JPH062280B2 - Melt processing method - Google Patents

Melt processing method

Info

Publication number
JPH062280B2
JPH062280B2 JP59279075A JP27907584A JPH062280B2 JP H062280 B2 JPH062280 B2 JP H062280B2 JP 59279075 A JP59279075 A JP 59279075A JP 27907584 A JP27907584 A JP 27907584A JP H062280 B2 JPH062280 B2 JP H062280B2
Authority
JP
Japan
Prior art keywords
furnace
concentration
gas
volume
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59279075A
Other languages
Japanese (ja)
Other versions
JPS61157400A (en
Inventor
俊治 古川
友伸 石田
敏和 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP59279075A priority Critical patent/JPH062280B2/en
Publication of JPS61157400A publication Critical patent/JPS61157400A/en
Publication of JPH062280B2 publication Critical patent/JPH062280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は下水汚泥等の有機物を含有する被処理物を高温
状態で熱分解溶融処理する溶融処理方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a melting treatment method of thermally decomposing and treating an object to be treated containing an organic matter such as sewage sludge in a high temperature state.

〔従来の技術〕[Conventional technology]

従来から下水汚泥等の有機物を含有する被処理物を溶融
炉内に投入して高温状態で被処理物中の有機物は分解し
無機物は溶融する溶融処理方法が行われている。上記被
処理物に含まれる有機物の分解は存在する酸化剤によっ
て行われH2,CO,CH4等の混合物からなるガスが発
生する。従来は上記酸化剤としては被処理物中に含まれ
る水分が用いられている。例えば具体例をあげれば、被
処理物が下水汚泥の場合には20重量%程度の含水率ま
で乾燥させ有機物を55重量%程度含むものを被処理物
とし、これを密閉構造を有するアーク式溶融炉へ投入し
て溶融処理した場合には発生ガスのCO濃度は35〜4
0体積%、被処理物1t当り(即ち固形分としては80
0kg当り)1400〜1500KWの電力が必要であ
る。
2. Description of the Related Art Conventionally, a melting treatment method has been performed in which an object to be treated containing an organic matter such as sewage sludge is put into a melting furnace and organic matter in the matter to be treated is decomposed and inorganic matter is melted at a high temperature. Decomposition of the organic substances contained in the above-mentioned object to be processed is carried out by the existing oxidizing agent, and a gas composed of a mixture of H 2 , CO, CH 4, etc. is generated. Conventionally, the water contained in the material to be treated is used as the oxidizing agent. For example, when the material to be treated is sewage sludge, it is dried to a water content of about 20% by weight and treated with an organic matter of about 55% by weight. When put into a furnace and melted, the CO concentration of the generated gas is 35-4.
0% by volume, per ton of the object to be treated (that is, 80% as solid content)
Electric power of 1400 to 1500 kW (per 0 kg) is required.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術においては上記した被処理物中に含まれる
有機物の分解反応が吸熱反応であるために外部からエネ
ルギーを供給することが必要であり、上記具体例では上
記したように被処理物1t当り1400〜1500KW
の電力が必要である。更に有機物分解のための酸化剤と
しては上記したように被処理物中に含まれる水分が用い
られ、例えば具体例においては20重量%程度水分を含
む被処理物が用いられるが、上記水分含有量では理論的
には充分であるけれども炉内の温度分布その他の関係か
ら含有される水分が100%反応に関与するわけではな
く、結果として酸化剤が不足し有機物の分解が完全に行
われず遊離カーボンが生成して炉内に堆積する。上記具
体例の場合には炉内に該遊離カーボンが厚さ100〜2
00mm程度堆積する。
In the above-mentioned conventional technique, it is necessary to supply energy from the outside because the decomposition reaction of the organic substances contained in the above-mentioned processed material is an endothermic reaction. 1400 to 1500 kW
Power is required. Further, as the oxidizing agent for decomposing the organic matter, the water contained in the object to be treated is used as described above. For example, in the specific example, the object to be treated containing 20% by weight of water is used. Although it is theoretically sufficient, 100% of the water content does not contribute to the reaction due to the temperature distribution in the furnace and other relations. As a result, the oxidizer is insufficient and the decomposition of organic matter is not completely carried out. Are generated and deposited in the furnace. In the case of the above specific example, the free carbon has a thickness of 100 to 2 in the furnace.
Deposit about 00 mm.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来の問題点を解決する手段として有機物
を含有する被処理物を電気加熱による溶融炉において熱
分解溶融処理する工程から発生するガス中の一酸化炭素
濃度が10〜30体積%になるように酸素および/また
は酸素含有ガスを該工程に添加するものである。
According to the present invention, as a means for solving the above-mentioned conventional problems, the carbon monoxide concentration in the gas generated from the step of pyrolyzing and melting an object containing an organic substance in a melting furnace by electric heating is 10 to 30% by volume. Oxygen and / or an oxygen-containing gas is added to the step so that

