolysis of alkali salts such as salt is actively performed. It is intended to provide a driving method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明の灰溶融炉の運転方法は、炉底に設けた炉底電極
と炉蓋から挿入した上部電極との間で通電して電気抵抗
熟により灰を溶融する直流電気抵抗式灰溶融炉の運転方
法であって、上記灰溶融炉に供給する灰の塩基度を0.
9〜1.1の範囲に調節するとともに、上記灰溶融炉内
に下から上に向って順に、溶融メタル層、溶融スラグ
層、溶融スラグと固体の灰が共存する溶融遷移層、灰固
体層を形成し、炉の断面積当りの電流密度が0.1〜5
A/cm2、処理する灰の重量当りの電力消費量が50
0〜1000KwH/tになるように電流・電圧値を制
御するものである。なお、塩基度とは灰中の酸化カルシ
ウム(Ca O)と2酸化ケイ素(SiO2 )との重量比
(CaO/SiO2 )を云う。
In order to achieve the above object, a method for operating an ash melting furnace according to the present invention is characterized in that electricity is supplied between a furnace bottom electrode provided on a furnace bottom and an upper electrode inserted from a furnace lid. A method of operating a DC electric resistance type ash melting furnace for melting ash by resistance ripening, wherein the basicity of ash supplied to the ash melting furnace is set to 0.1.
The molten metal layer, the molten slag layer, the molten transition layer in which the molten slag coexists with the solid ash, and the ash solid layer are sequentially adjusted from the bottom to the top in the ash melting furnace while adjusting to the range of 9 to 1.1. And the current density per cross section of the furnace is 0.1 to 5
A / cm 2 , power consumption per weight of ash to be treated is 50
The current / voltage value is controlled so as to be 0 to 1000 KwH / t. The basicity refers to the weight ratio (CaO / SiO 2 ) between calcium oxide (CaO) and silicon dioxide (SiO 2 ) in the ash.

【0010】上記電流密度を0.7〜1.3A/cm
2 ,電力消費量を700〜800KwH/tとするのが
最も好ましい。
[0010] The current density is 0.7 to 1.3 A / cm.
2. Most preferably, the power consumption is 700 to 800 KwH / t.

【0011】次に本発明の作用を説明する。先ず、灰溶
融炉に投入する灰の塩基度を調節する。灰が飛灰である
場合は、塩基度は1.3〜1.5なので2酸化ケイ素
(ケイ砂)を添加することにより塩基度を0.9〜1.
1の範囲にする。塩基度の調節は、例えば特願平8−1
42632号に開示されているように、蛍光X線分析装
置などの塩基度測定装置により塩基度を連続的に測定
し、ケイ砂または石灰の投入量を調節することにより行
う。塩基度を0.9〜1.1にしたのは、このときに灰
の融点が最も低く1100℃程度になるからである。
(石川島播磨技報 1997 Vol.37 No. 3 P2
15〜220)。
Next, the operation of the present invention will be described. First, the basicity of the ash supplied to the ash melting furnace is adjusted. When the ash is fly ash, the basicity is 1.3 to 1.5, and the basicity is 0.9 to 1. 1 by adding silicon dioxide (silica sand).
Set to the range of 1. Adjustment of the basicity is described in, for example, Japanese Patent Application No. 8-1.
As disclosed in Japanese Patent No. 42632, the measurement is performed by continuously measuring the basicity with a basicity measuring device such as a fluorescent X-ray analyzer and adjusting the amount of silica sand or lime. The reason for setting the basicity to 0.9 to 1.1 is that at this time, the melting point of the ash becomes the lowest and becomes about 1100 ° C.
(Ishikawajima-Harima Technical Report 1997 Vol.37 No.3 P2
15-220).

【0012】炉内では下から上に向って順にメタル層、
溶融スラグ層、溶融スラグと固体の灰が共存する溶融遷
移層、灰固体層を形成する。このとき溶融スラグ層、溶
融遷移層、灰固体層の順に温度が低下するような温度傾
斜をつけた運転とする。溶融スラグ層の温度は、110
0〜1250℃とする。溶融遷移層の温度は灰の融点の
温度に保たれている。
In the furnace, metal layers are arranged in order from bottom to top,
A molten slag layer, a molten transition layer in which molten slag and solid ash coexist, and an ash solid layer are formed. At this time, the operation is performed with a temperature gradient such that the temperature decreases in the order of the molten slag layer, the molten transition layer, and the ash solid layer. The temperature of the molten slag layer is 110
0 to 1250 ° C. The temperature of the molten transition layer is maintained at the temperature of the melting point of the ash.