本発明の対象とする被処理物とは例えば下水汚泥、都市
ごみ焼却灰等がある。上記被処理物は溶融処理にあたっ
ては加熱乾燥されてもよい。例えば下水汚泥にあっては
前記具体例に述べたように含水率約20重量%程度迄乾
燥させられる。上記被処理物は溶融炉中に投入されて溶
融せしめられる。本発明に用いられる溶融炉としては抵
抗炉、アーク炉、誘導炉等の種々の形式の電気加熱によ
る溶融炉が包含され得、所望ならばあらかじめ、鉄、ア
ルミニウム等のベース金属を投入して溶融しておいても
よい。本発明においては上記のようにして溶融炉中に被
処理物を投入し電気加熱による高温状態で熱分解溶融処
理を行うのであるが、この際該溶融処理工程から発生す
るガス中の一酸化炭素濃度が10〜30体積%望ましく
は20〜30体積%の範囲に入るように酸化剤を添加す
る。酸化剤としてはCOと円滑に反応する空気、富酸素
空気等の酸素および/または酸素含有ガスを用いる。
Examples of the object to be treated of the present invention include sewage sludge, municipal waste incineration ash, and the like. The material to be treated may be dried by heating in the melting treatment. For example, sewage sludge can be dried to a water content of about 20% by weight, as described in the above specific examples. The object to be treated is put into a melting furnace and melted. The melting furnace used in the present invention may include various types of electric heating melting furnaces such as resistance furnaces, arc furnaces, and induction furnaces. If desired, a base metal such as iron or aluminum may be charged in advance to melt. You may keep it. In the present invention, the material to be treated is put into the melting furnace as described above and the pyrolysis and melting treatment is carried out at a high temperature by electric heating. At this time, carbon monoxide in the gas generated from the melting treatment step is used. The oxidizing agent is added so that the concentration is in the range of 10 to 30% by volume, preferably 20 to 30% by volume. As the oxidant, oxygen and / or an oxygen-containing gas such as air or oxygen-rich air that smoothly reacts with CO is used.

〔作用〕[Action]