【0013】上記温度を達成するため、炉の断面積当り
の電流密度は0.1〜5A/cm2、好ましくは0.7
〜1.3A/cm2 とし、灰の重量当りの電力消費量は
500〜1000KwH/t、好ましくは700〜80
0KwH/tとなるように電流・電圧値を制御する。
In order to achieve the above temperature, the current density per sectional area of the furnace is 0.1 to 5 A / cm 2 , preferably 0.7
The power consumption per weight of ash is 500 to 1000 KwH / t, preferably 700 to 80 A / cm 2.
The current and voltage values are controlled so as to be 0 KwH / t.

【0014】[0014]

【発明の実施の形態】以下、本発明の1実施形態につい
て図面を参照しつつ説明する。図1は本発明の実施に使
用する直流電気抵抗式灰溶融炉の断面図である。図にお
いて、1は灰溶融炉である。2は炉底1aに設けられた
炉底電極であり、3は炉蓋1bから挿入した上部電極で
ある。炉底電極2と上部電極3は、それぞれ電源4の陰
極と陽極とに接続されて直流通電されている。5は灰入
口で焼却灰や飛灰7が供給される。灰7は塩基度が0.
9〜1.1の範囲に調節されている。塩基度の調節は、
例えば特願平8−142632号に開示されているよう
に、灰供給機の前にケイ砂投入ホッパ、石灰投入ホッパ
を設け、灰供給機の出口に蛍光X線分析装置などの塩基
度測定装置を取り付けて塩基度を連続的に計測し、ケイ
砂または石灰の投入量を調節することにより行えばよ
い。なお、6はガス排出口、8は排ガスである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a DC electric resistance type ash melting furnace used in the embodiment of the present invention. In the figure, 1 is an ash melting furnace. Reference numeral 2 denotes a furnace bottom electrode provided on the furnace bottom 1a, and reference numeral 3 denotes an upper electrode inserted from the furnace lid 1b. The furnace bottom electrode 2 and the upper electrode 3 are connected to a cathode and an anode of a power supply 4, respectively, and are energized with direct current. Reference numeral 5 denotes an ash inlet to which incineration ash and fly ash 7 are supplied. Ash 7 has a basicity of 0.
It is adjusted in the range of 9 to 1.1. Adjustment of basicity
For example, as disclosed in Japanese Patent Application No. 8-142632, a silica sand input hopper and a lime input hopper are provided in front of an ash feeder, and a basicity measuring device such as a fluorescent X-ray analyzer is provided at an outlet of the ash feeder. The measurement may be performed by continuously measuring the basicity by attaching a filter and adjusting the input amount of silica sand or lime. In addition, 6 is a gas outlet, and 8 is an exhaust gas.

【0015】灰溶融炉1内には、下から上に向って順
に、溶融メタル層9、溶融スラグ層10、溶融スラグと
固体の灰が共存する溶融遷移層11、灰固体層12が形
成されている。溶融スラグ層10の温度は1100〜1
250℃に保たれている。
In the ash melting furnace 1, a molten metal layer 9, a molten slag layer 10, a molten transition layer 11 in which molten slag and solid ash coexist, and an ash solid layer 12 are formed in this order from bottom to top. ing. The temperature of the molten slag layer 10 is 1100-1.
It is kept at 250 ° C.

【0016】上記温度を達成するため、炉の断面積当り
の電流密度は0.1〜5A/cm2、好ましくは0.7
〜1.3A/cm2 とし、灰の重量当りの電力消費量は
500〜1000KwH/t、好ましくは700〜80
0KwH/tになるように電源4の電流・電圧値を制御
する。なお、13はスラグ排出口、14はメタル排出
口、15は排出される溶融スラグ、16は排出される溶
融メタルである。溶融メタル16は、溶融メタル層9の
厚さが厚くなりすぎたとき溶融スラグ15を排出した
後、アークを発生させて溶融メタル層9を溶かして排出
される。
In order to achieve the above temperature, the current density per sectional area of the furnace is 0.1 to 5 A / cm 2 , preferably 0.7
The power consumption per weight of ash is 500 to 1000 KwH / t, preferably 700 to 80 A / cm 2.
The current / voltage value of the power supply 4 is controlled so as to be 0 KwH / t. In addition, 13 is a slag discharge port, 14 is a metal discharge port, 15 is a molten slag to be discharged, and 16 is a molten metal to be discharged. The molten metal 16 is discharged after discharging the molten slag 15 when the thickness of the molten metal layer 9 becomes too thick, and then generating an arc to melt the molten metal layer 9.