このように本発明においては有機物を含む被処理物の電
気加熱による溶融炉内での溶融処理工程で酸化剤として
酸素および/または酸素含有ガスを添加するから、発生
ガス中のH2,CO,CH4等の可燃物が燃焼し燃焼熱が
発生する。該燃焼熱は有機物の分解に利用される。発生
ガス中のCO濃度は上記のような酸化剤による燃焼によ
って低下するが、酸化剤の添加量が多くなるにつれてC
O濃度は低下する傾向がある。そしてCO濃度が10体
積%未満では酸化剤の量が多くなりすぎて発生ガス量が
増大し、アーク炉等では電極の消耗が促進される。した
がって酸化剤の添加量は発生ガスのCO濃度が10〜3
0体積%望ましくは20〜30体積%の範囲になるよう
に調節する。発生ガスのCO濃度が30体積%を越える
と燃焼熱が不足し外部から補給すべきエネルギー量が増
大しかつ遊離カーボン量も増大する傾向となるから酸化
剤の量は発生ガスのCO濃度が30体積%以下になるよ
うに調節する。本発明では酸化剤として酸素および/ま
たは酸素含有ガスを使用するから、COの酸化反応は円
滑に進む。また炉内温度は上記酸化剤の添加では余り低
下しない。
As described above, in the present invention, oxygen and / or an oxygen-containing gas is added as an oxidant in a melting treatment step in a melting furnace by electric heating of an object to be treated containing an organic substance, so that H 2 , CO, Combustibles such as CH 4 burn to generate combustion heat. The combustion heat is used to decompose organic substances. The CO concentration in the generated gas decreases due to the combustion with the oxidant as described above, but as the amount of the oxidant added increases, C
The O concentration tends to decrease. When the CO concentration is less than 10% by volume, the amount of the oxidizer becomes too large and the amount of generated gas increases, so that the consumption of the electrode is accelerated in an arc furnace or the like. Therefore, the amount of the oxidizing agent added is such that the CO concentration of the generated gas is 10 to 3
It is adjusted to 0% by volume, preferably 20 to 30% by volume. When the CO concentration of the generated gas exceeds 30% by volume, the combustion heat becomes insufficient, the amount of energy to be supplied from the outside tends to increase, and the amount of free carbon tends to increase. Adjust so that it is below volume%. In the present invention, oxygen and / or an oxygen-containing gas is used as the oxidant, so that the CO oxidation reaction proceeds smoothly. Further, the temperature inside the furnace is not so lowered by the addition of the above-mentioned oxidizing agent.

〔発明の効果〕〔The invention's effect〕

本発明は上記したように有機物を含む被処理物の溶融処
理工程において発生ガスの一酸化炭素濃度が10〜30
体積%になるように酸素および/または酸素含有ガスを
添加して発生ガスを燃焼させるから、レスポンスの速い
一酸化炭素濃度の制御が確保され、また電極の消耗が防
止されるとともに発生する燃焼熱の分だけ外部から補給
するエネルギーの量が節約され、かつ炉内での遊離カー
ボンの蓄積は防止される 〔実施例〕 第1図は本発明の一実施例を示す。図において(1)はア
ーク炉であり上方から電極(2)A,(2)B,(2)Cが挿着されて
おり、上部には被処理物投入用のシュート(3)が取付け
られ、また発生ガスの排出路(4)が連絡している。更に
アーク炉(1)の側壁には空気吹込み管(5)が挿着され、該
空気吹込み管(5)には調節弁(6)を介してブロアー(7)が
連絡する。排出路(4)からはサンプリング回路(4)Aが分
岐し、サンプリング回路(4)AにはCO計(8)が介在し、
該CO計(8)は調節弁(6)と連絡する。またシュート(3)
上には被処理物の投入コンベア(9)が配される。なお、
シュート(3)およびコンベア(9)は図示しない密閉容器内
に収納され、シュート(3)から外気が侵入しない様にな
っている。
In the present invention, as described above, the carbon monoxide concentration of the generated gas is 10 to 30 in the melting treatment step of the object containing the organic matter.
Since the generated gas is combusted by adding oxygen and / or an oxygen-containing gas so that the volume% is reached, the control of the carbon monoxide concentration with a fast response is ensured, the consumption of the electrode is prevented, and the combustion heat generated The amount of energy supplied from the outside is saved by the amount of the above, and the accumulation of free carbon in the furnace is prevented. [Example] FIG. 1 shows an example of the present invention. In the figure, (1) is an arc furnace in which electrodes (2) A, (2) B, and (2) C are inserted from above, and a chute (3) for loading an object to be processed is attached to the upper part. Also, the discharge path (4) for the generated gas is connected. Further, an air blowing pipe (5) is attached to the side wall of the arc furnace (1), and a blower (7) communicates with the air blowing pipe (5) via a control valve (6). A sampling circuit (4) A branches from the discharge path (4), and a CO meter (8) is interposed in the sampling circuit (4) A.
The CO meter (8) communicates with the control valve (6). Shoot again (3)
A conveyor (9) for loading the material to be processed is arranged on the upper side. In addition,
The chute (3) and the conveyor (9) are housed in a closed container (not shown) so that outside air does not enter through the chute (3).

上記アーク炉(1)に鉄等のベース金属を投入して電極(2)
A,(2)B,(2)Cにより加熱溶融して溶融金属層(10)を形成
する。このようにしてから含水率20重量%にまで乾燥
した下水汚泥(有機物含有量55重量%)を投入コンベ
ア(9)からシュート(3)を介して炉内に投入する。下水汚
泥(11)は高温状態の炉内で含有する有機物を分解され無
機物は溶融されて溶融スラグ(12)となって溶融金属層(1
0)上に浮上する。上記下水汚泥(11)の熱分解溶融処理工
程において、ブロアー(7)を作動させ調節弁(6)を介して
空気吹込み管(5)から炉内に空気を吹込む。このように
して発生ガスは空気と混合して燃焼し排出路(4)に導入
され排出されるが、サンプリング回路(4)Aに所定量サン
プリングしてCO計(8)にて排出ガスのCO濃度を測定
する。測定結果により調節弁(6)が制御され空気吹込み
量を加減して排出ガスのCO濃度が25〜30体積%に
なるようにする。空気を吹込まない場合の排出ガスのC
O濃度は35〜40体積%である。排出ガスのCO濃度
を25〜30体積%にするには本実施例の場合空気吹込
み量を下水汚泥1t当り200〜300m3Nとする。こ
の条件では炉内雰囲気温度は約1000℃であり空気を
吹込まない場合では約600℃であり、炉内での発生ガ
スの燃焼熱が有効に利用されていることは明らかであ
り、電力原単位(下水汚泥1t当りの電力消費量:KW
h/t)も空気を吹込まない場合の1400〜1500
KWh/tから1200〜1300KWh/tに低減さ
れ、更に電極原単位(下水汚泥1t当りの電極消費量:
kg/t)も空気を吹込まない場合の10kg/tから5.5k
g/tに低減された。
Put the base metal such as iron into the above arc furnace (1) and electrode (2)
The molten metal layer (10) is formed by heating and melting with A, (2) B, and (2) C. After that, the sewage sludge (organic matter content: 55% by weight) dried to a water content of 20% by weight is charged into the furnace from the charging conveyor (9) through the chute (3). The sewage sludge (11) decomposes the organic substances contained in the furnace at high temperature and the inorganic substances are melted to form molten slag (12), which forms the molten metal layer (1
0) Ascend to the top. In the thermal decomposition melting treatment step of the sewage sludge (11), air is blown into the furnace from the air blowing pipe (5) through the control valve (6) by operating the blower (7). In this way, the generated gas is mixed with air and burned, and is introduced into the discharge passage (4) and discharged, but a predetermined amount is sampled in the sampling circuit (4) A and the CO meter (8) measures the CO Measure the concentration. The control valve (6) is controlled according to the measurement result to adjust the air injection amount so that the CO concentration of the exhaust gas becomes 25 to 30% by volume. Exhaust gas C when air is not blown
The O concentration is 35 to 40% by volume. In order to adjust the CO concentration of the exhaust gas to 25 to 30% by volume, the amount of air blown is 200 to 300 m 3 N per 1 t of sewage sludge in this embodiment. Under this condition, the atmospheric temperature in the furnace is about 1000 ° C., and when the air is not blown, it is about 600 ° C. It is clear that the combustion heat of the gas generated in the furnace is effectively used, and Unit (electric power consumption per ton of sewage sludge: KW
h / t) 1400 to 1500 when air is not blown
It is reduced from KWh / t to 1200-1300KWh / t, and the electrode unit consumption (electrode consumption per 1t of sewage sludge:
5.5 kg from 10 kg / t when air is not blown.
It was reduced to g / t.

第2図に排出ガスのCO濃度(体積%)と電力原単位
(KWh/t)および電極原単位(kg/t)との関係を
示す。図中本実施例はPで示され、Pは空気を吹込
まない場合である。第2図によれば排出ガスのCO濃度
が10体積%以下であるPの場合は空気吹込み量は下
水汚泥1t当り400〜500m3Nであり電力原単位は
本実施例の場合より若干低減されるが電極原単位が増加
する。これは電極材料である炭素が赤熱状態で空気と接
触してCOやCOに酸化されたことが原因であると考
えられる。さらに排出ガスのCO濃度がPよりも少な
い場合には炉内への遊離カーボンの蓄積が皆無となる。
FIG. 2 shows the relationship between the CO concentration (volume%) of the exhaust gas, the electric power consumption unit (KWh / t) and the electrode consumption unit (kg / t). In the figure, this embodiment is indicated by P 3 , and P 4 is a case where air is not blown. According to FIG. 2, in the case of P 1 in which the CO concentration of the exhaust gas is 10% by volume or less, the amount of air blown is 400 to 500 m 3 N per ton of sewage sludge, and the electric power consumption rate is slightly smaller than that of this embodiment. Although it is reduced, the basic unit of electrode is increased. It is considered that this is because carbon, which is an electrode material, was in contact with air in a red hot state and was oxidized into CO and CO 2 . Further, when the CO concentration of the exhaust gas is lower than P 3 , free carbon is not accumulated in the furnace at all.

上記実施例以外被処理物をあらかじめ炉とは別装置の焼
却炉で焼却して有機物を分解させておいてから発生する
灰(上記実施例の下水汚泥の場合は汚泥1t当り320
kgの灰が発生する)をアーク炉で溶融処理すると電力原
単位は200〜300KWh/tに低減されるが焼却炉
と言う別の装置を必要とし、かつ大量のガスが発生して
そのための処理設備が過大となり、ランニングコストも
増大する。
Ash generated after incinerating an object to be treated other than the above-described example in advance in an incinerator separate from the furnace to decompose organic matter (in the case of sewage sludge in the above example, 320 per 1 t of sludge)
If the melting process is performed in an arc furnace, the power consumption will be reduced to 200 to 300 KWh / t, but a separate device called an incinerator is required, and a large amount of gas is generated to treat it. The equipment will be oversized and the running cost will increase.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の系統図、第2図はCO濃度
と電力原単位との関係(○−○で示される)および電極
原単位との関係(×…×で示される)を示すものであ
る。 図中(1)……アーク炉、 (4)……排出炉、 (5)……空気吹込み管、 (6)……調節弁、 (7)……ブロアー、 (8)……CO計 (11)……下水汚泥
FIG. 1 is a system diagram of an embodiment of the present invention, and FIG. 2 is a relationship between CO concentration and electric power consumption (indicated by ◯ − ◯) and electrode consumption (indicated by × ... ×). Is shown. In the figure, (1) …… Arc furnace, (4) …… Exhaust furnace, (5) …… Air blowing pipe, (6) …… Control valve, (7) …… Blower, (8) …… CO meter (11) …… Sewage sludge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】有機物を含有する被処理物を電気加熱によ
る溶融炉において熱分解溶融処理する工程から発生する
ガス中の一酸化炭素濃度が10〜30体積%になるよう
に酸素および/または酸素含有ガスを該工程に添加する
ことを特徴とする溶融処理方法
1. Oxygen and / or oxygen so that the concentration of carbon monoxide in the gas generated from the step of pyrolyzing and melting an object containing an organic substance in a melting furnace by electric heating is 10 to 30% by volume. Melt processing method characterized by adding a contained gas to the step
JP59279075A 1984-12-28 1984-12-28 Melt processing method Expired - Lifetime JPH062280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59279075A JPH062280B2 (en) 1984-12-28 1984-12-28 Melt processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59279075A JPH062280B2 (en) 1984-12-28 1984-12-28 Melt processing method

Publications (2)

Publication Number Publication Date
JPS61157400A JPS61157400A (en) 1986-07-17
JPH062280B2 true JPH062280B2 (en) 1994-01-12

Family

ID=17606064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59279075A Expired - Lifetime JPH062280B2 (en) 1984-12-28 1984-12-28 Melt processing method

Country Status (1)

Country Link
JP (1) JPH062280B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010492A1 (en) 2012-07-10 2014-01-16 株式会社Adeka Mixed pellet
WO2014057563A1 (en) 2012-10-11 2014-04-17 株式会社Adeka Resin composition for printing film and printing film
WO2015025658A1 (en) 2013-08-21 2015-02-26 株式会社Adeka Flame-retardant composition and flame-retardant synthetic resin composition
WO2015068312A1 (en) 2013-11-06 2015-05-14 協和化学工業株式会社 Resin composition and agricultural film
WO2015080004A1 (en) 2013-11-26 2015-06-04 株式会社Adeka Process for producing masterbatch
WO2015079896A1 (en) 2013-11-26 2015-06-04 株式会社Adeka Light stabilizer composition and resin composition containing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945568A (en) * 1972-09-07 1974-05-01
JPS52143965A (en) * 1976-05-27 1977-11-30 Daido Steel Co Ltd Method of treating sludge containing heavy metals
JPS5438271A (en) * 1977-08-31 1979-03-22 Mishigan Tetsuku Fuando Method of collecting resources from treated matters of solid waste and sewage sludge
JPS5543135A (en) * 1978-09-21 1980-03-26 Ebara Infilco Co Ltd Method of treating sludge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945568A (en) * 1972-09-07 1974-05-01
JPS52143965A (en) * 1976-05-27 1977-11-30 Daido Steel Co Ltd Method of treating sludge containing heavy metals
JPS5438271A (en) * 1977-08-31 1979-03-22 Mishigan Tetsuku Fuando Method of collecting resources from treated matters of solid waste and sewage sludge
JPS5543135A (en) * 1978-09-21 1980-03-26 Ebara Infilco Co Ltd Method of treating sludge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010492A1 (en) 2012-07-10 2014-01-16 株式会社Adeka Mixed pellet
WO2014057563A1 (en) 2012-10-11 2014-04-17 株式会社Adeka Resin composition for printing film and printing film
WO2015025658A1 (en) 2013-08-21 2015-02-26 株式会社Adeka Flame-retardant composition and flame-retardant synthetic resin composition
WO2015068312A1 (en) 2013-11-06 2015-05-14 協和化学工業株式会社 Resin composition and agricultural film
WO2015080004A1 (en) 2013-11-26 2015-06-04 株式会社Adeka Process for producing masterbatch
WO2015079896A1 (en) 2013-11-26 2015-06-04 株式会社Adeka Light stabilizer composition and resin composition containing same

Also Published As

Publication number Publication date
JPS61157400A (en) 1986-07-17

Similar Documents

Publication Publication Date Title
KR960014941B1 (en) Method and apparatus for continuous preheating load of electric arc furnace
EP0489867B1 (en) Method and apparatus for making solid waste material environmentally safe using heat
PT1501622E (en) Method and apparatus for treating off-gas from a waste treatment system
KR890004291B1 (en) Method and apparatus for reclaiming metals from metallic scrap material
US4960380A (en) Method and apparatus for the reduction of solid waste material using coherent radiation
US5535234A (en) Process for the simultaneous smelting of dust and incinerator slag
JPH062280B2 (en) Melt processing method
JPH101728A (en) Reduction treatment of tin oxide and device therefor
JPH10267235A (en) Melt treatment apparatus for incineration residue and fly ash and method thereof
JP3962178B2 (en) Hazardous material processing method and apparatus
AU6079499A (en) Method for producing directly reduced metal in a multi-tiered furnace
JPH02122109A (en) Disposal method of city garbage incinerated ash
JPS5813916A (en) Melting method for waste
RU1715107C (en) Apparatus for treating of radioactive waste
JP3575785B2 (en) Method and apparatus for treating fall ash in secondary combustion chamber
JPS5589414A (en) Refining method of molten steel
JPS5589612A (en) Conbustion sustaining gas blowing-in method at melting type pyrolytic furnace for waste
JPS60103215A (en) Disposal of waste
JPH11333411A (en) Electric melting furnace for ash treatment and method for operating the same
JPS633207B2 (en)
JPH02217788A (en) Smelting of scrap in electric arc furnace and electric arc furnace therefor
JPH11207288A (en) Melting treatment of waste
JP2003083517A (en) Waste plasma melting method and waste plasma melting device
JP3027287B2 (en) Electric resistance type melting furnace and its operation method
JPH09263776A (en) Process for gasifying organic waste and fixed-bed gasification oven