【0017】次に本実施形態の作用を説明する。溶融ス
ラグ層10および溶融遷移層11内で活発に電気分解が
行われるためには、ナトリウムイオンなどの陽イオンお
よび塩素イオンなどの陰イオンが活発に移動することに
よる通電であることが必要である。溶融スラグの温度が
1250℃以下であればこのような通電であるのに対
し、1250℃を越える温度では、溶融スラグ内を電子
が移動することによる通電が主になるため、電気分解が
活発に行われなくなる。本発明では、塩基度を1前後に
調節して灰7の融点を下げるとともに、電流密度を低く
することにより、発熱量を少くして溶融スラグ層9内の
温度を1250℃以下に保つようにしたものである。ま
た、溶融遷移層11内の温度は灰の融点に保たれてお
り、この部分で最も活発に電気分解が行われる。
Next, the operation of the present embodiment will be described. In order for electrolysis to be actively performed in the molten slag layer 10 and the molten transition layer 11, it is necessary to conduct electricity by positively moving cations such as sodium ions and anions such as chlorine ions. . When the temperature of the molten slag is 1250 ° C. or lower, such an energization is performed. On the other hand, when the temperature exceeds 1250 ° C., the electrolysis mainly occurs due to the movement of electrons in the molten slag. Will not be done. In the present invention, the basicity is adjusted to about 1 to lower the melting point of the ash 7 and lower the current density, so that the calorific value is reduced and the temperature in the molten slag layer 9 is maintained at 1250 ° C. or less. It was done. Further, the temperature in the molten transition layer 11 is maintained at the melting point of the ash, and electrolysis is most actively performed in this portion.

【0018】本発明は、以上述べた実施形態に限定され
るものではなく、発明の要旨を逸脱しない範囲で種々の
変更が可能である。
The present invention is not limited to the embodiment described above, and various changes can be made without departing from the gist of the invention.

【0019】以上説明したように、本発明の灰溶融炉の
運転方法は、灰溶融炉に供給する灰の塩基度を1前後に
するとともに電流密度を低く押えることにより、溶融ス
ラグ層の温度を1250℃以下に保つようにしたので、
飛灰中に含まれるアルカリ塩の電気分解が活発に行わ
れ、アルカリ塩による炉壁材の侵触が少く、長寿命を保
つことができるなどの優れた効果を有する。
As described above, the method for operating the ash melting furnace of the present invention reduces the temperature of the molten slag layer by setting the basicity of the ash supplied to the ash melting furnace to around 1 and keeping the current density low. Since it was kept at 1250 ° C or less,
The electrolysis of the alkali salt contained in the fly ash is actively performed, and there is an excellent effect that the furnace wall material is hardly invaded by the alkali salt and a long life can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施のための灰溶融炉の断面図であ
る。
FIG. 1 is a sectional view of an ash melting furnace for carrying out the present invention.

【図2】従来例として示される灰溶融炉の断面図であるFIG. 2 is a sectional view of an ash melting furnace shown as a conventional example.

【符号の説明】[Explanation of symbols]

1 灰溶融炉 2 炉底電極 3 上部電極 4 電源 9 メタル層 10 溶融スラグ層 11 溶融遷移層 12 灰固体層 DESCRIPTION OF SYMBOLS 1 Ash melting furnace 2 Furnace bottom electrode 3 Upper electrode 4 Power supply 9 Metal layer 10 Molten slag layer 11 Melt transition layer 12 Ash solid layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅田 十次郎 東京都江東区豊洲二丁目1番1号 石川島 播磨重工業株式会社東京第一工場内 (72)発明者 吉成 直人 東京都江東区豊洲二丁目1番1号 石川島 播磨重工業株式会社東京第一工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiro Umeda 2-1-1 Toyosu, Koto-ku, Tokyo Ishikawajima-Harima Heavy Industries Co., Ltd. Tokyo 1st Plant (72) Inventor Naoto Yoshinari 2-chome, Toyosu, Koto-ku, Tokyo No. 1 Ishikawajima Harima Heavy Industries Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炉底に設けた炉底電極と炉蓋から挿入し
た上部電極との間で通電して電気抵抗熱により灰を溶融
する直流電気抵抗式灰溶融炉の運転方法であって、上記
灰溶融炉に供給する灰の塩基度を0.9〜1.1の範囲
に調節するとともに、上記灰溶融炉内に下から上に向っ
て順に、溶融メタル層、溶融スラグ層、溶融スラグと固
体の灰が共存する溶融遷移層、灰固体層を形成し、炉の
断面積当りの電流密度が0.1〜5A/cm2 、処理す
る灰の重量当りの電力消費量が500〜1000KwH
/tになるように電流・電圧値を制御することを特徴と
する灰溶融炉の運転方法。
1. A method of operating a DC electric resistance type ash melting furnace in which electricity is supplied between a furnace bottom electrode provided on a furnace bottom and an upper electrode inserted from a furnace lid to melt ash by electric resistance heat, The basicity of the ash supplied to the ash melting furnace is adjusted to the range of 0.9 to 1.1, and the molten metal layer, the molten slag layer, and the molten slag are sequentially arranged in the ash melting furnace from bottom to top. And a solid ash coexist with the molten transition layer and the ash solid layer, the current density per cross section of the furnace is 0.1-5 A / cm 2 , and the power consumption per ash weight to be treated is 500-1000 KwH.
A method for operating an ash melting furnace, characterized in that current / voltage values are controlled so as to be / t.
【請求項2】 電流密度が0.7〜1.3A/cm2
電力消費量が700〜800KwH/tである請求項1
記載の灰溶融炉の運転方法。
2. A current density of 0.7 to 1.3 A / cm 2 ,
2. The power consumption is 700 to 800 KwH / t.
An operating method of the ash melting furnace described in the above.
JP04937298A 1998-03-02 1998-03-02 Operation method of ash melting furnace Expired - Fee Related JP3918280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04937298A JP3918280B2 (en) 1998-03-02 1998-03-02 Operation method of ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04937298A JP3918280B2 (en) 1998-03-02 1998-03-02 Operation method of ash melting furnace

Publications (2)

Publication Number Publication Date
JPH11248134A true JPH11248134A (en) 1999-09-14
JP3918280B2 JP3918280B2 (en) 2007-05-23

Family

ID=12829212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04937298A Expired - Fee Related JP3918280B2 (en) 1998-03-02 1998-03-02 Operation method of ash melting furnace

Country Status (1)

Country Link
JP (1) JP3918280B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1147827A1 (en) * 2000-04-21 2001-10-24 Giovacchino Montagnani Process for neutralising harmful powders and plant that carries out this method
JP2016070569A (en) * 2014-09-29 2016-05-09 Dowaエコシステム株式会社 Incineration treatment method for solid industrial waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1147827A1 (en) * 2000-04-21 2001-10-24 Giovacchino Montagnani Process for neutralising harmful powders and plant that carries out this method
JP2016070569A (en) * 2014-09-29 2016-05-09 Dowaエコシステム株式会社 Incineration treatment method for solid industrial waste

Also Published As

Publication number Publication date
JP3918280B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
JP3918280B2 (en) Operation method of ash melting furnace
JP4965890B2 (en) Electric melting furnace operation control method
JPH0694926B2 (en) Method of melting incineration ash
JP3921706B2 (en) Electrode sealing device for ash melting furnace
JP3280265B2 (en) Apparatus and method for melting incineration residue and fly ash
JP3744668B2 (en) Ash melting furnace
JPH0730893B2 (en) Incinerator ash melting device
JP3744669B2 (en) Ash melting furnace
JP3599783B2 (en) Method for producing crystallized product using plasma melting furnace
JP2896563B2 (en) Waste melting furnace
JPH11244653A (en) Device for treating waste gas of ash melting furnace
JP3757409B2 (en) Ash melting furnace and method for forming bottom electrode of ash melting furnace
JP3582117B2 (en) Decomposition method of molten salt in incineration ash melting furnace
JP4174716B2 (en) Salt discharge method in ash melting furnace
JP2896562B2 (en) Waste melting furnace
JPH11201439A (en) Ash-melting furnace
JPH0519277B2 (en)
JP3799582B2 (en) Ash melting furnace
JP3921784B2 (en) Ash melting furnace
JP3714384B2 (en) Ash melting furnace
JPH0777318A (en) Method and device for waste melting treatment
JPH11207287A (en) Apparatus for treating exhaust gas of ash melting furnace
JP3831930B2 (en) Electrode sealing device for ash melting furnace
JPH10169962A (en) Melting method of burned ash with plasma melting furnace
JPH1019230A (en) Method for melting treatment of refuse inclineration ash and melting furnace therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees